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Abstract

The precise anatomical location of gene expression is an essential component of the study

of gene function. For most model organisms this task is usually undertaken via visual

inspection of gene expression images by interested researchers. Computational analysis of

gene expression has been developed in several model organisms, notably in Drosophila

which exhibits a uniform shape and outline in the early stages of development. Here we

address the challenge of computational analysis of gene expression in Xenopus, where the

range of developmental stages of interest encompasses a wide range of embryo size and

shape. Embryos may have different orientation across images, and, in addition, embryos

have a pigmented epidermis that can mask or confuse underlying gene expression. Here

we report the development of a set of computational tools capable of processing large

image sets with variable characteristics. These tools efficiently separate the Xenopus

embryo from the background, separately identify both histochemically stained and naturally

pigmented regions within the embryo, and can sort images from the same gene and devel-

opmental stage according to similarity of gene expression patterns without information

about relative orientation. We tested these methods on a large, but highly redundant, collec-

tion of 33,289 in situ hybridization images, allowing us to select representative images of

expression patterns at different embryo orientations. This has allowed us to put a much

smaller subset of these images into the public domain in an effective manner. The ‘isimage’

module and the scripts developed are implemented in Python and freely available on https://

pypi.python.org/pypi/isimage/.

Author summary

An important component of research into the function of genes in the developing organ-

ism is an understanding of both when and where the gene is expressed. Well established
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molecular techniques can be used to colour the embryo in regions where the gene of inter-

est appears, and researchers will photograph such treated embryos at different stages of

development to build up the story of the gene’s use. Small numbers of these expression pat-
tern images may easily be examined by eye, but getting usable information from large col-

lections of such images would take an enormous investment in time by trained scientists.

Computational analysis is much to be preferred, but the task is complex and difficult to

generalise. The frog Xenopus is an important model for studying vertebrate development,

but up till now has had no purely computational methods available for analysing gene

expression. Here we present a suite of computational tools based on a range of mathemati-

cal methods, capable of recognising the outline of the embryo against a variety of back-

grounds, and within the embryo separately recognising areas of both gene expression and

natural pigmentation. These tools work over a wide range of embryo shapes and imaging

conditions, and, in our opinion, represent a major step towards full automation of ana-

tomical gene expression annotation in vertebrate embryology.

Introduction

A significant challenge for current bioinformatics is the computational analysis of large data

sets. Recent developments in sequencing technologies have allowed, for example, the investiga-

tion of the time course of gene expression in early development of Xenopus tropicalis at high

time resolution [1,2]. For a robust understanding of gene expression, the precise anatomical or

cellular location of expression is as important as the timing of expression, yet this presents sig-

nificant challenges for computational analysis. The most advanced work has been done in Dro-
sophila, with the analysis of the time evolution of the spatial pattern of gene expression

revealing genes with co-localised expression[3,4,5,6].

The spatial distribution of RNA within an embryo or tissue is typically obtained by in situ
hybridisation (WISH) of a probe sequence to the endogenous RNA under study or by protein

immunofluoresence, followed by photographic imaging of the required stages and views or

sections. Preparation of reagents and optimisation of conditions for a specific protein/gene tar-

get may take time, but once done it is straightforward to generate images covering (for exam-

ple) many different developmental stages.

For studies on the localisation of small numbers of genes, analysis by inspection of the

resultant images is likely to be feasible and may provide sufficient descriptive data to answer

the biological question at hand. In larger scale screens the number of generated images can

grow rapidly to tens of thousands [3] or more [7], and at this level will either require computa-

tional analysis or significant commitment by members of the respective model organism com-

munity to manually annotate the images; for example with zebrafish [8], Drosophila [6] or

Xenopus [9,10]. However, although manual annotation is generally of high quality, it is slow

and the required effort is not easily replicated.

Computational analysis is clearly preferred for large numbers of images, although this is

not a straightforward task, and may require significant investment of time and expertise to

develop a suitable system. The goals of computational analysis are easily stated: to recognize

the relevant physical anatomy of the organism in the image, locate the regions which show

gene expression, and either label these regions with suitable anatomical terms or transfer them

to a model coordinate system within which the expression patterns may be analysed and/or

compared. These goals are usually achieved by two distinct processes described as segmenta-
tion (recognising compartmentalisation in the image) and registration (fitting the embryo
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shape in the image to a model), as well as recognising which parts of the segmented image cor-

respond to gene expression.

Image analysis in Xenopus has several specific challenges: the embryos are not normally

fully transparent; embryos may display distinct pigmented regions; in embryos that are cleared

to make them transparent the outline of the embryo may merge into the image background;

and experimental data frequently cover a wide range of development stages and concomitant

variety of embryo shapes and sizes. In addition, the earlier development stages are quasi-spher-

ical, and, unlike fly embryos, may present some difficulty in determining the axial orientation

within the image. To date there are no published methods for computational image analysis

developed for Xenopus.
Here we report a first suite of tools developed for computational analysis of Xenopus in situ

images. These tools are capable of cleanly separating the embryo from the image background

over a wide range of developmental stages without requiring the background to be either uni-

form or any specific colour; in situ hybridisation stain and natural pigment are detected inde-

pendently and can be marked up accordingly; and analysed images at the early quasi-spherical

stages can be compared with each other to identify groups of images photographed at the same

axial orientation. Application of this solution of the segmentation problem and partial solution

of the registration problem has enabled us to analyse a large and highly redundant image col-

lection, selecting a usefully condensed and representative set for public dissemination.

Although it remains to provide the ability to register the images in a model coordinate system,

we have laid some useful ground work for future progress. The reduced image set may also

now be considered for manual image registration, expression pattern extraction and annota-

tion in existing Xenopus community tools such as Xenbase (http://www.xenbase.org, RRID:

SCR_003280) [11,12] and XenMARK (https://genomics.crick.ac.uk/apps/XenMARK, RRID:

SCR_014924) [9].

Two of us (MG and IP) were motivated to undertake this research by the desire to comple-

ment our high resolution time series data in Xenopus tropicalis [1,2] with expression localisa-

tion data mined from public image collections, and to promote and enable further work on

computational image analysis within the community. Earlier work [9] had suggested a way for-

ward through crowd sourcing of manual annotation, but the generation, and donation to the

community, by others of us (AC-U and RP) of a large collection of 33,289 informative in situ
images, suggested that we consider computational approaches. This large set of images con-

tained multiple images at given developmental stages for each gene, and we reasoned that a

systematic reduction of this (around 10-fold) technical redundancy would yield a more useful

and tractable set of images for use by other researchers via submission to Xenbase, the Xenopus
the model organism database. Computational tools devised to achieve this would necessarily

form a sound basis for further progress in image analysis in Xenopus. We do not at this stage

provide a solution to the problem of registering embryo outlines with a model representation.

Results

In this section we present the functional outline and application of each part of our method.

More details of the basis of each algorithm are provided in the Methods section below.

In summary, we developed two primary algorithms: (i) embryo-masking through image

segmentation to separate the part of the image containing the embryo from the image back-

ground without prior constraints on the background colour or texture; and (ii) colour-separa-

tion within the embryo outline, to identify the approximate hues of in situ stain, and

pigmented and un-pigmented embryo in each image, and mark up the image accordingly. In

addition, we developed algorithms to automatically classify large sets of images by background

Computational methods for in situ image analysis in Xenopus
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characteristics, and to perform image-clustering on spherical stage images under transforma-

tions of scale, rotation, and shear and hence identify groups of images for the same gene and

stage but photographed at different orientations. This last was a key tool in applying our meth-

ods to the large, redundant image collection described above, and may also provide a way for-

ward to a solution of the general registration problem for Xenopus embryos.

To develop the methods we have drawn on two sources of Xenopus in situ images: firstly,

locally hosted images from the XenMARK project[9] covering a wide range of imaging condi-

tions, and second, a collection of 33,289 images provided by two of us (AC-U and RP) which is

described in more detail below. Randomly selected images from both these collections were

used for validation.

A brief overview of the primary algorithms is given here, with more technical detail pre-

sented in Methods §2 and §3.

Segmentation for embryo masking

This algorithm locates the outline of the embryo within the image. We made two assumptions

(i) that the distribution of colour and texture within the embryo is distinct from the distribu-

tion of colour and texture in the background, and (ii) that at least part of the embryo is more

or less centrally located within the image. These are generally reasonable for the great majority

of images we have seen during the development of this work. As a useful side-effect we can

also detect images where we believe the embryo touches or is intersected by the edges of the

image frame.

Images are first processed to remove potential illumination artefacts and then downscaled.

The degree of downscaling depends on the image, but is usually between 4- and 32-fold. Col-

our content and context are analysed for each downscaled pixel, and modelled as a mixture of

either two (un-cleared images) or three (cleared images) Gaussian distributions. Pixels are

assigned to the most likely distribution, and the image is mapped accordingly. The spatial dis-

tribution of each set of assigned pixels over the image is then considered: if a component is

spread more uniformly across the image than other more compactly and centrally distributed

component(s), then that component is considered to represent background. Isolated fore-

ground regions that are small or close in colour to the background are re-assigned to the sur-

rounding value. Embryo outlines are thus defined as the border between the background and

other regions. Then the embryo outline is smoothed and moved inwards by the width of the

low resolution pixels used at this stage. A detailed technical description of these processes can

be found in Methods §2, and also see Figs 1 and 2 for illustration and examples. The embryo

outline and its bounding box, with sides parallel to the image edges, are recorded with the

image data, and a flag is set if the embryo outline touches the edges of the image.

In situ staining pattern extraction

This algorithm determines the most likely hues within the previously detected outline of the

embryo for stain and pigmentation. Analysis of the colour distribution inside the embryo out-

line is used to find statistically independent colour components of each image. These compo-

nents are compared to the (detected) background colour (as bleed-through is possible), and

likely stain and pigment colours: stain is assumed to be relatively blue-green and pigment rela-

tively red-brown (see Methods §3). Heat maps of the determined stain and pigment colours

are extracted from the data using adaptive thresholding, and overlaid on the image (Fig 1 and

Fig 2). A score representing the degree of stain is associated with each image, and can be used

to rank image for selection amongst sets of known duplicates (see Methods §6). This was useful

in our analysis of the large, highly redundant, image collection (see below).

Computational methods for in situ image analysis in Xenopus
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Workflow outline

The overall image analysis workflow consists of 8 steps, these are summarised as follows (see

also the visualisations in Figs 1 and 2):

i. Pixel data in LAB colour space is extracted from image and transformed into lower resolu-

tion pixels.

Fig 1. Overview of image analysis pipeline. (Upper panel) schematic representations of the stages of image analysis. Text boxes contain brief descriptions, see text for

more detail, roman numerals correspond to steps in the workflow. Arrows show where data is extracted from the image for analysis. (A) Orthogonal projection of

whitened 18 dimensional data extracted from the image. Colouring is made on result of clustering, with crosses and ellipses represent centres and covariances of the

identified clusters. (B) Example representation of pixel colour density in the 3D colour space, showing identification of vectors corresponding to in situ stain, pigmented

and un-pigmented embryo, used to identify regions of the embryo expressing the gene in question. (C) Example histogram of stain distribution. Data modelled as

mixture of two Gaussians. The threshold is the smallest of mu + 2�sigma of the two components; it is represented as a solid green line. Dashed red lines represent range of

values [.25, .67] the threshold is allowed to take.

https://doi.org/10.1371/journal.pcbi.1006077.g001
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ii. Low resolution pixels are classified on their colour and local roughness of the image and

grouped into two, or three for cleared images, broad distributions corresponding to discrete

areas of the image.

iii. Demarcated areas of image are assessed to determine the most likely to correspond to a

roughly centrally positioned embryo or part embryo. The boundary is set at low resolution

around the embryo.

iv. If the boundary touches the image border, the image is classified as a partial embryo.

v. The boundary is smoothed to remove artefacts, and moved inward the width of one low res-

olution pixel to exclude background pixels close to the embryo.

vi. Pixel data is extracted from within the bounded embryo region of the image at native reso-

lution, and analysed for distribution of hue and intensity in CMY colour space.

vii. Generalised prior knowledge (stain more blue/green than pigment, pigment towards red

and darker than un-pigmented embryo) is used to identify likely vectors in colour space

for in situ stain and pigment).

Fig 2. Graphical depiction of image analysis workflow for selected images with different shape embryos and a range of different background

colours and textures. Images show that embryo detection and stain colour analysis is effective independently of a wide range of variation in image

background and embryo characteristics. All images were analysed without changing initial parameters. Note image (d) where even the human eye

struggles to distinguish the upper border of the embryo from the background.

https://doi.org/10.1371/journal.pcbi.1006077.g002

Computational methods for in situ image analysis in Xenopus

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006077 August 29, 2018 6 / 25

https://doi.org/10.1371/journal.pcbi.1006077.g002
https://doi.org/10.1371/journal.pcbi.1006077


viii. The embryo is marked up according to areas of strong and moderate stain and pigment.

Annotated version of image produced in register with original image.

Validation

To validate the performance of our algorithms we used visual inspection of significant num-

bers of images selected by random sampling from our available collections. We would have

preferred a purely computational method, but to our knowledge there are no suitable data sets

of manually marked up in situ images of Xenopus embryos available. The closest available

images were the manually marked up images from the XenMARK project[9], where the

stained regions had been ‘registered’ by eye with, and transferred to, the embryo model dia-

grams. Even had we solved the registration problem for these embryos to enable a computa-

tional comparison with these data, we note that the subjective judgement applied during the

XenMARK annotation process, as to the presence and limits of stained regions, would be

much the same as using an expert annotator to compare side-by-side images of stained embryo

and extracted stained regions. We further note that at this stage we were validating the correct

identification of in situ stained regions within the images, irrespective of our understanding of

their anatomical location.

We therefore validated our algorithms in two ways: quick visual inspection of two thousand

images after steps (iii) & (iv) (see Outline Workflow above) to check correct identification of

the embryo, as opposed to the background, within the image; and more intensive inspection of

two hundred images after final mark up at step (viii) by WISH experts for correct interpreta-

tion of the in situ stain within the embryo.

The quick tests assessed three characteristics of the segmentation process: whether the

image background component was correctly identified, whether the selected connected region

corresponded generally to the embryo, and whether intersections of the frame edge with the

embryo were correctly identified. For these tests we randomly sampled 1000 images from our

local hosting of the XenMARK database, as well as 1000 images from the Ciau-Uitz/Patient

collection. The errors observed were sufficently distinctive as to be effectively non-subjective,

and tests results were scored true or false, with false positive and false negative results distin-

guished for the embryo/image boundary collision test. Most of the tests were passed at well

over 99%, with the exception being for embryo/image edge collisions where false positive

results were around 5%, depending on which collection images were from. These data are pre-

sented in more detail, along with expected error rates and corresponding 95% confidence

intervals, in Table 1.

The more intense inspection by two WISH experts looked at the precision of identification

of the embryo outline and the extent of both the stained and pigmented regions within the

embryo. The 200 tested images were randomly sampled from both the local XenMARK images

and the Ciau-Uitz/Patient collection in proportion to the numbers of images in each collec-

tion. Each expert assessed the same set of images, but were instructed not to compare notes

during this process. The experts were presented side-by-side with the original and marked up

images and asked to give a subjective assessment of good, intermediate or bad for each of the

three criteria: embryo outline, stained region and pigmented region. For subsequent analysis

these assessments were converted to scores of 1.0, 0.5 and 0.0 respectively. These data are pre-

sented in Table 2.

Overall the results were encouraging, with both experts rating the algorithm for outline

detection and expression domain extent (stained region) as close to or better than 90% in the

good or intermediate categories. However it is quite notable that the correlation between the

experts’ individual converted numerical scores was only a little over 0.5 for stained regions and
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0.6 for pigmented regions. The underlying cause of this apparent discrepancy is likely in the

different interpretation of the terms good and intermediate between the two experts, with

Expert 1 being consistently more generous at the intermediate/good boundary then Expert 2.

These results underscore the general problem in converting the variable intensity of the stained

region into a computationally tractable expression pattern. We address this problem in part by

providing a two-tone scale for mark up in situ stained regions. The pigmented region generally

scored worse than the other criteria, although this is obviously of lower concern. We suspect,

but have not shown in detail, that the dissimilarities in scores by the experts were attributed to

their different assessment of the impact of artefacts caused by imaging conditions on the

extracted pigment patterns. One of the more obvious artefacts affecting annotated stain pat-

tern occurred in images where the embryo was illuminated from one side. In these cases the

algorithm tended to interpret darker areas caused by shadow as more intensely stained.

Application of the image analysis algorithms to a large image collection

To test the effectiveness of the algorithms, and to give us the opportunity to produce coherent

sets of time dependent gene expression images, we applied them to a highly redundant image

collection comprised 33,289 individual in situ images of Xenopus laevis embryos. These repre-

sented expression of 548 genes over the classical Nieuwkoop & Faber developmental stages

[13], mostly between NF stage 6 (32-cell stage) and NF stage 50 (late tadpole stage), with an

approximate 10-fold redundancy at each genes and development stage. We refer to this image

set in the text as the Ciau-Uitz/Patient collection after its originators (AC-U and RP). This col-

lection has been described previously [14], as have the methods by which they were produced

[15]. The images from this collection used to illustrate our method have not been previously

published.

Table 1. Validation of image classification and embryo detection algorithms: Identification of non-subjective errors through visual inspection of 2000 randomly

selected images. Image classification: was the image correctly classified as cleared or un-cleared? Background segmentation: was the background component identified

correctly? Embryo region selection: did the connected region selected correspond to the embryo? Incomplete embryo detection: were embryos touching the image edge

correctly identified as such?

Test N Errors Expected error rate Error rate CI95

Images from XenMARK

Background segmentation 1000 3 0.004 [0.001, 0.009]

Embryo region selection 997 2 0.003 [0.0006, 0.007]

Incomplete embryo detection a 995 59 / 3 0.06 / 0.004 [0.05, 0.08] / [0.001, 0.009]

Images from Ciau-Uitz/Patient collection

Image classification 1000 0 < 0.001 [3.x10-5, 0.004]

Background segmentation 1000 1 0.002 [0.0002, 0.006]

Embryo region selection 999 1 0.002 [0.0002, 0.006]

Incomplete embryo detection a 998 24 / 0 0.025 / 0.001 [0.02, 0.04] / [2.x10-5, 0.004]

https://doi.org/10.1371/journal.pcbi.1006077.t001

Table 2. Validation of the algorithm output. Two WISH experts marked each of 200 processed images as good, intermediate or bad (1.0, 0.5 or 0.0) on three potentially

subjective qualities: whether the embryo outline had been captured correctly, whether the stained regions were delineated correctly, and whether the pigmented regions

were delineated correctly. For each quality we correlated the experts’ scores over all 200 images.

Correlation

average score good good + intermediate

Expert 1 Expert 2 Expert 1 Expert 2 Expert 1 Expert 2

Outline 0.71 0. 8375 0. 805 79.5% 71% 88% 90%

Expression pattern 0.53 0. 8275 0. 6325 70.5% 36.5% 95% 90%

Pigment 0.62 0. 765 0. 535 68.5% 50.0% 84.5% 57%

https://doi.org/10.1371/journal.pcbi.1006077.t002
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The collection had been pre-screened by one of the originators (AC-U) to retain only images

of stages with clearly detectable gene expression, and in total the collection contains 2781 gene/

stage groups. Embryos had been imaged either directly after histological staining, or after addi-

tional treatment with a clearing agent. In general, both types of preparation were available for

each gene and stage. Un-cleared embryos had been imaged against an orange/red background,

and cleared embryos against a grey background. All images were whole-mount, and although the

majority of the images included the whole embryo, almost a third of the images contained close-

ups of specific regions of the embryo. Images generally had associated meta-data, notably the gene

name or probe/sequence ID and the developmental stage, all embedded in the name of the image

file. Nearly all the Stage 22 and later images were lateral views; early stages included mixture of

views. See Fig 3 for a visual depiction of the problem and its resolution.

Our aim was to reduce redundancy in this collection by extracting single representative

whole-embryo images for each gene in the collection at each developmental stage, and for the

cleared and uncleared embryos. In addition, for the earlier quasi-spherical embryonic stages,

we also wished to select images to represent the different anatomical views of the embryo and

expression patterns.

To achieve these ends we needed two additional algorithms: the first of these simply classi-

fies the images into cleared and un-cleared on the basis of their statistical distributions of pixel

colours, whilst the second uses image similarity clustering to identify different views of the

spherical stage embryos using the previously detected in situ stain patterns. These algorithms

are described in outline here, and more detail is given in Methods §4 and §5.

Images classification to separate cleared and uncleared images

This algorithm classified the Ciau-Uitz/Patient images into two groups, those with un-cleared

and those with cleared embryos. These had been consistently photographed against an orange/

red background or a grey background respectively. This knowledge was used to sort the images

on the basis of the statistical properties of the distribution of pixel colour in LAB space within

each image, using a Gaussian mixture approach. See Methods §4 for details.

We found 18,254 un-cleared images, 15,034 cleared images, and 1 image was rejected as

un-classified. Classification was important (a) to allow selection of both cleared and un-cleared

images for each gene/stage where both were present, and (b) to allow a mixture of either two

(un-cleared) or three (cleared) Gaussian distributions for the embryo/background analysis.

Images clustering on expression pattern

The algorithm assesses similarity between expression patterns, and clusters images into

groups, ideally representing different orientations of spherical embryos when photographed

from different angles. Image comparison is performed after discovery of the embryo boundary

and mark up of stain regions: within a group of same (spherical) stage images, each image is

compared to all others by finding the combination of relative shift, rotation, scaling and shear-

ing that maximises the overlap of stained regions. The minimum discrepancy achieved

between two images is used as a dissimilarity metric, and pair-wise dissimilarities are used to

perform clustering, of which the sub-groups represent the diversity of views of the expression

pattern (Methods §5 and Fig 4). This algorithm represents a possible first step towards resolu-

tion of the image registration problem, although we take it no further in the current work.

Validation of classification and clustering

We tested the image classification method using the quick visual inspection described above.

We used the same set of 1000 images randomly selected from the Ciau-Uitz/Patient collection,
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Fig 3. Rational selection of representative images to reduce redundancy. Unsorted images from a large collection

for a given gene/development stage are first classified into cleared (grey background) and un-cleared (orange/red
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and compared the predicted classification (cleared/un-cleared) with our observations. The

image classification tool made no errors. These data are presented in Table 1.

In addition to this, we also assessed the expression pattern clustering performed with spher-

ical stage embryos from the Ciau-Uitz/Patient collection. We had earlier noted that 79 image

groups had embryo orientation information embedded in the image file names; this had not

been used to support the computational clustering. We therefore compared the partitioning of

the images by clustering to the partitioning provided by the image name annotation (see Meth-

ods §8), finding the sensitivity and the specificity of expression pattern clustering to annotated

orientation to be 60.5% and 74% respectively. This lower sensitivity is primarily caused by

non-informative expression patterns (i.e. uniform staining or absence of it) in some embryos,

compounded by some imprecision between the described and likely actual viewing angles. On

the other hand, the specificity value is explained by imperfect clustering of intrinsically variable

expression domains and stain intensities.

Image selection pipeline

The distinctive step for this analysis is to take any group of similar images and rank them

according to the extent of in situ stain detected, from which a representative image can be eas-

ily selected (Methods §6 and Fig 3A).

The image selection pipeline runs as follows: (a) images are first classified as un-cleared or

cleared to determine whether the initial image analysis needs to use two or three Gaussian

components; (b) images are then analysed using the primary algorithms (described above) for

embryo outline and in situ stain, recording whether the embryo touched the image frame or

not, the position of the embryo outline and its bounding box, and the location and overall

amount of in situ stain; (c) images are sorted into groups according to gene and developmental

stage information; (d) images of spherical stages embryos are further grouped by anatomical

viewpoint by clustering on the in situ stain patterns; (e) images within each final group are

then ranked by in situ stain content to enable selection of one representative image, in our case

the one with most stain, and selecting whole embryo images ahead of partial ones; and finally

(f) images where the embryo was rather small are cropped to +15% of the embryo outline

bounding box for display purposes. These functions are all provided within the command line

Python program ‘select_images’, included in the ‘isimage’ module described below.

Application of the ‘select_images’ program (based on an earlier but fully functional version

of the ‘isimage’ module) to the Ciau-Uitz/Patient collection resulted in the selection of 4,852

images, suitable for immediate web display, from the original 33,289 images. This smaller set

was submitted to Xenbase, and is displayed on the appropriate gene pages. This effective con-

solidation of the original collection would have been extremely difficult to achieve by any

other method.

To illustrate the power of this analysis to organise this large pool of data, showing the evolu-

tion of gene expression patterns during development, we include the selected images for the

developmentally important genes prdm1, ank1 and hoxb3 (Fig 5). This illustrates well the

importance of separating the spherical stage images by orientation, giving a clear picture of the

background) images. Embryo boundaries were detected within the image and embryo pixel colours analysed to yield

predicted in situ stain, pigmentation or unmarked embryo. Embryos with predicted outline touching the image border

were excluded (unless the outline in all images in the group touched the border). Images were sorted within groups by

stain content for selection, and cropped for display where needed. (A) Lateral view images, NF stage 20+. (B) Quasi-

spherical development stages (up to NF stage 20): images are clustered according to expression pattern similarity under

rotational and other transformations (see also Fig 4), and the most stained image is selected from each well-separated

group.

https://doi.org/10.1371/journal.pcbi.1006077.g003
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intricate gene expression patterns developing through gastrulation and the setting up of neural

patterning. To view the non-redundant version of the Ciau-Uitz/Patient image collection go to

the Expression Search page in Xenbase, enter Patient Lab in the Experimenter field and click

on the Search button.

Algorithm summary and code availability

The two main algorithms, for embryo outline detection and stain/pigment decomposition, are

the backbone of our image analysis suite and form the primary image analysis workflow

described above. The image clustering algorithm was developed as a useful tool for grouping

expression patters for early stage embryos, but is also a potential step towards image registra-

tion. These algorithms are implemented as parts of a Python module ’isimage’, including the

program ‘analyse_image’ which provides access to the algorithms from the command line and

allows expression pattern extraction to be performed on a per image basis. Code for these algo-

rithms is made freely available on https://pypi.python.org/pypi/isimage/.

Fig 4. Simplified example of spherical stage image similarity clustering. Early development stages are routinely photographed from different

directions to maximise information about the expression pattern. Reference and comparison images for the same gene and stage are compared under

multiple transformations (scale, rotation, shear) to identify the set of transformations that minimises their dissimilarity. Here we see that a 91.5o

rotation and a 1.01 scaling suggest the most likely transformation between these two images. All images from the same gene and stage are compared

with each other to identify images from (probably) the same view-point. See also Fig 3B.

https://doi.org/10.1371/journal.pcbi.1006077.g004
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Discussion

We have presented a general framework for analysis of whole mount in situ hybridisation

images in Xenopus which is based on two specific advances. The first advance is to base seg-

mentation around a novel method for building a statistical model of the image based on ana-

lysing colour and colour gradient in separate scales. The second advance is in the separation of

in situ stain and pigment colouration using a hint based method taking in the prior (per

image) determination of likely background colour in the segmentation step.

For the first advance, we have introduced an approach for unsupervised building of the

explicit statistical model of the image background. It is based on capturing both colour and

colour gradient in two scales and then using Gaussian mixture analysis to find the best separa-

tion of segments having different properties. The spatial distribution of segments is then ana-

lysed, and the background model is selected. Finally, the resulting boundary is smoothed

employing re-normalised probabilities under the background model as the external force in

the curvature minimizing PDE.

The novelty of this segmentation algorithm is in the way it utilises colour, spatial and edge

information. This is in contrast to existing general purpose image analysis algorithms [16,17],

which augment colours with spatial information, using edges as external constraint. Here we

have jointly modelled the colour and the colour gradient, thus incorporating edge information

into the GMM, whilst spatial distribution of pixels is used downstream to the GMM to classify

the Gaussian mixture components. This approach was motivated by the known difficulties

encountered by edge detectors in whole mount in situ images: (i) finding the correct transition

between background and unstained regions at the edges of cleared and half-transparent parts

of un-cleared embryos, and thus missing the correct outline[18]; and (ii) when the embryo is

imaged against a feature rich background (for instance, and commonly, crushed ice), and the

given approach detects spurious segments in the background[19,20].

Joint modelling of the colour and texture cues brings our algorithm closer to the texture

classification method published by Permuter and colleagues[21,22]. This is, however, not

completely suitable for in situ images because wavelets (employed in their approach) capture

the texture at all scales [23], whereas in segmentation of in situ images variation smaller than a

certain scale is unlikely to be significant. Thus the colour and the gradient data modelled by

the GMM in our approach were captured in two consecutive layers of the Gaussian pyramid,

ensuring that only significantly large texture elements are captured. Such an approach allowed

us to put an upper limit on the number of Gaussian mixture components: in un-cleared images

the model consisted of 2 components representing the embryo(s) and the background, and in

cleared images no more than 3 components were considered, representing staining, the

unstained embryo body and the background.

For the second advance, we have suggested a hint based method for pigment/stain separa-

tion and subtraction of the background colour, corresponding to bleed-through, from the

embryo region of the image prior to analysis. The algorithm estimates the number of indepen-

dent colours in a masked embryo image based on information theoretic considerations. Then,

by employing FastICA algorithm and colour hints provided (primarily that stain is relatively

blue-green and pigment relatively red-brown), it estimates and classifies stain and pigment

colours. These hints would be configurable for application to other systems.

Fig 5. Developmental progression of expression for selected genes prdm1, ank1, and hoxb3 during Xenopus embryo development.

This is the result of applying our suite of image analysis tools to (in this case) the 334 original images for these three genes, and reducing

them to a representative set of 65 images, including multiple views of expression patterns from the early spherical stages (pre-Stage 22).

https://doi.org/10.1371/journal.pcbi.1006077.g005
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Our image analysis framework allows the determination of an object’s outline (i.e. the

embryo’s outline) in an image, with minimal assumptions about background and object prop-

erties. It also allows the extraction of stain patterns from the image whilst excluding natural

pigmentation from consideration. The quality of the analysis was independently checked by

two WISH experts, who found it performed well. In addition, application of these tools allowed

us to reduce redundancy in a set of 33,289 Xenopus embryo WISH images, resulting in 4,852

high quality representative images, making this collection amenable to display in a public

resource. Analysis of the image collection, including pattern clustering where needed, took

around 12 hours on 40 compute cores. The framework is published as a Python module

‘isimage’, and includes the image selection pipeline and a command line utility to extract the

expression pattern from the image.

The significance of our approach to the initial segmentation of the image is well illustrated

by its ability to find the embryo boundary in a wide range of image background colours and

textures, not to mention variation in the shape, position and orientation of the embryo (seen

clearly in Fig 2). This makes it potentially an ideal tool for retro-analysis of existing image col-

lections, and stands in contrast to some of the earlier successes in the field which relied on con-

trolling aspects of the image appearance such as background colour or texture compared to

the embryo[3,5], effectively tuning the performance of their algorithms towards the images

sets for which they were developed. We believe that our approach has great promise for the

development of a more widely applicable tool set.

Our choice of manual validation at different steps in the image analysis pipeline was driven by

a number of considerations, not the least of which was the availability of WISH experts to assess

performance. In addition, we had some concerns about the potential for unconscious bias in the

construction of a gold-standard reference set of manually annotated images, especially in the

delineation of in situ stain regions. It is clear that notional boundaries of stained regions are often

poorly defined as strong staining shades gradually into weaker and unstained regions, and that

subjective judgments of these are inevitably made even by experienced annotators. This might be

self-fulfilling if these image sets were constructed by ourselves, or lock the algorithm onto a partic-

ular operator bias, producing results with which other experts might not agree. The potential for

different interpretation we saw clearly within our own experts and their judgment of how well the

stain and pigment recognition algorithm worked. In the absence of a suitable gold standard we

felt it was more effective to understand the actual performance of our algorithms, improving

them iteratively by studying their behavior, and ultimately allowing other experts to assess their

effectiveness. Nevertheless, we suspect there may be room for improvement, and are keen to put

these codes into the public domain where others may build on our ideas.

A computational approach to validation was used in a recent paper describing image analy-

sis in Drosophila [24]. They randomly sampled 200 in-situ images and tested the performance

of their segmentation and registration algorithms against manually segmented and registered

embryos. This may have been important, given the inclusion of the more complex registration

step, and given that both segmentation and registration are (presumably) less prone to subjec-

tive variation in manual operations than in situ staining.

The primary weakness of the method is in the colour identification of pigmented regions of

the embryo, and a tendency to be affected by brightly illuminated or shadowed sections of the

embryo, which may say as much about the limitations of digital imaging under extremes of

contrast. In this sense, our project has some clear pointers for optimising image generation

where it is likely to be associated with subsequent computational analysis: notably avoiding

bright and non-uniform illumination, and shadows. The difficulty in correctly identifying the

extent of pigmented regions is less of a problem, as we are primarily interested in mapping the

in situ stain; but we do believe that mapping the pigmented areas independently ensures that
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stain identification is more robust. In future work we will turn to the problem of registration,

where we hope to be able to use models of known regional expression in combination with a

refinement of our image comparison methods based on transformations of position, scale,

rotation and shear to identify the likely anatomical viewpoint.

Methods

1. Toolset for in situ image analysis

The algorithms developed were implemented as a set of functions and classes in the program-

ming language Python. The code is based on numpy, scipy, sklearn, OpenCV libraries and

organised in Python module ‘isimage’ in a way that allows use of either the individual algo-

rithms or the image selection pipeline as a whole. The code can be freely downloaded from

https://pypi.python.org/pypi/isimage/.

2. Unsupervised image segmentation

For each image in the LAB colour space, a Gaussian pyramid [25] is constructed fIkðx; yÞg
n
k¼1

;

where n is the number of layers in the pyramid and Ik:R2!R3 is the k-th layer of the pyramid.

Search for an object is performed simultaneously in two adjacent layers of the Gaussian pyra-

mid. The largest dimension of the biggest layer used is less than 200 pixels. From each of the

two layers, colour and edge information are extracted. The edge information is represented as

partial derivatives @

@x Ik x; yð Þ and @

@y Ik x; yð Þ computed with the Scharr operator [26]. The data

extracted from the low-resolution layer are interpolated to match the high-resolution layer

dimensions, with the same Gaussian kernel used for the pyramid creation. The information

from both layers is combined resulting in 18 parameters for each pixel.

The data is then ‘whitened’ and only informative principal components are used in the sub-

sequent analysis. Principal components whose singular values, divided by the sum of all singu-

lar values, exceeded 10−6 are considered informative.

To learn the borderline between the background and the foreground, the data is modelled

as a mixture of Gaussian distributions. Since in un-cleared images the embryo is very distinct

from the background, those images are modelled as the mixture of up to two Gaussians repre-

senting an embryo and the background. On the other hand, in cleared images the difference in

colour and texture between unstained parts of embryo and the background can be subtle, com-

pared to their difference from stained regions. In these cases, the two-component mixture will

often draw the line between stained and unstained areas of the embryo thus counting

unstained regions as the background. To handle this, cleared images are modelled as having

up to 3 components, with an assumption that background is captured in one component and

the embryo is captured in two other components. The actual number of components is deter-

mined with Bayesian information criterion[27]. The GM model was fitted using a random

sampling of the image, but excluding data within three pixels of the image edges. GM fitting

and component classification is repeated three times, then the most likely foreground/back-

ground decomposition is brought forward for further analysis.

Once the model is fitted and pixels were assigned to one of the components, there is a need

to classify the components themselves as representing either the object or the background.

Xi ¼ x �
w
2
; y �

h
2

� �

; ðx; yÞ 2 Ci

� �

Here Xi is the set of pixels of the image I, which is classified as belonging to a component Ci.
w and h are the width and the height of the image respectively.
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To choose the most likely classification of the components, a Bayesian model selection

approach is used:

PðMjXÞ / PðXjMÞPðMÞ

PðXjMjÞ ¼ PðXi¼jjMjÞPðXi6¼jjMjÞ

HereM is a random variable representing a model andMj is the model in which the jth

component is believed to be the background. The prior distribution of the models was

uniform.

Based on the assumption that the embryo resides in the middle of the picture, background

pixels are modelled to be distributed uniformly across the image.

Xi¼jjMj � Uniformð½0;w� � ½0; h�Þ

P Xi¼jjMj
� �

¼
1

wh

And object pixels are modelled to be distributed normally around the centre of the image.

Xi6¼jjMj � Nð0;ΣÞ

P Xi6¼jjMj;Ψ ; n
� �

¼

Z

NðXi6¼jj0;ΣÞW
� 1ðΣjΨ ; nÞdΣ ¼

jΨ j
n
2Γ2

nþnj
2

� �

pnj jΨ þ Xi6¼jXTi6¼jj
nþnj

2 Γ2
n

2

� �

Here N(0,S) is a two-dimensional normal distribution with zero mean and S covariance

matrix.W−1(C,ν) denotes the inverse Wishart distribution, the conjugate prior to multivariate

normal with known mean. The parameters of the prior distributions C and ν were chosen to

be ν = 1 and Ψ ¼

w
2

� �2

0

0
l
2

� �2

2

6
6
6
4

3

7
7
7
5

. Γ2 is the multivariate gamma function. nj is the number

of pixels which belong to the foreground under the jth model.

If none of the models is substantially better, the component whose pixels are present the

most often at the image edge is classified as the background.

The assumption is that the image contains only one embryo, but the foreground found

above, along with the embryo outline, will have some noise in the form of a number of discon-

nected islands. In order to remove the noise in the foreground, a connectivity graph is created

by connecting adjacent pixels belonging to the foreground. Disconnected sub-graphs of the

connectivity graphs are extracted by a spectral graph theory approach[28]. The graph is recur-

sively cut at points where the sorted elements of the eigenvector associated with zero valued

eigenvalue of the Laplacian matrix of the graph exhibit the biggest jump exceeding the thresh-

old 10−4.

The sub-graphs are compared based on their size and the difference of the average colour

from the average colour of the background. The island having the maximum product of the

square root of its size and the difference from the background is selected as the embryo out-

line.

Embryo outline ¼ max
Si2S
ð
ffiffiffiffiffiffi
jSij

p
kMSi � MbgkÞ
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Where Si is a disconnected sub-graph of the connectivity graph S;MSi
is the average colour

of pixels in sub-graph Si;Mbg is the average colour of the background.

The steps of splitting the foreground into disconnected components and selecting the most

outstanding island are repeated twice, with the first round taking the entire foreground into

account and the second round ignoring the parts of the image that are 3 pixels away from the

image edges. The outline is considered touching the image edge if the selected foreground

component touches the image edge in both cases. The embryos in the image are assumed to

have no holes, thus all holes inside the closed contour around the selected foreground element

are filled. In case the photographed embryo extends beyond the image, it is sometimes neces-

sary to close the embryo contour along the image edge before filling the holes. To close the

embryo contour along the image edge a randomly selected quarter of pixels in the 2-pixel band

around the image edge is marked as foreground and then islands containing a single pixel are

reverted to the background. The process is repeated until the size of the biggest foreground ele-

ment increases by less than 5% during the last iteration, but no more than 100 times.

The resulting outline is smoothed by minimizing local curvature of the outline contour

using the geodesic active contour framework proposed in [29]. The framework assigns to a

curve an energy functional, which depends on the contents of an image. To minimize the func-

tional [29] proposes a contour evolution partial differential equation (PDE), the stationary

state of which minimizes the functional. The PDE contains three members on the right hand

side; first corresponding to curvature force, which minimizes local curvature; second is balloon

force, which tends to expand or contract the contour; third is the image attraction force, which

makes the contour reflect the contents of an image. The stationary state of the equation is

found using the level set approach as suggested in [29], with zero balloon force everywhere

and 8 iterations for curvature force. Since the unsmoothed contour is the collection of points

where the probability of belonging to the background under GMM equals the probability of

belonging to the foreground, it is natural to use the probabilities as a base for the image attrac-

tion force; the log-likelihoods of pixels are first divided by the minimum log-likelihoods for

the background and foreground respectively and then summed.

g x; yð Þ ¼
logP ððx; yÞ 2 CbgjGMMÞ

minx;y logP ððx; yÞ 2 CbgjGMMÞ
þ

logP ððx; yÞ=2CbgjGMMÞ
minx;y logP ððx; yÞ=2CbgjGMMÞ

Images with the outline touching the image edge are considered to be presenting incom-

plete embryo, and a flag is set in the image data to record this. Next, the outline is scaled up to

match the original image dimensions. The resulting contour is then contracted by the number

of pixels corresponding to half the scaling factor between the original image and the smallest

layer in the Gaussian pyramid that is used for the embryo search, to make the final embryo

outline. A bounding box is recorded in the image data, which is the rectangle with sides paral-

lel to the images edges that just contains the embryo outline.

3. Stain distribution extraction

In the ‘select_images’ program there is a pre-processing step before stain distribution extrac-

tion, since differences in embryo illumination can affect the estimation of the stain intensity.

Where appropriate, the background colour is assumed to be the same for all compared images

(either cleared or un-cleared images) in a specific gene/stage group where the images are from

the same collection. Thus any differences in background colour amongst those images are

assumed to be caused by imaging conditions. The differences in average luminosity in all

images to be compared are compensated. Then the images are processed independently.
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An image is converted into CMY colour space. The model behind the analysis assumes that

an image is “painted” with a small number of paints, with each pixel colour being a linear mix-

ture of different amount of each paint:

xi ¼ Asi

Where xi is a CMY colour of ith pixel, A = [as,� � �] is a matrix containing CMY values of

each of the paints normalised to unit length as its columns, si is a vector representing amounts

of each paints in the pixel.

One approach to find a solution to the equation is independent component analysis; here

we use FastICA algorithm to find the independent components [30]. The algorithm solves the

equation:

KðX � �XÞ ¼ MS

WhereM is a symmetric n×n “mixing” matrix; K is a n×mwhitening matrix;m is the

dimensionality of the data; n�m is a number of independent components; S is latent “source”

variables.

Despite the speed and underlying assumptions of the FastICA algorithm aligned well with

the needs of this project, the algorithm has some drawbacks. As seen from the above equation,

the FastICA algorithm finds a solution up to a multiplicative constant; it rather finds indepen-

dent axes in data since the signs or magnitudes of the independent components cannot be

determined. Furthermore, since FastICA finds the solutions for mean-centred rather than for

zero-centred data an independent axis would correspond to a spectrum of colours rather than

to the single colour of the respective paint.

To get around these issues, prior knowledge of the expected colours of the paints is used.

From the equation above, the maximum possible number of components cannot exceed the

dimensionality of the data, three colour channels in our case. Thus no more than three colour

components are expected: stain, pigment, and background where C = [cs,cp,cb]. The back-

ground colour is estimated by averaging the colour of pixels outside the embryo outline, whilst

stain and pigment colours, blue and brown respectively, were the same for all images in Ciau-

Uitz/Patient collection; all expected colours are normalised to unit length.

Not all of the three components will always be present in an embryo image, thus there is a

need to estimate the actual number of independent components. The FastICA algorithm finds

the solution by choosing such entries inM that minimize the normality of the distribution of

“source” variables. From that, it appears natural to estimate the number of components by

maximizing the average information content per component as measured by Kullback-Leibler

divergence of the empirical distribution of a “source” component from the fit Gaussian

distribution.

If the number of components does not match the number of expected colours, some of the

expected colours are assumed not present in the image and are removed from the set. At this

stage the stain colour is assumed to always be present, thus if the estimated number of compo-

nents is one the expected stain colour is the only one left in the set. If the estimated number of

independent components is two whilst the number of expected colours is three, there is a need

to identify which colour is missing. Since it is preferable to detect faint stain, whilst faint pig-

ment can safely be ignored, the assumption at this step is that stain colour is always present

and the missing colour is either background colour or pigment colour.

The ambiguity is resolved by maximising the linear combination of the absolute values of

the determinant of the correlation matrix between the distribution of the colours in the image

and the distribution of independent “sources”, and the cosine between the normals to the
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planes formed by the vectors left in the set and two first principal components (principal

plane) of the pixel colours.

Ce ¼ argmax
C2f½cs;cb�;½cs;cp�g

fjdet½corrðTðXe � �XeÞ;C
þXeÞ�j þ 10j dðC0 � C1Þ�

dðT0 � T1Þjg

Where C is a matrix containing in its columns n expected colours including stain colour. Xe
is colour values of pixels inside the embryo outline. T =M−1K is matrix of independent compo-

nents. du� v means cross-product of u and v normalized to unit length.

If the resulting set of expected colours includes the pigment colour, the stain and pigment

colours are adjusted. The adjustment is done by rotating vectors representing the colours in

the CMY colour space around their mean by an angle ranging from -15 to +15 degrees in

order to make the plane formed by the vectors as parallel as possible to the principal plane of

the pixel colours.

Using both independent axes and expected colours, it is possible to estimate the compo-

nents of A. The estimation is done in two steps: first, the proposed components of A are com-

puted from the data and independent axes; second, the proposed components are compared to

expected colours; the set of proposed components closest to the expected colours are accepted.

The computation of the proposed components is based on the assumption that the compo-

nents of A should be as far as possible from the average colour. Thus, after picking an indepen-

dent axis and choosing a direction from the mean, the proposed component then equals the

normalised to unit length point on the independent axis where the projection of image pixels

close to the axis in colour space is maximal. To increase robustness of the method to the colour

imprecisions, only pixels sufficiently distant from white colour are used.

a0i ¼

 

argmax
x2X;kxk�lmin

(


ðx � �XÞ

kzlm�k
^



 � e

�



ðx� �X Þ

?zlm
�
k

^





2

2�dmax2

)!

kzlm�k
^

Where x is the colour of a jth pixel inside embryo outline, kxk>lmin, it is set to 0.15; m̂�k is

the kth column ofM� = K+M normalised to unit length; zl2{1,−1} is a direction with respect to

m�k. Subscript notation xkvmeans the parallel and x?v the orthogonal component of x with

respect to v such that x = xkv+x?v; dmax controls the effective distance of the pixel colours from

the independent axis, and is set to 0.05.

The best set of proposed components is found by minimizing the weighted average distance

between proposed components and the expected colours multiplied by the specificity of the

match.

Â ¼ argmin
A0

Xn

i¼1

wi
kci � a0ik

2

P
j6¼ikci � a0jk

Where A0 is the proposed components matrix; n is the estimated number of independent

components; a0i is the i-th column of A0; ci is the i-th column of Ce; wi is a weight associated

with each expected colour, the weights reflected a prior confidence in that colour: ws = 0.5,wp
= 0.05,wb = 1. Since the background colour is computed from the image it has the highest con-

fidence. There is less confidence in prior knowledge of the stain colour since it can vary due to

imaging conditions, and choice of stain reagents. The argument behind the much smaller con-

fidence level for pigment colour is two-fold; firstly, the colour can vary due to biological differ-

ences or imaging conditions. Secondly, the model used here assumes linear colour mixing
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whereas the imaging condition can produce saturation effects and hence non-linear colour

mixing in lighter or darker parts of images, the number of independent components can be

overestimated with the superfluous components being far from any of expected. The low

weight for the pigment allows that false component to be associated with the pigment in case

saturation occurs in the lighter part of the spectrum. In case the pigment component is associ-

ated with saturated stain, the estimation of A is done assuming no pigment component is

present.

The estimated stain colour âs is considered confidently estimated if the relative positive

contribution of expected stain colour in âs is over 5%.

maxð0; q1ÞPn
i¼1

maxð0; qiÞ
> 0:05;where q ¼ Cþe âs

The spatial stain distribution is found by solving the equation X ¼ ÂS for all image pixels

and taking the first “source” components.

‘Adaptive thresholding’ is applied to the stain distribution to make sure that only significant

staining is taken into account. This is done by modelling the stain distribution inside the

embryo outline as a mixture of two Gaussian distributions, one of which would represent

‘noise’ and the other would be considered the ‘signal’. The noise is filtered out by selecting a

threshold so that 95% of noise is under the threshold. The threshold is range limited by the

interval [0.25, 0.67] because values of staining/pigmentation below 0.25 level would be too

close to white to be significant; on the other hand staining/pigmentation above 0.67 would be

significant anyway, even if doesn’t form a pattern.

S �
X2

i¼1

piNðmi; siÞ

t ¼ min ð0:67; max ð0:25; min
i
ðmi þ 2siÞÞÞ

Where S is the random variable representing staining; t is the threshold.

If the background colour has non-zero projection on the stain colour it results in the “back-

ground” noise. To remove the noise from the spatial stain pattern without creating sharp arte-

facts, a smooth mask is created from the embryo outline as follows. Mean and standard

deviation of stain amount in the area outside the embryo outline are computed. The mean

amount of stain inside morphological gradient of the embryo outline is computed and

recorded. The embryo outline is eroded for one round. These two operations are repeated sev-

eral times, or until the mean of the stain in the gradient band exceeds the mean plus two stan-

dard deviations of the stain in the background. Then a smooth mask is created with a sigmoid

profile with the inflexion point located at the distance from the embryo outline where the

mean amount of stain in the corresponding gradient band is at the minimum, or if a minimum

is not reached, at half way to the maximum of the mean amount of stain.

4. Classifying images as cleared or un-cleared

In the Ciau-Uitz/Patient collection of 33,289 images, un-cleared images had orange/red back-

grounds and cleared images had grey backgrounds. They were sorted into groups according to

the colour distribution of pixels within each image. Initially, images were converted into LAB

colour space, and pixel values accessed via standard library functions.

To capture the colour distribution of pixels in an image, meansMi and covariance matrices

Ci were computed for each image. Components of the mean vector and lower triangular parts
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of the Cholesky decomposition of the covariance matrices were combined to produce a data

point representing colour distribution in a particular image.

Mi ¼ hm1;m2;m3i

LiL
T
i ¼ Ci

Li ¼

l11 0 0

l21 l22 0

l31 l32 l33

2

6
6
4

3

7
7
5

xi ¼ hm1;m2;m3;l11; l21; . . . ; l33i

To learn the best separation between cleared and un-cleared images, the distribution of the

data was modelled as a 2–component Gaussian mixture [31]. The model was fit using the

expectation maximization algorithm. As a result images were assigned to one of the two com-

ponents, hence separating cleared and un-cleared images.

5. Clustering similar views

Embryo images, in a particular gene/stage groups with recorded stage earlier than 22, are clus-

tered on their expression patterns, with cleared and un-cleared images clustered separately.

To find the distance between images, the spatial stain distribution of each image is aligned

with those of all other images in the group. Images of stain distribution are normalized by the

standard deviation of the pixel intensities and down-sampled so none of their sides exceeds

100 pixels. Alignment is done by minimizing a function with the squared Euclidian distance

between spatial stain distributions of the images as the external energy with respect to linear-

affine transformation of one of the images[32]. The distance is penalized for scaling. Minimi-

zation is done with BFGS algorithm.

I½A; b� ¼ ∬ kSTðAx þ bÞ � SRðxÞk
2
þ aðlnðjAj2ÞÞ2dx

Where Si(�) is the spatial stain distribution in an image; α is the regularization constant.

For each pair of images in the group, one of the images is taken as a reference and minimi-

zation is done from eight initial positions of the template image: 4 rotations by 90 degrees of

original image and the same of a flipped image. Then the process is repeated with the other

image taken as a reference. The minimum of the 16 minimal distance values is taken as the dis-

tance between the expression patterns.

All the pairwise distances taken with the minus sign formed a similarity matrix. The cluster-

ing is done by adaptive affinity propagation algorithm [33] with the number of clusters not

exceeding four.

6. Ranking images on staining

In general, images are ranked on the 85th percentile of the stain distribution and the image of

the highest rank in the gene/stage group is selected. In case of clustered images of early

embryos, the total similarity of an image in the cluster is added to 85th percentile of the stain

distribution to account for how well the image represents the cluster.
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7. Computation of expected error rates and CI95

Expected error rates and corresponding 95% confidence intervals were calculated under the

Bernoulli model with uninformative Beta(1, 1) prior.

8. Comparison of expression pattern clustering to embryo orientation

annotation

Partition of the images by the clustering was compared to the partition by embryo orientation

using Wallace pairwise agreement coefficient [34,35]. The Wallace coefficient from partition A

to partition B is a ratioWA!B ¼
a

ðaþbÞ; where a and b are entries of a mismatch matrix
a b

c d

" #

,

which in row 1 has the numbers of pairs in the same cluster and in row 2 the numbers in the

different clusters of A, and in columns the same for the partition of B. In our case, the Wallace

coefficient has the meaning of sensitivity of the clustering to embryo orientation, i.e. the pro-

portion of pairs of images put in the same cluster that have the same embryo orientation. We

augmented the clustering sensitivity by a clustering specificity coefficient d
ðcþdÞ.

9. Parameter fitting

All algorithm parameters were tuned using manual procedure similar to cross validation, with

a training image set that reflected image collection variability. The procedure consisted of

recursively applying the following two steps until optimal parameter values were found. First,

parameters were adjusted to allow the algorithm to perform best on a small subset of the train-

ing set containing images the algorithm performed worst at. Then the algorithm with parame-

ter value found at the previous step was applied to the whole training set to assess the

generality of the value.
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