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Abstract: Although Carnobacterium maltaromaticum derived from dairy products has been used as a
lactic acid bacterium industrially, several studies have reported potential pathogenicity and disease
outbreaks. Because strains derived from diseased fish and dairy products are considered potentially
virulent and beneficial, respectively, their genotypic and phenotypic characteristics have attracted
considerable attention. A genome-wide comparison of 30 genome sequences (13, 3, and 14 strains
from diseased aquatic animals, dairy products, and processed food, respectively) was carried out.
Additionally, one dairy and two nondairy strains were incubated in nutrient-rich (diluted liquid
media) and nutrient-deficient environments (PBS) at pH 10 to compare their alkaline resistance in
accordance with different nutritional environments by measuring their optical density and viable
bacterial cell counts. Interestingly, only dairy strains carried 11 shared accessory genes, and 8 genes
were strongly involved in the V-type ATPase gene cluster. Given that V-type ATPase contributes to
resistance to alkaline pH and salts using proton motive force generated via sodium translocation
across the membrane, C. maltaromaticum with a V-type ATPase might use nutrients in food under
high pH. Indeed, the dairy strain carrying the V-type ATPase exhibited the highest alkaline resistance
only in the nutrient-rich environment with significant upregulation of V-type ATPase expression.
These results suggest that the gene cluster of V-type ATPase and increased alkaline resistance of dairy
strains facilitate adaptation in the long-term ripening of alkaline dairy products.

Keywords: lactic acid bacteria; genomics; bioinformatics; V-type ATPase; alkaline resistance; food quality

1. Introduction

Lactic acid bacteria (LAB) are among the most well-known bioresources widely used
industrially. For example, they are used in the ripening of dairy products and in probiotics,
and their role and importance in ripening soft cheeses are well established [1–3]. The appro-
priate composition of microbiota during cheese ripening can enhance food texture, flavor,
and safety, and greatly influence cheese characteristics such as odor, color, appearance,
hardness, and pH [1,4–6]. In general, because most LAB participate in acidic microbial
processes via lactate fermentation during the first phase of the ripening of soft cheese,
the pH of dairy products is decreased [7]. Subsequently, however, ammonia-producing
microorganisms (e.g., Penicillium caseicolum and Geotrichum candidum) metabolize lactic acid
and produce ammonia (NH3), which creates an alkaline environment in the ripening of
dairy products [5,8]. These phenomena directly affect the switch in the composition of mi-
crobiota from aciduric to nonaciduric bacteria [1,5,9]. Currently, nonstarter LAB (NSLAB),
which are predominantly isolated from the ripening of cheese at low temperature and
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alkaline conditions, are useful in preventing spoilage and inhibiting pathogenic bacteria
such as Listeria [10].

Carnobacterium maltaromaticum (formerly C. piscicola) has been known as nonaciduric
and psychrotrophic NSLAB [1,10]. C. maltaromaticum is predominantly found in cheeses
during the ripening phase under increased pH and cold storage and may have a positive
effect on the preservation of cheeses and the inhibition of Listeria in dairy products by
secreting bacteriocins [1,10,11]. Because C. maltaromaticum has been isolated from a wide
range of environments such as fish, food, sea, and dairy products, its genetic diversity
and usefulness are not confined to dairy products [12–14]. However, in recent years, some
studies [15,16] have warned that specific strains of C. maltaromaticum derived from diseased
fish could trigger mortality in fish from severe histopathological changes such as ulcers, in-
flammation, necrosis, and massive hemorrhage in the skin, head kidney, and swim bladder.
Nonetheless, because the strains obtained from dairy products are still regarded as benefi-
cial LAB, the importance of the genetic differences between useful dairy C. maltaromaticum
and other nondairy strains has received great attention [12,17]. When rainbow trout were
challenged intraperitoneally with approximately 108 CFU of C. maltaromaticum isolated
from different sources, only strains derived from diseased fish, but not dairy sources,
induced mortality by 60 to 80% [15]. Thus, their genotypic and phenotypic characteristics
differed according to the isolation source. Hence, it is necessary to elucidate the phenotypic
and genotypic differences between the strains. Therefore, the purpose of this study was
to understand the genotypic and phenotypic differences based on comparative genomic
analysis. The results will significantly contribute to our understanding of C. maltaromaticum
as a useful bacterial resource as well as a potential pathogen.

2. Materials and Methods
2.1. Comparative Genomic Analysis

Whole-genome sequences of 30 C. maltaromaticum strains, including three strains
derived from dairy products and 13 and 14 strains from diseased fish and processed
food, were collected from GenBank. The CDS of all strains were predicted using the
RAST server [18–20]. Based on profiling the predicted gene counts and existence, a three-
dimensional PCA plot and a dendrogram with the complete method were drawn in R
(Ver. 3.6.2) using the rgl package [21]. The predicted CDS were functionally annotated
using the KEGG database with the condition of Taxonomy group = Prokaryotes and KEGG
database = species of prokaryotes, and the accessory ko_id, ko_terms or pathway were
selected only in dairy strains.

2.2. Existence of V-Type ATPase Subunit A (ATPVA) and V-type ATPase Subunit I (ATPVI)
Genes in C. maltaromaticum

C. maltaromaticum 18ISCm strain was isolated from diseased trout [15], and C. maltaro-
maticum ATCC 35586 and DSM 20342 were derived from the Korean Collection for Type
Cultures (KCTC). All C. maltaromaticum strains were cultured on Tryptone Soya Agar (TSA;
Oxoid, Hampshire, UK) at 28 ◦C for 24 to 48 h. Genomic DNA from three strains was
extracted using the AccuPrep® Genomic DNA Extraction Kit (Bioneer, Daejeon, Korea),
and conventional PCR was used to detect V-type ATPase with the primer sets targeting
subunit A (ATPVA; F: 5’-CCC GTC ACG ACA ACT GGT AA-3’, R: 5’-ACG TTC TCC
ACA CCC AAC AT-3’) and subunit I (ATPVI; F: 5’- GGG ATG ATG GTT GCG GAT GT-3’,
R: 5’-CAC CCG CTA TTC CTA GTG CC-3’). In this study, primers were designed using
Primer 3 plus software [22]. Polymerase chain reaction (PCR) was performed under the
following conditions: 1 cycle of 95 ◦C for 5 min; 30 cycles of 95 ◦C for 30 s, 58 ◦C for 30 s,
and 72 ◦C for 30 s; and 1 cycle of 72 ◦C for 5 min using AccuPower® PCR Premix (Bioneer,
Daejeon, Korea). Gel electrophoresis was performed with 1% agarose gel. DNA amplicon
and size were observed using Gel DocTM 2000 (Bio-Rad, CA, USA). DNA amplicon was
also used for sequencing using a Sanger sequencer (Applied Biosystems 3730XL DNA
Analyzer, Applied Biosystems, MA, USA). Additionally, in silico PCR was performed
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for all 30 C. maltaromaticum strains using in silico PCR amplification version 1.0 (Joseba
Bikandi; http://insilico.ehu.es/mini_tools/PCR/) (Accessing date: 24 December 2020)
and predicted the sensitivity of primers for different isolated sources of C. maltaromaticum.

2.3. Determination of Alkaline Resistance of C. maltaromaticum

The pH of 1/10 TSB medium (composed of 10% TSB and 90% PBS) and PBS was
adjusted to 7 and 10 using HCl and NaOH, respectively. Two different experiments (Exp. 1
and Exp. 2) were carried out to determine their alkaline resistance. In Exp. 1, strains
18ISCm, ATCC35586, and DSM20342 of C. maltaromaticum were suspended in 8 mL of
PBS (pH 7 and pH 10) and 1/10 TSB (pH 7 and pH 10), respectively. Triplicate bacterial
cultures with an optical density (OD) of 0.35–0.45 at 630 nm measured with a SunriseTM

spectrophotometer (TECAN, Männedorf, Switzerland) were incubated at 28 ◦C under
slight shaking at 150 rpm. The OD at 630 nm was then periodically measured at 8, 24, 48,
and 96 h after inoculation (hpi). The relative OD value at 630 nm was calculated using the
formula below.

Relative OD value (%) = (Each time of OD value at 630 nm/Initial OD value at 630 nm) × 100

In Exp. 2, approximately 105 CFU mL−1 of each strain was suspended in PBS and
1/10 TSB at pH 7 and 10. Bacterial counts were determined using a method described in
a previous study with slight modifications [23]. Briefly, 5 mL of bacterial suspension in
triplicate were prepared and incubated under the same conditions as in Exp 1. At 24 and
48 hpi, 100 µL of 10-fold serial dilutions (100, 10−1, and 10−2) were spread onto TSA and
incubated at 28 ◦C. Bacterial colonies were counted after incubation for up to 3 days.

2.4. Expression of V-Type ATPase Gene of C. maltaromaticum under Alkaline Environment

Each strain (18ISCm, ATCC35586, and DSM20342) was suspended in 8 mL of PBS at
pH 7, PBS at pH 10, and 1/10 TSB at pH 7 and pH 10. All bacterial cultures were suspended
to attain an OD value of 0.4–0.5 at 630 nm. They were incubated at 28 ◦C with shaking
(150 rpm). At 8, 24, and 48 hpi, 1 mL was obtained, and the total RNA was extracted using
TRIzol as previously described [24]. Total RNA (100 ng) was mixed with 2 µL of 50 A260
units of random hexamer (Primer random p[dN]6, Roche, USA) and DEPC-treated water
to obtain a total volume of 10 µL. The mixture was used to synthesize cDNA using an
M-MLV Reverse Transcriptase kit (Bioneer, Daejeon, Korea). Most procedures followed
the methods described previously [24]. qPCR was performed using an ExicyclerTM 96
Real-Time Quantitative Thermal Block (Bioneer, Daejeon, Korea) after 25 µL of AccuPower®

2X Greenstar qPCR Master mix (Bioneer, Daejeon, Korea) was mixed with 2 µL of 16S
rRNA (928F-Firm: 5’-TGA AAC TYA AAG GAA TTG ACG-3’, 1040FrimR: 5’-ACC ATG
CAC CAC CTG TC-3’) [25] or qATPVA primer set (qATPVA_F: 5’-ATG CAA AAA TGG
CCC GTT CG-3’, qATPVA_R: 5’-TCT TTG CCC TGT TGT CAT CG-3’), 5 µL of cDNA, and
16 µL DEPC. The qPCR conditions for the ATPVA gene were: 95 ◦C for 5 min, followed
by 95 ◦C for 15 s and 61 ◦C for 20 s. The qPCR conditions for 16S rRNA were: 95 ◦C for
5 min, followed by 40 cycles of 95 ◦C for 15 s, 61.5 ◦C for 15 s, and 72 ◦C for 20 s [25]. The
expression level of ATPVA was normalized against that of 16S rRNA and calculated with
2−44Ct [26].

2.5. Statistical Analysis

All results are expressed as the mean ± standard deviation (SD). Data were subjected
to one-way analysis of variance (ANOVA) based on Duncan’s multiple range test using
SPSS version 16.0 (IBM, NY, USA). Significant differences among groups are indicated by
different letters.

http://insilico.ehu.es/mini_tools/PCR/
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3. Results and Discussion

The maximum and the minimum number of protein-coding sequences (CDS) among
30 strains of C. maltaromaticum were 3952 and 3226 in 18ISCm and ML-1-97, and an average
of 3386 CDS was found in C. maltaromaticum (Table S1). On average, 53% of the CDS were
annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (more de-
tailed information is available in Table S2). Principal component analysis and a dendrogram
based on the number of KEGG ontology (KO) genes in 30 C. maltaromaticum strains showed
that dairy strains had similar gene-harboring tendencies, unlike the strains from diseased
fish and processed food (Figure 1A,B). Based on comparative genomic analysis, only
11 genes were related to dairy-derived strains (LMA28, XM5, and DSM20342), as shown in
Figure 1. These genes were associated with V-type ATPase, LYS5 (4’-phosphopantetheinyl
transferase), ImrP (MFS transporter), and an uncharacterized protein. Nevertheless, all C.
maltaromaticum strains used in this study carried an F-type ATPase (data not shown), and
the gene cluster for V-type ATPase that localized in the chromosome was found only in
the dairy strains by KEGG pathway analysis. All components of V-type ATPase (ATPVA,
ATPVB, ATPVC, ATPVD, ATPVE, ATPVF, and ATPVI, and ATPVK) were serially local-
ized in the chromosomal DNA in the dairy strains next to a sulfate permease (SulP) gene
(Figure 1D).
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Figure 1. Three-dimensional principal component analysis (PCA) of strains derived from dairy
products, diseased fish, and processed food based on the profiling of KEGG Ontology (ko) genes
(A). Clustering of 30 strains of Carnobacterium maltaromaticum isolated under different conditions (B).
The accessory genes and ko_id that shared only dairy strains among 30 strains of C. maltaromaticum
(C). The serial array of sulfate permease (SulP), transposase (Tn), and the components of V-type
ATPase (ATPVA, ATPVB, ATPVC, ATPVD, ATPVE, ATPVF, ATPVI, and ATPVK) in the dairy strains
of chromosomal DNA (D).
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The genetic markers differentiating the dairy and nondairy strains using the gene
cluster of V-type ATPase, ATPVA, and ATPVI were selected as the target genes for de-
signing specific primers. A thick band in the range of 500–600 bp was detected only in
the dairy strain (DSM20342), and the sequence of the DNA amplicon was confirmed us-
ing a Sanger sequencing method (Figure 2A). Likewise, only the dairy strains showed a
positive response without any false-negative amplification in other sources based on in
silico PCR targeting ATPVA and ATPVI among all of the uploaded genome sequences
(Figure 2B). This result indicated that only a few C. maltaromaticum strains contained V-type
ATPase, and all of them originated in dairy products. Vacuolar-type (V-type) ATPase,
which pumps sodium via ATP hydrolysis, has been detected only in a few bacteria, includ-
ing LAB (e.g., Enterococcus hirae) and archaea [27–30]. In general, V-type ATPase plays a
crucial role in maintaining physiological homeostasis under extreme alkaline pH and salt
concentrations via an active transport system [31,32]. Krulwich et al. [31] reported that
the transmembrane electrical potential (∆ψ) was very important in resisting acidic and
alkaline environments. In an acidic environment, bacteria try to maintain a positive ∆ψ
(intracellular positive charge) to facilitate the discharge of intracellular protons. However,
bacteria in an alkaline environment maintain a negative ∆ψ (intracellular negative charge)
for attracting external protons via monovalent cation/hydrogen antiporters. In the alkaline
environment, V-type ATPase plays a crucial role by pumping Na+ from the intracellular
to the external area, which greatly contributes to maintaining a negative ∆ψ. Accord-
ingly, the electrical gradients are the driving force moving protons to the intracellular area
through the monovalent/hydrogen antiporter found in all C. maltaromaticum (Table S2).
However, because V-type ATPase, which is a membrane protein, has been known to pump
sodium or proton ions [33,34], the possibility that H+ is directly transported by V-type
ATPase remains.

To verify the phenotypic characteristics of V-type ATPase, we evaluated the resistance
of strains carrying the enzyme in a highly alkaline environment under both nutrient-rich
and nutrient-deficient culture conditions. The relative OD values of all bacterial cultures in
PBS (pH10, nutrient-deficient medium) and 1/10 TSB (nutrient-rich medium) continuously
decreased over time in Exp. 1. The relative OD value of DSM 20342 was higher than that
of 18ISCm or ATCC 35586 in 1/10 TSB (pH 10) based on an OD of higher than 70% at
48–96 hpi. In contrast, the relative OD value of the nondairy strains (18ISCm and ATCC
35586) in 1/10 TSB at pH 10 was around 60% or less (Figure 3A). However, these patterns
were completely reversed in the nutrient-deficient medium (PBS at pH 10). The relative
OD value of DSM20342 in PBS (pH 10) was approximately 50% at 48 and 96 hpi, which was
significantly lower than that of the nondairy strains at relative OD values higher than 70%
(Figure 3B). A similar pattern was observed in Exp. 2. Although 10-fold higher viability
of the DSM20342 strain was observed in 1/10 TSB (pH 10) at 24 and 48 hpi compared to
the initial concentration, 18ISCm and ATCC 35586 did not grow under similar conditions,
and instead, the viable bacterial count decreased compared to that of the initial inoculum
(Figure 3C). However, DSM20342 showed no significant differences or comparatively
weaker alkaline resistance in PBS at pH 10 compared to other strains (18ISCm and ATCC
35586), with no surviving DSM20342 strain at 24 hpi (Figure 3D). Figure 3A shows that
the OD value of DSM20342 decreased, whereas Figure 3C shows the number of its CFU
increased. This was thought to be the result of different initial concentrations. In Exp. 1,
the initial OD values were adjusted between 0.35 and 0.45, in which the concentrations
at the time were approximately 108–109 CFU mL−1. However, an initial concentration of
104–105 CFU mL−1 was used in Exp. 2. Given that we used 1/10 TSB media because all
powders were not dissolved at pH10, the C. maltaromaticum cultured for Exp. 1. was in
poor-nutrient environments compared to Exp. 2.
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These differences would result in different growth patterns even though they were
incubated in the same media. To investigate the effect of V-type ATPase activation under
a highly alkaline environment with or without nutrients, ATPVA expression, one of the
major V-type ATPases, was analyzed in both pH 10 PBS and 1/10 TSB at 8, 24, and 48 hpi
using the DSM20342 strain. DSM20342 suspended in pH 7.2 PBS was used as the control.
Interestingly, the ATPVA expression was more than two-fold higher only in 1/10 TSB at
8 hpi, but no significant difference was observed in the pH 10 PBS group (Figure 4). This
result was strongly consistent with bacterial survival in pH 10 PBS and 1/10 TSB, and the
selective resistance of DSM20342 in the nutrient-rich environment was probably mediated
by the activation of V-type ATPase in the dairy strain.
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According to Zhang et al. [33], V-type ATPase in Enterococcus faecium was also upregu-
lated during bile salt exposure, and proton or sodium gradients were generated by V-type
ATPase under bile salt stress. In prokaryotes, the proton motive force was increased when
ATPase was activated, which induced high tolerance under a harsh external environment
in some Gram-positive bacteria such as Lactobacillus plantarum and B. longum [35,36]. Partic-
ularly, because protons can neutralize alkaline substances, the activation of V-type ATPase
in C. maltaromaticum would be very beneficial to surviving in highly alkaline environments.
In general, C. maltaromaticum exhibits high-alkaline resistance compared to other LAB [37].
This characteristic has been used to develop a selective C. maltaromaticum (CM) medium
composed of several antibiotics (vancomycin; 3.5 mg L−1, gentamycin; 5.0 mg L−1, and
nalidixic acid; 20 mg L−1) with high pH (pH 8.8), to isolate C. maltaromaticum from many
dairy sources [37,38]. Afzal et al. [38] also reported that some strains of C. maltaromaticum
could grow in highly alkaline conditions up to pH 9.6. In this study, we found that the
activation of V-type ATPase, which was only shown in dairy-sourced C. maltaromaticum,
could greatly contribute to higher alkaline resistance (Figure 5). Ripening promotes the
eventual formation of ammonia, which changes the acidic environment of ripening cheese
to an alkaline condition [5,9]. Mei et al. [9] showed a decline in the pH of ripening cheese
below 5.5 after 5 days of ripening, but the environment turned alkaline after 30 to 35 days
of ripening. Likewise, Leclercq-Perlat et al. [5] observed a switch from an acidic to an
alkaline environment (approximately pH 8) within 10 days of ripening. Bubelová et al. [39]
analyzed the ammonia levels during the long-term storage of cheeses and reported that
the ammonia content increased steadily at 23 and 40 ◦C over two years, which implies
a constant increase in pH. Given that the long-term storage of cheeses occurs over two



Microorganisms 2021, 9, 1233 8 of 11

years [39], the dairy strains harboring V-type ATPase are adapted to long-term survival
and metabolism in the alkaline conditions of dairy product storage. Our results implied
that the C. maltaromaticum strains exhibited different selectivity in highly alkaline environ-
ments because of the existence of V-type ATPase, which could lend important genotypic
and phenotypic characteristics to differentiate dairy and nondairy strains. It is common
that prokaryots acquire new genes, paralogs of existing genes, and xenologous gene dis-
placement (orthologs from another lineage (xenolog) through horizontal gene transfer
events) [40,41]. The long-term persistence of horizontally transferred genes usually confers
a selective advantage on the recipient organism [40]. Although this study has a limitation
that only three dairy strains were used for comparative genomics, the existence of V-type
ATPase in only the dairy C. maltaromaticum strains might be the result of evolving an
optimal genetic composition to adapt to the alkaline dairy environments.
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creased when ATPase was activated, which induced high tolerance under a harsh external 
environment in some Gram-positive bacteria such as Lactobacillus plantarum and B. longum 
[35,36]. Particularly, because protons can neutralize alkaline substances, the activation of 
V-type ATPase in C. maltaromaticum would be very beneficial to surviving in highly alka-
line environments. In general, C. maltaromaticum exhibits high-alkaline resistance com-
pared to other LAB [37]. This characteristic has been used to develop a selective C. maltar-
omaticum (CM) medium composed of several antibiotics (vancomycin; 3.5 mg L−1, gen-
tamycin; 5.0 mg L−1, and nalidixic acid; 20 mg L−1) with high pH (pH 8.8), to isolate C. 
maltaromaticum from many dairy sources [37,38]. Afzal et al. [38] also reported that some 
strains of C. maltaromaticum could grow in highly alkaline conditions up to pH 9.6. In this 
study, we found that the activation of V-type ATPase, which was only shown in dairy-
sourced C. maltaromaticum, could greatly contribute to higher alkaline resistance (Figure 
5). Ripening promotes the eventual formation of ammonia, which changes the acidic en-
vironment of ripening cheese to an alkaline condition [5,9]. Mei et al. [9] showed a decline 
in the pH of ripening cheese below 5.5 after 5 days of ripening, but the environment 
turned alkaline after 30 to 35 days of ripening. Likewise, Leclercq-Perlat et al. [5] observed 
a switch from an acidic to an alkaline environment (approximately pH 8) within 10 days 
of ripening. Bubelová et al. [39] analyzed the ammonia levels during the long-term storage 
of cheeses and reported that the ammonia content increased steadily at 23 and 40 °C over 
two years, which implies a constant increase in pH. Given that the long-term storage of 

Figure 4. Relative V-type ATPase Subunit A (ATPVA) gene expression in DSM20342 strain under PBS and 1/10 TSB at pH 10.
The dots in the box plot indicate the fold change of each sample compared to hpi0. Different letters indicate statistically
significant differences determined via Duncan’s multiple range test among all groups (p < 0.05).
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Figure 5. Schematic diagram about the mode of action for V-type ATPase, which only exists in dairy C. maltaromaticum
under a highly alkaline environment. ∆ψ indicated the electrical potential in intra- and extra-cellular areas.

4. Conclusions

This study found that only dairy strains carried V-type ATPase based on comparative
genomic analysis of 30 C. maltaromaticum strains. V-type ATPase consumes ATP in a
nutrient-rich environment, enabling the influx of protons into the cell, which results in
the development of resistance to highly alkaline conditions. Taking into account that
dairy C. maltaromaticum has to survive and stay in alkaline-ripening dairy products for
a long time, harboring the V-type ATPase could facilitate their proper adaptation to the
environment. We suggest that V-type ATPase could be an important genetic feature used
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by C. maltaromaticum in dairy products to adapt to the alkaline environment resulting in
the phenotypic characteristic of high-alkaline resistance in nutrient-rich environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9061233/s1, Table S1: The results of RAST annotation for all strains used
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BioSample, and genome assembly accession numbers used in this study.
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