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Intracerebral hemorrhage (ICH) is the most lethal type of stroke, but there is no specific

treatment. After years of effort, neurologists have found that hematoma expansion

(HE) is a vital predictor of poor prognosis in ICH patients, with a not uncommon

incidence ranging widely from 13 to 38%. Herein, the progress of studies on HE after

ICH in recent years is updated, and the topics of definition, prevalence, risk factors,

prediction score models, mechanisms, treatment, and prospects of HE are covered in

this review. The risk factors and prediction score models, including clinical, imaging, and

laboratory characteristics, are elaborated in detail, but limited by sensitivity, specificity,

and inconvenience to clinical practice. The management of HE is also discussed from

bench work to bed practice. However, the upmost problem at present is that there is

no treatment for HE proven to definitely improve clinical outcomes. Further studies are

needed to identify more accurate predictors and effective treatment to reduce HE.
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INTRODUCTION

Intracerebral hemorrhage (ICH) accounts for about 10–20% of all types of stroke (1, 2) and almost
40% of patients who suffer from ICHwill die within the first month, while only 12–39% of survivors
achieve long-term functional independence (2), which makes it a severe public health problem.
Unfortunately, after decades of effort there is no specific treatment yet for ICH, but recently HE
has been found to be a modifiable and independent predictor of clinical neurological deterioration
in intracerebral hemorrhagic patients. HE prevention has been accepted as one of the most
promising therapeutic strategies in ICH treatment (3). Although numerous efforts have been made
to select ICH patients at high risk of developing HE, no uniform prediction score model can be
concluded from current studies, which therefore impedes the early detection and subsequent active
intervention by clinicians. Moreover, once HE occurs in ICH patients, the treatment is extremely
limited and the functional prognosis of those patients is unsatisfactory. Thus, it remains a priority to
prospectively detect high-risk HE patients as well as administer more active prevention treatment.

This review refers to the definition, prevalence, risk factors/predictors, prediction score models,
mechanisms, and treatment progress of HE. In detail, the predictors of HE are summarized to
update the view on the prediction, and suggestions are also provided to establish an accurate
and easy-to-use prediction score model. Furthermore, we discuss current HE treatment strategies
from the viewpoint of clinicians and also point out future directions for the discovery of more
effective therapies.
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DEFINITION

HE is defined based on visually discernible hematoma volume
changes between the baseline and follow-up CT, and the
evaluation of hematoma volume growth is diverse across HE
related studies. As one of the earliest researchers of HE, Fujii et al.
defined it as absolute hematoma volume growth of more than
20ml or relative hematoma volume growth of more than 50% (4).
Later, Brott et al. used relative hematoma volume growth of more
than 33% which can be discovered by CT to define HE (5). Using
ROC curve analysis, Kazui et al. applied cut point of hematoma
volume increase of 12.5ml or 40% (6). Some recently published
large clinical trials also used relative hematoma growth of more
than 33% (7), or combined hematoma growth of 6mL absolute
increase and 33% relative increase (8, 9) to define it. Based on
CT angiography contrast extravasation, a 6mL absolute increase
of hematoma volume was proposed in the studies of Thompson
et al. and Delgado et al. (10, 11). Of all the different definitions,
Dowlatshahi et al. found that absolute growth definitions were
more preferable to predict the outcome of ICH (12). Considering
that intraventricular hemorrhage (IVH) is a predictor of poor
prognosis in ICH, the presence of IVH may also be an indicator
of HE. Specifically, Vignan et al. found that addition of IVH into
the HE definition improves the prediction of 90 days outcome in
ICH patients (13).

A uniform definition of HE considering convenience of
measurement and effectiveness in predicting outcome is needed
for further study.

PREVALENCE

Hemostasis was once thought to be over within min after ICH
occurrence, but recently HE has been found to be a common
phenomenon of ICH with advanced radiology (5). The reported
incidence of HE within 6 h from ICH symptom onset ranges
widely from 13 to 38% (5, 6, 12), which may be largely explained
by different definitions of HE and different time interval between
hematoma measurement in the different studies. In the Intensive
Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial
2 (INTERACT2), the incidence of HE was 33.1% in the control
group (14), while it was 25.3% in Antihypertensive Treatment
of Acute Cerebral Hemorrhage 2 (ATACH2) (15). Notably, the
incidence of HE is highest at the hyperacute stage (within 6 h
after symptom onset) and HE usually occurs at the internal
capsule, thalamus, and brainstem. Thus, it is necessary to
maintain hematoma surveillance, especially at the hyperacute
stage of ICH.

RISK FACTORS/PREDICTORS

ICH patients with high risk factors of developing HE are
predisposed to experience clinical deterioration and closer
neurological monitoring is required, while the absence of
the predictors may identify ICH patients with low risk of
developing HE. Thus, HE predictors have a vital role to play
in selecting high-risk ICH patients and subsequently facilitating
the individualized treatment. Based on clinical, imaging, and

laboratory characteristics, a series of risk factors/predictors of HE
have been identified.

CLINICAL PREDICTORS

Systolic blood pressure (SBP) is positively related to the initial
hematoma volume in ICH patients (16) and the risk of HE
is much higher in patients with post-admission SBP over 160
mmHg (P = 0.0074) (17, 18), which may be partly explained
by the continuous rupturing and hemorrhaging of small vessels,
thus making early blood pressure a potential treatment target.
Although baseline blood pressure variability (BPV) is not
associated with HE (19), post-admission BPV independently
predicts HE as well as poor functional outcomes (20). High mean
arterial pressure (MAP) is positively related to HE as well (19).

Medication with antiplatelet or anticoagulant drugs also
increases the risk of HE. In high-income countries, more than
a quarter of patients with ICH are on prior antiplatelet therapy
(APT) (21). An observational study by Toyoda et al. showed
that APT was an independent predictor of HE (22), while
in the Cerebral Hemorrhage and NXY-059 treatment trial,
antiplatelet drug use at ICH onset was not associated with HE
(23). On account of their methodological difference, recently
this controversy has been laid to rest by a meta-analysis which
supports prior APT as a predictor of HE (24). For those with
prior medication with anticoagulants, prior oral anticoagulation
(OAC) use is not only an independent predictor of larger initial
hematoma volume (25) but also increases the risk of HE 6.2
times (26). In contrast to OAC, the incidence of ICH in Non-
Vitamin K oral anticoagulants (NOACs) patients is dramatically
decreased (27). NOACs-ICH has a lower risk of developing HE
and is associated with smaller baseline hematoma volume (28)
and better functional outcomes (29–31).

Higher baseline NIHSS or GCS scores (32–34), elevated body
temperature (35), baseline weight (36), and history of cerebral
infarction (37) or alcohol abuse (38) may increase the risk
of HE, as found by some observational studies, and further
randomized trials are needed to determine their relevance. In
a recent retrospective cohort study of ICH patients with liver
fibrosis, fibrosis-4 score and Aspartate Aminotransferase-Platelet
Ratio Index were associated with HE (39).

Gender (40) and age (41) are also associated with HE, as men
and older subjects (age ≥85 years) are more likely to present HE
than women and younger subjects (40, 41).

It is interesting to note that ICH occurring during the
daytime tends to be more likely to present HE than when
occurring at night (OR, 3.53) (42). In addition, HE is mostly
found in early initial CT scan (≤3 h of onset) (5, 6, 43), so
time interval from ICH onset to initial CT scan should be
considered (Abovementioned clinical predictors are summarized
in Table 1).

IMAGING PREDICTORS

Some imaging phenomena that have been described
in association with HE may have their origin in the
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TABLE 1 | Clinical predictors of HE.

Clinical features References Country Sample

size

Baseline CT time Follow-up CT time Definition of HE

SBP Ohwaki et al. (18) Japan 76 At admission The day after admission Absolute growth > 12.5mL, or relative growth of > 40%

Prior APT Toyoda et al. (22) Japan 251 At admission 24 h later after admission Relative growth of > 40%

Prior VKAs Flibotte et al. (26) America 183 At admission Up to 7 days after admission Relative growth of > 33%

Prior NOACs Takahashi et al. (30) Japan 78 At admission Within 24 h after baseline –

Gander Marini et al. (40) America 2212 Within 6 h of onset Within 24 h after baseline Absolute growth > 6mL, or relative growth of > 33%

Age Forti et al. (41) Italy 383 Within 6 h of onset Ranging 4 36 h after baseline Absolute growth > 6mL, or relative growth of > 33%

Time from ICH

symptom onset

Kazui et al. (6) Japan 204 Within 48 h of onset Within 120 h of onset Absolute growth > 12.5mL, or relative growth of > 40%

Day-night variability Yao et al. (42) America 111 Within 3 h of onset Within 75 h of onset Absolute growth > 6mL or relative growth of > 33%

pathophysiological processes around the hematoma, caused, e.g.,
by the breakdown of the blood brain barrier after ICH, which
reflects the infiltration of blood into the peri-hematoma tissues
and secondary damages resulting from the blood component
such as albumin.

CTA Predictors
Based on increased penetration of contrast agent, Wada et al.
first described the spot sign (44), a single or multiple focus of
contrast enhancement in the hematoma, which is considered a
risk factor of death and clinical neurological deterioration (45)
and an independent predictor of HE with 51–62% sensitivity and
85–88% specificity in different clinical research centers (8, 45).
Intriguingly, the numbers of spot sign predominantly determine
the value of spot sign in predicting HE (46), while the positive
predictive value of spot sign is inversely associated with ICH
onset-to-CTA time, which may indicate the dynamic process of
spot sign (43). With further studies, some modified spot signs of
CT perfusion (CTP), venous phase CTA, post contrast CT (PCT),
and 90-s delayed CTA have presented with higher sensitivity and
specificity (47, 48). Considering the resemblance of blood vessels
in the hematoma and spot sign, Yi et al. found that continuous
CTA source images could exclude blood vessels and improve its
accuracy in predicting HE (49).

The leakage sign and higher Iodine Concentration (IC)
within spot sign have been found to increase its sensitivity
and specificity. IC was demonstrated to be an important
characteristic of the spot sign and combining higher IC (i.e., IC
> 7.82,100µg/ml) with spot sign was an independent predictor
of HE with sensitivity of up to 0.81 (50). The leakage sign which
refers to a 1 cm diameter region of interest (ROI) and an increase
of more than 10% in high Hounsfield unit (HU) in the ROI
was proposed by Orito et al. and showed significantly higher
sensitivity (93.3%) and specificity (88.9%) for predicting HE (51).

CTA spot sign and leakage sign can easily predict the HE,
and CTA seems to be a good screening tool in detecting the
secondary cause of the bleeding, the vascular malformations in
ICH patients. However, its clinical practice is actually restricted
by limited use of CTA, and there is a pressing need to discover
more convenient imaging predictors in ICH patients.

Non-contrast Computed Tomography
(NCCT) Predictors
There are three categories of NCCT predictors: the large initial
volume, irregular shape, and heterogeneity of the hematoma (52).
The first two are well-known for predicting HE (52–55). Density
heterogeneity is more and more noteworthy nowadays and some
signs have been discovered to suggest HE.

Blend sign (Figure 1), the blending of the hyperattenuating
region with an adjacent relatively hypoattenuating area with
a well-defined margin, was first found by Li et al. which is
easy to use for predicting HE (56, 57) and poor functional
outcome (58) with 95.5% specificity. Black hole sign (Figure 1),
the round, oval, or rod-shaped relatively hypoattenuated area
inside the hyperattenuated hematoma with a clear border
with nearby brain tissue, is another NCCT predictor with
94.1% specificity (59), which presents predictive accuracy for
HE but is not an independent predictor of poor outcome
compared with other NCCT features (7, 59, 60). The island
sign (Figure 1), three or more scattered small hematoma
detached from the main hematomas, or more than 4 small
hematomas connected partly or wholly to the main hematoma
(61), is not only an appropriate shape-related predictor for
HE, with 98.2% specificity, but also a novel imaging marker
to predict long-standing poor prognosis (61–63). However, the
three abovementioned NCCT signs presented with disappointing
sensitivity (39.3% of blend sign, 31.9% of black hole sign, and
44.7% of island sign), which dramatically decreases their practical
clinical value. Later, satellite sign (Figure 1), which refers to
high-density dots around the hematoma, was first put forward
by Shimoda et al. and was demonstrated to be associated with
large hemorrhage size (64). Recently, ICH patients presenting
with high hematoma sedimentation levels, which may result
from insufficient hemostasis, were predisposed to worse outcome
in the study of Sato et al. (65). Other NCCT signs, such as
hypodensities and the swirl sign (isodensity or hypodensity
within a hyperdense area extending across 2 consecutive 5mm
axial CT sections), have also been proposed as predictors of
HE (66, 67), but future clinical trials are needed to validate
their predictive value in clinical practice. In addition to the
descriptive signs, other researchers use quantitative methods to
accurately measure the HU within the hematoma. Jeong et al.
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FIGURE 1 | Representative examples of NCCT markers of HE. (A) Blend sign refers to the blending of hyperattenuating region with adjacent relatively hypoattenuating

area with a well-defined margin. (B) Black hole sign refers to the round, oval, or rod-shaped relatively hypoattenuated area inside the hyperattenuated hematoma with

a clear border to nearby brain tissue. (C) Island sign refers to three or more scattered small hematoma detached from the main hematoma, or more than 4 small

hematoma connected partly or wholly with the main hematoma. (D) Satellite sign refers to the high-density dots around the hematoma.

recently revealed that lower mean HU of a hematoma, which
may be a clue of impaired clot contraction, is more likely to
present HE (68). When minimal CT attenuation value in the
hematoma is < 31 HU, the ICH patients is more likely to
develop HE (69).

Before interpreting these NCCT predictors, there are several
drawbacks to be found in the studies: (1) the definitions
of HE are diverse; (2) most of the studies are derived
from a small sample size in single center cohorts, which
may increase the risk of selection bias; (3) several ICH
patients, such as those with oral anticoagulant treatment,
are excluded from enrollment narrowing clinical application.
Thus, the use of these predictors in clinical settings warrants
further multi-center studies with larger samples and uniform
criterion to validate their predictive value. Moreover, the
above-mentioned NCCT signs actually share similar features
in identifying the physiopathologic changes in HE, and if
we can propose combined characteristics by integrating the
terminology and diagnostic criteria of the NCCT predictors,
it would be significant for predicting HE. Based on this
hypothesis, an NCCT radiomics model, which was established
from high-dimensional quantitative features of NCCT images,
exhibited better predictive value on HE than a radiological
model (70).

Although a few studies have compared the predictive effect
of NCCT markers and CTA predictors (71, 72), we cannot
conclude a distinct superiority of one predictor over the
others due to their great heterogeneity in HE definition,
terminology, and CTA acquisition protocol. In addition, even
if there are several imaging predictors which are feasible for
clinical practice, their application is largely constrained by lower
sensitivity. Hence, a prediction score model combining two
or more NCCT predictors, or clinical predictors or laboratory
markers may increase the sensitivity and match the demand of
clinical practice.

Magnetic Resonance Imaging (MRI)
Markers
In clinical settings, ICH patients usually undergo MRI for
etiological evaluation. In 1998, Murai et al. first reported MRI
spot sign in 108 ICH patients, which refers to the contrast
extravasation within the hematoma. They found that MRI spot
sign was closely associated with HE evidenced by follow-up CT
scans (73). However, in a recent prospective study of 50 ICH
patients, MRI spot sign failed to have statistical significance in
predicting HE (74). In addition to the conflicting results on HE
prediction, it takes a long time to conduct an MRI scan and it is
relatively expensive. Thus, the value ofMRI imaging in predicting
HE is limited.

LABORATORY PREDICTORS

Coagulation Status
In general, alteration of coagulation function is significant in
those with coagulation dysfunction due to blood system diseases
and antiplatelet or anticoagulant drugs use, not hypertension
ICH patients; therefore, attention should be specifically paid to
the former. In those patients, elevated D-dimer (D-D) level,
decreased fibrinogen, and international normalized ratio (INR)
>1.5 are found to be predictors of HE in multivariate analysis
(32, 38). Moreover, coagulation factor deficiency due to liver
dysfunction also increases the risk of developing HE (75, 76).

Blood Glucose
More than 50% of stroke patients present with admission
hyperglycemia (77), a result of abnormal energy metabolism
in response to ICH at the acute stage. However, admission
hyperglycemia is conversely correlated with poor functional
outcomes and high fatality rates regardless of diabetes history
(78, 79). Some recent observational studies validated that
admission hyperglycemia is related to the imaging predictors of

Frontiers in Neurology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 702

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Prediction and Treatment of Hematoma Expansion

TABLE 2 | Comparison of prediction score models.

Creator Time Country Sample size C-statistic

3-predictor model Ririko et al. 2013 Jul Japan 201 -

9-point score Brouwers et al. 2014 Feb America 817 0.72, 0.77*

24-point score Wang et al. 2015 Feb 21 countries 964 0.73

PREDICT A/B score Huynh et al. 2015 Nov 6 countries 301 –

HEP score Yao et al. 2015 Oct China 237 0.76

Basal ganglia score Huang et al. 2017 Dec China 266 –

BAT score Morotti et al. 2018 May Several countries 344 0.77, 0.70*

HEAVN scale Miyahara et al. 2018 Sep Japan 622 0.81, 0.80*

4-predictor model Rustam et al. 2018 Oct – – 0.78

5-predictor model Rustam et al. 2018 Oct – – 0.83

NAG scale Sakuta et al. 2018 Dec Japan 118 0.81

*The former statistic for the development cohort, the latter statistic for the validation cohort.

HE, including island sign, spot sign, and blend sign (80–82).
Moreover, a post-hoc analysis by Qureshi et al. in indicated that
admission hyperglycemia increased the risk of developing HE
2.5-fold (83), which may be mediated by plasma kallikrein (84).

Inflammation and Microvascular Integrity
Markers
Inflammation response to ICH is an important factor for
developing HE, which may lead to progressive damage of
peri-hematoma vessels and continuation of bleeding. More
research is revealing that high plasma concentrations of
inflammatory factors, such as IL-6 (>24 pg/ml), CRP (>10
mg/L), and cellular fibronectin (c-Fn >6µg/ml), are associated
with HE (85–87). Specifically, the risk of HE in patients
with high plasma concentrations of CRP, IL-6, and c-Fn,
respectively, increase 4-, 16-, and 92-fold, respectively, compared
with normal counterparts (85). Moreover, the elevated matrix
metalloproteinase-9 (MMP-9) level, an important cause of blood
brain barrier (BBB) breakdown in acute cerebrovascular events, is
also an independent risk factor for HE (OR value 15.65) (85, 88).

Others
Low level of serum cholesterol, calcium, hemoglobin, or
magnesium and high serum creatinine levels have also been
reported to be correlated with HE in observational studies (36,
80, 89–93). In addition, variants of apolipoprotein E (APOE)
predispose patients with lobar ICH to HE (94). As most of these
biochemical indicators are commonly tested in clinical settings,
the use of these potential predictors may largely facilitate clinical
practice but further clinical trials are warranted.

PREDICTION SCORE MODEL

As the low sensitivity or specificity of one predictor limits the
clinical practice of these predictors, combining more predictors
to set up a prediction score system may be a solution to
the problem. Based on univariate and multivariable logistic
regression analysis, several prediction score systems have been
established to predict the risk of HE (Table 2).

Based on clinical and imaging predictors, a practical
prediction model was created comprised of hematoma volume,
hematoma heterogeneity, and systolic BP 1.5 h after admission.
However, further clinical trials are needed to validate its
prediction value (95). Brouwers et al. later established a 9-point
prediction score on four predictors: warfarin use, spot sign,
time from ICH onset to the initial computed tomography, and
baseline ICH volume, which demonstrated strong association
with HE (OR, 4.59) (96). Although prospectively collected data
and large sample size in the study added robustness to the
results, a high dropout rate of patients with prior warfarin use
or large baseline hematoma volume led to an underestimation
of the predictive ability. Considering that CTA is not always
available in acute ICH, a 24-point score, which is derived from
sub-studies of INTERACT1 and 2, removed CTA spot sign
and added intraventricular hemorrhage (IVH) extension and
recurrent ICH (97). Despite both 9-point and 24-point scores
showing acceptable discrimination, their calibration remains to
be improved. Two new scores, the PREDICT A and B score, were
then created substituting GCS or NIHSS score for baseline ICH
volume and showed improved discrimination (32). It is worth
noting that the PREDICT scores are suited only to supratentorial
ICH because infratentorial ICH was excluded and the cohort
had a relatively small sample size; thus, they require further
independent validation. Another new Hematoma Expansion
Prediction (HEP) score added a history of dementia and smoking
and showed satisfactory discrimination ability (C-statistics, 0.76)
(98). Based on multivariable logistic regression analysis, a basal
ganglia score adopted three NCCT markers (island sign, blend
sign, and swirl sign) and demonstrated reliable accuracy in
predicting HE (P < 0.001) (99). Furthermore, to further simplify
the prediction at the bedside, three new scales (the BAT score,
NAG scale, and HEAVN scale) which added more practical
predictors have been established from retrospective studies and
have shown acceptable sensitivity and specificity (33, 34, 100,
101), but prospective validations of these scores are warranted. In
a patient-level meta-analysis, Al-Shahi et al. analyzed predictors
from diverse cohorts with large sample size to develop HE
prediction models using four (time from symptom onset to
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CT, baseline ICH volume, antiplatelet use, and anticoagulant
use) or five predictors (with the addition of spot sign). Both
prediction models were externally validated and showed good
discrimination (102).

Although many prediction scores have been proposed,
currently none of them can impact clinical decision-making.
First, they are inconvenient in clinical practice and it is difficult
for clinicians to fulfill the score in a short time. Second, most of
the predictors in these scores were derived from retrospective
studies and only a few scores were demonstrated in external
prospective trials, which implies that their accuracy remains to be
examined. Third, the majority of the studies collected date from
small-sized cohorts in one single center, which increases the risk
of selection bias and decreases their accuracy in predicting HE.
In the future, scales combining convenience and accuracy should
be established and confirmed in large external and prospective
studies, which will greatly contribute to clinical HE prediction.

PATHOPHYSIOLOGY

HE was once conceptualized as a continuing or recurrent
bleeding partly caused by coagulation dysfunction or
hemodynamic instability, until Miller Fisher proposed an
alternative “avalanche” model (103). Based on his study, early
HE was related to secondary multifocal micro- and macroscopic
bleeding into the peri-hematoma area due to the ischemia and
congestion following ICH (104). Several later studies (105, 106)
and analyses of CT and SPECT in ICH (104, 107) added
supportive evidences for the hypothesis, and the postulated
mechanisms underlying these phenomenon include: (1) local
tissue distortion caused by increased intracranial pressure; (2)
blood brain barrier breakdown due to matrix metalloproteinase
(MMP) activation; (3) secondary inflammatory reaction related
to promoted activation, chemotaxis, and differentiation of
macrophages, lymphocytes, microglia, and other inflammatory
cells (108–111). However, it is difficult to verify the hypothesis
without HE animal models.

MEDICAL TREATMENT FOR HE

Although the treatment of HE remains a challenge, researchers
persevere in exploring effective solutions. At present, the
treatment of HE is mainly divided into blood pressure control,
hemostatic treatment, glucose management, and others.

INTENSIVE BLOOD
PRESSURE-LOWERING TREATMENT

Both INTERACT (112) and ATACH (113) have yielded safe
and feasible intensive SBP lowering (≤140mm Hg) in ICH.
Moreover, subsequent INTERACT2 showed that intensive SBP
lowering when obtained within the first hour and sustained
throughout the first 24 h of ICH onset was related to reduced
HE (114), specifically in basal ganglia ICH (15). However, the
rate of mortality or disability was not decreased in intensive
SBP lowering patients (14, 115), even in those with imaging

predictors of HE (116, 117). This discrepancy may result from
the neutralization effect that cardiorenal complications caused
by intensive SBP lowering somehow diminished the benefits of
suppressing HE (118, 119).

Substantial evidence has identified the presence of ischemic
lesions both within and remote from the perihematoma region
in ICH patients undergoing diffusion-weighted imaging (DWI)
(120, 121). Intensive BP lowering may deteriorate the regional
cerebral blood flow (CBF) after ICH and subsequently promote
ischemic lesion formation. Studies have demonstrated that acute
BP reductions after ICH is associated with decreased diffusion
on DWI (122), and DWI-lesions are, in turn, correlated with
poor functional outcomes (123). Thus, the presence of ischemic
lesions may be a possible explanation for limited benefits after BP
lowering in ICH patients.

Considering the potential side effects and yet improved
functional outcomes of intensive BP reduction, the target goal of
BP reduction, the optimal antihypertension drugs, and subgroup
patients to the treatment are still problems. Recently target SBP
of 130–139 mmHg has been suggested to be the optimal goal
in the initial 24 h of acute ICH in the follow-up analysis of
both INTERACT-2 (124) and ATACH-2 (119), but the support
of larger randomized trials is lacking. Of note, in view of
high BPV being associated with HE (20), administration of
stable antihypertension drugs such as urapidil may result in
better clinical outcomes and future studies should be conducted
to compare different efficacies of antihypertension drugs in
reducing HE. In addition, as not all ICH patients can benefit
from intensive SBP lowering, it is necessary to select subgroups
of patients at high risk of developing HE. Actually, studies
have shown that those ICH patients who presents with an
early onset, higher initial SBP, prior anti-thrombotic therapy, or
milder neurological dysfunction at baseline were found to be
associated with better functional outcomes in rapid SBP lowering
(114, 125, 126). However, currently the characteristics of ICH
patients benefiting from SBP control are still unclear and a
complete screening scheme should be established to facilitate
clinical practice in future studies.

To conclude, although intensive SBP lowering can reduce
HE, not all patients can benefit from the therapy and further
randomized clinical trials are needed to identify optimal patients
for intensive SBP lowering treatment. Meanwhile, an appropriate
target SBP level is essential for clinical decision-making and large
prospective trials are needed to validate the proposed target SBP
of 130–139 mmHg.

HEMOSTATIC THERAPY

Platelet transfusion was once considered feasible for
thrombocytopenia or antiplatelet medication-related ICH.
However, platelet transfusion showed no overall benefit in
ICH patients under antiplatelet treatment (127) and cannot
be recommended due to its conversely higher mortality and
insufficient efficacy at 3 months (128–132), because platelet
transfusion cannot be completed within 6 h of onset when
hemostasis is finished in most ICH patients (128). Moreover,
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recent studies have demonstrated that reduced platelet activity
was related to early HE (133, 134) and was more common than
reported prior antiplatelet therapy in ICH patients (135), thus
improving platelet activity (such as desmopressin treatment)
(136) after ICH has the potential to decrease HE, but further
randomized trials are needed to verify the effect.

HE is more likely to occur in anticoagulant related-ICH and
reversal agents might play an important role in the treatment
of these patients. Compared with three-factor prothrombin
complex concentrate (PCC) and fresh-frozen plasma (FFP) (137,
138), four-factor PCC, which might decrease HE, should be
first recommended to reverse the effect of OAC with a more
rapid international normalized ratio (INR) reduction, a better
effect, and fewer adverse events (139–144). Studies investigating
hemostatic therapy to reduce HE in NOAC-associated ICH
are lacking, but several NOAC antagonists have been found.
Idarucizumab, Andexanet Alfa, and PER977 have a demonstrated
effect on reversal of NOAC dabigatran, FXa inhibitors, and
edoxaban, respectively, (145–151), but their effect on HE needs
to be further studied.

Mayer et al. conducted two successive trials, Factor Seven
For Hemorrhagic Stroke-1, 2 (FAST-1, 2), both of which
demonstrated recombinant factor VIIa (RFVIIa), can reduce HE
but showed opposite results in clinical outcomes (152, 153).
Later, meta-analyses of these and other clinical trials documented
no effect on improving survival or functional outcomes after
ICH (154). A recently published work also revealed that rFVIIa
administration within 3 h from stroke onset cannot benefit
spot sign-positive ICH patients (155). Notably, an excess of
thromboembolic events remains a concern in RFVIIa treatment
(156). Notwithstanding, subsequent subgroup analysis revealed
that highly selected individuals, younger than 70 years old
or hemophilia A patients, could benefit from RFVIIa infusion
(157, 158).

Another tested hemostatic drug is tranexamic acid (TXA),

which reversibly inhibits the conversion of plasminogen to

plasmin. Tranexamic acid for hyperacute primary Intracerebral
Hemorrhage trial (TICH2) is an international, randomized

placebo-controlled trial aimed at evaluating the effect of TXA

on ICH and has demonstrated that TXA could reduce HE, but
functional outcomes at 90 days after ICH were not improved

(9, 159). Moreover, increased risk of ischemic events remains a

problem (160). Thus, a sub-study of TICH-2 which specifically
aims at whether spot sign-positive patients could benefit from

TXA administration is currently under way (161).
Several hemostasis therapies, including platelet transfusion,

reversal agents of anticoagulants, and none specific hemostatic

drugs such as RFVIIa and TXA, have been recommended for
patients with hemostatic abnormalities to prevent HE in ICH.

Although hemostasis therapy is an effective intervention for

ICH-patients who have HE within the treatment window, its
clinical practice is limited by conversely adverse effects from the

long-term recovery. Moreover, in most cases hemostasis therapy

only applies to those patients with coagulation dysfunction, and
significant effect cannot be yielded from hemostasis therapy in
hypertension-related ICH patients. Thus, future studies should

pay attention to selecting the optimal ICH patients for hemostasis
therapy to improve the efficacy.

GLUCOSE MANAGEMENT

Admission hyperglycemia is a predictor of HE independent of
the presence of diabetes mellitus, and Qureshi et al. revealed that
glucose monitoring and control in a rational range is correlated
with the reduction of HE (83). However, intensive serum
glucose lowering should not be recommended because of the
increased risk of hypoglycemic events and evenmortality in these
patients (162–164). However, a preclinical study has reported
that 17β-estradiol (E2) can attenuate hyperglycemia-related HE
and improve neurological function in mice (165). Given that the
increase of blood glucose is actually the consequence of energy
metabolism dysfunction in the acute phase of ICH, the clinical
value of short-term blood glucose control might be significant,
but the target glucose level and the appropriate management to
control glucose in ICH patients remains to be clarified.

OTHERS

A serials of preclinical researches of MMP inhibitors like CM352
(88, 166–168), and neuroprotectors such as NXY-059 (169,
170), NSP-116 (171), erythropoietin (172), valproic acid (173),
memantine (174), curcumin (175), albumin (176), and tuftsin
fragment 1-3 (177) have shed light on the treatment of HE.
However, further studies to confirm the effect of CM352 and
neuroprotectors are needed, since some pre-clinic medicines
failed in clinical trials. For e.g., the Cerebral HematomaAndNXY
Treatment trial (CHANT) has revealed that there is no effect of
NXY-059 on the size of hematoma (170).

In conclusion, HE is a complex and dynamic process during
ICH with poor functional prognosis. In consideration of the
limited effect, we need to identify subgroup ICH patients who can
benefit from the decrease of HE and therapies should give priority
to those selected patients. Furthermore, individual characteristics
such as age, hypertension history, intracranial pressure, and
anticoagulant use should be taken into consideration when
making decisions to treat HE. There is no appropriate animal
model of HE, which limits the basic research and the discovery
of new treatment target for HE. Thus, the discovery of a novel
animal model which can mimic the natural process of ICH in
humans would have a significant meaning.
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