
1

OPEN

DATA

Benchmarking the topological accuracy of bacterial 
phylogenomic workflows using in silico evolution

Boas C. L. van der Putten1,2,*,†, Niek A. H. Huijsmans1†, Daniel R. Mende1 and Constance Schultsz1,2

RESEARCH ARTICLE
van der Putten et al., Microbial Genomics 2022;8:000799

DOI 10.1099/mgen.0.000799

Received 23 August 2021; Accepted 10 February 2022; Published 15 March 2022
Author affiliations: 1Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; 2Department of 
Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
*Correspondence: Boas C. L. van der Putten,  boas. vanderputten@ amsterdamumc. nl
Keywords: benchmarking study; in silico evolution; phylogenetics; simulation.
Abbreviations: ANI, average nucleotide identity; GTR, general time- reversible; MLST, multilocus sequence typing.
†These authors contributed equally to this work
Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Five supplementary 
figures and five supplementary tables are available with the online version of this article.
000799 © 2022 The Authors

This is an open- access article distributed under the terms of the Creative Commons Attribution License.

Abstract

Phylogenetic analyses are widely used in microbiological research, for example to trace the progression of bacterial outbreaks 
based on whole- genome sequencing data. In practice, multiple analysis steps such as de novo assembly, alignment and phy-
logenetic inference are combined to form phylogenetic workflows. Comprehensive benchmarking of the accuracy of complete 
phylogenetic workflows is lacking. To benchmark different phylogenetic workflows, we simulated bacterial evolution under a 
wide range of evolutionary models, varying the relative rates of substitution, insertion, deletion, gene duplication, gene loss 
and lateral gene transfer events. The generated datasets corresponded to a genetic diversity usually observed within bacte-
rial species (≥95 % average nucleotide identity). We replicated each simulation three times to assess replicability. In total, we 
benchmarked 19 distinct phylogenetic workflows using 8 different simulated datasets. We found that recently developed k- mer 
alignment methods such as kSNP and ska achieve similar accuracy as reference mapping. The high accuracy of k- mer align-
ment methods can be explained by the large fractions of genomes these methods can align, relative to other approaches. We 
also found that the choice of de novo assembly algorithm influences the accuracy of phylogenetic reconstruction, with work-
flows employing SPAdes or skesa outperforming those employing Velvet. Finally, we found that the results of phylogenetic 
benchmarking are highly variable between replicates. We conclude that for phylogenomic reconstruction, k- mer alignment 
methods are relevant alternatives to reference mapping at the species level, especially in the absence of suitable reference 
genomes. We show de novo genome assembly accuracy to be an underappreciated parameter required for accurate phylog-
enomic reconstruction.

DATA SUMMARY
A Zenodo repository is available at https://doi.org/10.5281/zenodo.5036179 containing all the simulated genomes, all alignments 
produced by phylogenetic workflows and .csv files summarizing the topological accuracies of phylogenies produced based on 
these alignments. Code is available at https://github.com/niekh-13/phylogenetic_workflows.

INTRODUCTION
Phylogenetic analyses are crucial to assess the relatedness within a population of micro- organisms. These analyses provide 
information on the speciation, evolution and spread of microbes. Within clinical settings, they can be used to identify microbial 
outbreaks and transmission events [1]. With the introduction of cost- efficient whole- genome sequencing, bacterial outbreak 
tracing is increasingly based on whole- genome data, instead of on a small section of the genome such as 16S rRNA genes or a set 
of universal genes [2]. Whole- genome phylogenetic analysis can be applied by various pipelines or workflows, often composed 
of multiple separate tools. Common differences between workflows are which genomic loci are considered in the analysis (only 
protein- encoding genes or also intergenic regions), how genetic features are defined (genes, k- mers, single nucleotide variants, 
etc.), but also how genomes are assembled. Benchmarking is necessary to make sense out of the plethora of bioinformatic 
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methodologies available. Although previous benchmarks of bacterial phylogenetic reconstruction have generated important 
insights [3–5], some gaps remain. For example, the usefulness of recently developed k- mer alignment methods has not been fully 
explored in previous benchmark exercises. Additionally, the role of using different de novo assembly methods prior to compara-
tive analysis has received little attention (especially in combination with the aforementioned k- mer alignment methods). Other 
methodological choices (e.g. choice of phylogenetic tree inference) have been amply studied before [3].

Benchmarking phylogenetic workflows requires knowledge of the true phylogenetic tree, as benchmarking results need to be 
compared to this reference. The true phylogenetic tree is typically not known in real- world settings. As such, various approaches 
have been proposed to determine or estimate the true phylogenetic tree of a set of strains. Some previous studies have assumed 
that the consensus of all phylogenies produced by the studied methods is close to the true phylogeny. Alternatively, studies have 
collated benchmark data sets where the epidemiological data was concordant with the phylogenomic analyses [4]. Because this 
approach uses real- life data, little is known about the underlying genetic events, and it does not allow one to experimentally 
vary evolutionary parameters. Another approach is to have a mutant strain with an increased mutation rate evolve in vitro, and 
determine the structure of the true phylogeny from the experimental evolution controlled in the lab [5]. This approach provides 
a good grasp of the true phylogeny and allows the sampling of ancestral strains, but the method is costly and time- consuming, 
and evolutionary parameters cannot be easily controlled. Finally, some studies have used in silico evolution to produce realistic 
sequencing data together with an a priori defined true phylogeny [3, 4, 6–9]. This approach offers the possibility to increase or 
decrease the rate of a range of evolutionary events, such as point mutations, indels, gene duplication, gene loss, gene translocation 
and lateral gene transfer. Additionally, genomic regions can be evolved under different evolutionary models, as is typical in real- life 
scenarios (e.g. protein- encoding genes vs intergenic regions). Finally, this approach allows a comparison to the true phylogeny, 
which is not possible with other methods.

Several in silico evolution frameworks have been developed, with differing goals and strengths [3, 7–13]. In the current study, 
we aimed to select a simulation strategy producing complete, haploid bacterial genomes. As lateral gene transfer is a common 
phenomenon in bacteria, simulation of lateral gene transfer should be included during in silico evolution. As we aimed to 
compare against a true tree, the in silico evolution was guided by a user- provided phylogenetic tree. We surveyed the Genetic 
Data Simulator database (https://surveillance.cancer.gov/genetic-simulation-resources/) and previously published manuscripts 
[3, 4, 7–11, 13]. The workflow used by Lees et al. (2018) [3] was used as it satisfied all our criteria. The workflow combines alf 
and dawg software, and enables easy tuning of evolutionary parameters and setting simulation seeds for reproducible analysis.

In this study, our aim was to assess which bioinformatic workflows are able to reconstruct the true phylogeny accurately under 
diverse evolutionary scenarios. We consider simulating evolution in silico to be the optimal approach to achieve this. We simulated 
the evolution of Escherichia coli genomes in silico under eight different scenarios, varying the rates of indels, gene duplication, gene 
loss and lateral gene transfer. We used these simulated datasets to assess the topological accuracy of 19 phylogenetic reconstruction 
workflows, including de novo genome assembly, alignment or mapping, and finally phylogenetic tree inference. We included six 
alignment or mapping methods to identify SNPs between samples, which can be subdivided into k- mer alignment, reference 
mapping and gene- by- gene alignment methods. We also included three different de novo assembly approaches, as the impact of 
this pre- processing step on phylogenomic accuracy is understudied.

METHODS
Study design
This study consists of two main parts: simulation of in silico genome evolution (Fig. 1a) and application of phylogenetic workflows 
on the simulated data sets (Fig. 1b). A total of eight sets of parameters were used to simulate a variety of evolutionary processes on 
genic and intergenic regions separately, using the same phylogeny every time (Table S1, available with the online version of this 
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to investigate foodborne outbreaks such as the 2011 outbreak of Escherichia coli O104:H4 across Europe. As different microbes 
evolve differently, it is important to know which phylogenetic workflows are most accurate when working with diverse bacterial 
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scenarios and benchmarked 19 phylogenetic workflows on these simulated datasets. An advantage of our simulation approach 
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racy. Taken together, this new information will hopefully enable more accurate phylogenetic analysis of bacterial outbreaks.
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article). Each simulation was repeated three times with different random seeds to obtain technical replicates. From the in silico 
evolved genomes, short sequencing reads were generated. These sequencing reads were then used as input for the 17 phylogenetic 
workflows. We tested three de novo assembly algorithms in the workflows (Velvet, skesa, SPAdes), alongside two methods for 
core- gene alignment (Roary, pirate), one method for multilocus sequence typing (MLST) gene alignment (mlst- check), two 
methods for k- mer alignment (ska, kSNP) and three methods for reference- based read mapping that performed well in a recent 
benchmark [14] (Snippy, NextGenMap, smalt). A total of 19 phylogenetic workflows were tested (Table S2). All phylogenies have 
been inferred from alignments using iq- tree and ModelFinder. As the same phylogeny was used for each simulation, but the 
parameters for genetic events changed between simulations, each simulated dataset is expected to yield the same genetic distance 
between isolates (governed by the phylogeny), although the genetic events that have led to this identical genetic distance could 
be different (governed by the parameters).

Fig. 1. Overview of this study. (a) Simulation of the in silico evolution. The E. coli K- 12 MG1655 genome is evolved in silico according to a phylogeny 
(providing genetic distances) and a set of parameters controlling the rates of genetic events (providing which genetic events result in the genetic 
distance provided by the phylogeny). The resulting genomes are depicted by coloured complete genome graphs visualized in Bandage [47]. The 
complete genomes are subsequently shredded into sequencing reads. (b) Phylogenetic workflows. Generated sequencing reads are assembled into 
draft genomes (coloured draft genome graphs) or directly mapped onto the ancestral genome. From alignments, phylogenetic trees are inferred using 
iq- tree.
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In silico evolution
All code is available as a Snakemake v5.8.1 [15] pipeline at https://github.com/niekh-13/phylogenetic_workflows. All tools were 
run using default parameters, unless otherwise noted. The complete chromosome of E. coli K- 12 MG1655 (RefSeq assembly 
GCF_000005845.2) was used as the ancestral genome in all simulations. Evolution was simulated according to the phylogeny 
described by Kremer et al. [16]. The general approach used in this study was based on the approach described by Lees et al. 
[3]. The ancestral genome was annotated using Prokka v1.14.6 [17] and subsequently divided into protein- encoding genes and 
intergenic regions (all sequences not annotated as protein- encoding gene). Protein- encoding regions were in silico evolved using 
Artificial Life Framework v1.0 (alf) [12], while intergenic regions were in silico evolved using dawg v2.0.beta1 [13].

alf simulations were run using an empirical codon model, using a standard indel rate of 0.0252, a gene duplication and gene loss 
rate of 0.05, lateral gene transfer rates of 0.04 for single genes and 0.16 for groups of genes, and no spontaneous gene inversion 
or gene translocation, based on previous bacterial simulations [3]. Complete specifications for the default run are available from 
https://github.com/niekh-13/phylogenetic_workflows/blob/master/input/alf_protein_sim.drw. Seven additional simulations 
were performed (Table S1): ‘Indel × 0.5’ (halved indel rate), ‘Indel × 2’ (doubled indel rate), ‘gene duplication × 2’ (doubled gene 
duplication rate), ‘gene loss × 2’ (doubled gene loss rate), ‘gene duplication × 2 and gene loss × 2’ (doubled gene duplication and 
gene loss rates), ‘lateral gene transfer × 0.5’ (halved lateral gene transfer rate for single genes and groups of genes), ‘lateral gene 
transfer × 2’ (doubled lateral gene transfer rate for single genes and groups of genes).

dawg simulations were run using a default indel rate of 0.00175 and evolved under a general time- reversible (GTR) model with 
rates A↔C, 0.91770; A↔G, 4.47316; A↔T, 1.10375; C↔G, 0.56499; C↔T, 6.01846; G↔T, 1.00000; based on the GTR matrix 
inferred from a dataset of nearly 1200 E. coli strains isolated from various host species (HECTOR study, unpublished results). 
For simulations indel × 0.5 and indel × 2, the indel rate was changed appropriately (Table S1).

Per simulation, alf and dawg in silico evolution yielded protein- encoding genes and intergenic regions for 96 in silico evolved 
genomes. These were assembled into 96 complete genomes. As stop codons are removed during alf simulation, stop codons were 
inserted at the ends of genes. Paired- end sequencing reads in fastq format were simulated using art v2016.06.05 [18], based on 
an Illumina HiSeq 2500 profile with 30× depth, read length of 150 bp and a mean DNA fragment size of 600 bp with a standard 
deviation of 10 bp, using seed 21 (flags ‘-ss HS25 -na -rs 21 p -l 150 f 30 m 600 s 10’).

For the generation of clonal datasets, we divided branch lengths of the true tree by factor 3, 30 and 100 corresponding to a median 
average nucleotide identity (ANI) of 99.0, 99.5 and 99.9 % between genomes, respectively. Clonal datasets were generated using 
the standard rates for indel, gene duplication, gene deletion and lateral gene transfer events.

Comparing pipelines
From the simulated Illumina sequencing reads, phylogenies were reconstructed through 19 workflows (Table S2). Assemblies 
were created using the Shovill v1.1.0 (https://github.com/tseemann/shovill) wrapper for Velvet v1.2.10 [19], SPAdes v3.14.0 using 
‘--isolate’ mode [20] and skesa v2.3.0 [21]. Contigs were retained if they were 500 bp or larger for all de novo assembly algorithms. 
Assembly quality metrics were assessed using Quast v5.0.2 [22] and all- versus- all ANI comparisons were made using fastANI 
v1.2 [23]. k- mer alignment methods kSNP v3.1 [24] and ska v1.0 [25] were used on all assemblies, and ska was additionally 
run on sequencing reads. In our study, both tools were used to extract k- mers of 31 bp from assemblies or sequencing reads. 
Subsequently, these tools aligned k- mers of which the first and last 15 bp were identical; thus, allowing only the middle base to 
vary between aligned k- mers. This k- mer alignment produced SNP alignments, which can be used for phylogenetic inference. 
Important to note is that although ska and kSNP also employ k- mer- based methods, these methods are conceptually distinct 
from other k- mer- based tools such as Mash (https://github.com/marbl/Mash). The mapping pipelines Snippy v4.6.0 (https:// 
github.com/tseemann/snippy), NextGenMap v0.5.5 [26] and smalt v0.7.6 [27] were used on sequencing reads alone, using the 
E. coli K- 12 MG1655 chromosome as a reference (RefSeq assembly GCF_000005845.2). As all genomes in the current study are 
simulated from this chromosome, this represents the most suitable reference. Gene- by- gene methods Roary v3.13.0 [28] and 
pirate v1.0.3 [29] were used on annotations produced by Prokka v1.14.6. Finally, alignments were constructed from MLST genes 
using mlst- check v2.1.1706216 [30] and realigned using ClustalO v1.2.4 [31]. All methods, including k- mer alignment methods, 
produce nucleotide alignments, which were subsequently used to infer phylogenies using iq- tree v2.0.3 [32] and ModelFinder 
[33] packaged with iq- tree. Differences between the ground truth phylogeny and produced phylogenies were assessed using the 
Robinson–Foulds distance calculation implemented in ape v5.4 [34] and the Kendall–Colijn distance calculation implemented 
in treespace v1.1.3.2 [35]. All simulations and pipelines were run three times, with seeds 1, 42 and 1704 in the alf simulation. 
Alignment lengths were extracted using snp- sites v2.5.1 [36].

Visual and statistical analysis
Parsing of results was performed using the pandas library v0.25.3 [37] in Python v3.8.3, and using the tidyverse v1.3.0 [38] and 
rstatix v0.6.0 (https://cran.r-project.org/package=rstatix) libraries in R v4.0.1. Results were plotted using ggplot2 v3.3.1 [39], ggpubr 
v0.4.0 (https://cran.r-project.org/package=ggpubr), ggthemes v4.2.0 [40], patchwork v1.0.1 [41] and using SuperPlotsOfData 
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[42]. Tests for statistical significance were carried out using the scipy library [43] using paired Wilcoxon ranked sum tests where 
indicated. Bonferroni correction for multiple testing was applied where applicable.

RESULTS
Reference-based mapping and k-mer alignment methods yield phylogenetic trees most similar to ground 
truth
The in silico evolution yielded isolate sets with a genetic diversity comparable to a single bacterial species (≥95 % ANI [44]; Figs 1 
and S1). The same level of genetic diversity was attained between simulations, although these simulations included different rates 
of simulated genetic events (substitutions, indels, lateral gene transfer, etc.; Table S3).

The optimal phylogenetic workflow should produce a phylogeny identical to the one that was used in the simulation process 
(the ground truth phylogeny). Per workflow, we calculated tree distance between the phylogeny produced by the workflow and 
the ground truth phylogeny. Tree distances were expressed in the Robinson–Foulds distance and the Kendall–Colijn metric.

The workflow showing the lowest tree distances across simulations employed SPAdes de novo assembly and subsequently ska for 
k- mer alignment. After Bonferroni correction for multiple testing, the Kendall–Colijn metric of this workflow was significantly lower 
than all other workflows except Snippy, SPAdes+kSNP, skesa +kSNP, and skesa+ska (Fig. 2, Table S4). Notably, core- gene- alignment 
methods and methods employing Velvet for de novo assembly performed worse in our study. MLST gene alignment methods showed 
the highest deviation from the ground truth phylogeny as measured by Kendall–Colijn metric and Robinson–Foulds distance (Fig. S2).

We also simulated more clonal datasets with a median ANI of 99.0, 99.5 and 99.9 %. Although the median ANI values across these 
datasets were not very close to 100 %, the more clonal clades in the dataset contained very little genetic diversity. As expected, 
the true tree was reconstructed less accurately when simulated genomes were more similar (Fig. S3). The workflows that showed 
low Kendall–Colijn metrics between reconstructed phylogenies and the true tree showed a similar pattern in the clonal datasets, 
although differences are less clear than in Fig. 2.

De novo assembly algorithms have a strong influence on the accuracy of phylogenetic reconstruction
Next, we compared the accuracy of phylogenetic reconstruction between workflows employing different de novo assembly 
algorithms (Fig. 3, Table S5). Across eight simulations, workflows employing SPAdes and skesa both resulted in significantly 
lower Kendall–Colijn metric values compared to the same workflows employing Velvet. In other words, workflows employing 
SPAdes and skesa reconstruct phylogenies more accurately than the same workflows employing Velvet.

To gain insights in the de novo genome assembly quality, we compared the assemblies produced by Velvet, skesa and SPAdes to 
the in silico evolved genomes from which the sequencing reads were generated, using detailed assembly quality metrics such as 
total genome fraction, NGA50 (N50 of all blocks correctly aligned to the reference genome and corrected for reference genome 
length) [22], and the number of misassemblies alongside standard quality metrics such as number of contigs or total assembly size. 
We observed that although Velvet produced genome assemblies with a relatively high NGA50, Velvet also produced the highest 
number of misassemblies compared to skesa or SPAdes (Fig. S4). SPAdes seemed to perform best across multiple assembly quality 
metrics, reconstructing a large part of the original genome in few contigs (NGA50, genome fraction reconstructed, number of 
contigs), with a low number of errors (number of misassemblies).

Accuracy of phylogenetic reconstruction is associated with the number of informative sites in the alignment
We hypothesized that the workflows using a larger part of the genome in the comparative analysis would yield larger alignments and 
more accurate phylogenetic reconstruction. To assess this, we extracted the alignment length produced per workflow. We found that the 
alignment length shows a strong negative correlation with the Kendall–Colijn metric and explains approximately 22 % of variance in the 
metric (R2; Fig. 4). This indicates that the methods that included a larger fraction of the genomes under study produced more accurate 
phylogenies. When the workflows employing MLST alignments were included, this negative correlation was even stronger (Fig. S5).

Phylogenetic benchmarking shows a high variability between replicates
Repeating each of the eight simulations three times allows us to assess the reproducibility of this analysis. We see extensive vari-
ability in the accuracy of phylogenetic reconstruction even when comparing identical workflows across identical simulations, 
where only the starting seed for simulation differed (Fig. 5). The largest difference between technical replicates reached a 31 point 
different in the Kendall–Colijn metric (SPAdes+Roary, simulation with double indel rate). Over 22 % of Kendall–Colijn metric 
calculations were off more than 10 points between technical replicates.
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DISCUSSION
We have presented a systematic analysis of the accuracy of the phylogenetic reconstruction of several workflows, based on 
simulated bacterial whole- genome data. We have included 19 phylogenetic workflows. These were each benchmarked using eight 
simulation scenarios with three independent replicates.

First, we showed that k- mer alignment methods provide a good alternative to reference- based mapping in species- level phylo-
genetic reconstruction. The high accuracy of workflows employing k- mer alignment seems to be due to the large fraction of 
genomes that can be utilized in these workflows, reflected by the high number of informative sites in alignments produced by 
k- mer methods. In more clonal datasets, k- mer alignment methods also performed well. Through including eight simulation 
scenarios, we were able to determine a clear influence of the de novo assembly algorithm on phylogenetic accuracy. Based on 
assembly quality evaluation, we hypothesize that an increased rate of misassemblies has a detrimental effect on phylogenetic 
accuracy. This also applies to k- mer alignment methods, which performed best when combined with either SPAdes or skesa.

Fig. 2. Kendall–Colijn metrics and Robinson–Foulds distances per phylogenetic workflow across eight simulations. Displayed distances are calculated 
between the ground truth phylogeny and the phylogeny produced by the relevant workflow. Generated using SuperPlotsOfData, and ordered by median. 
Large circles indicate the median of replicates. Small circles indicate separate measurements for a replica.
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Surprisingly, we observed a high variability between replicates of phylogenetic workflows. Over one- fifth of comparisons showed 
differences of 10 points or more in the Kendall–Colijn metric. To contextualize, the difference in the median Kendall–Colijn metric 
between the best and worst workflows in Fig. 2(a) was 14.6 points. Generally, workflows using core- gene- alignment methods such 
as Roary or pirate displayed the highest discrepancies between replicates. This might be because core- gene- alignment methods 
need to employ heuristics to compare genes in an all- versus- all manner, which could introduce variability in their results.

Across 19 phylogenetic workflows, eight simulations and three replicates, we reconstructed a total of 456 phylogenies. By including 
multiple workflows, simulations and replicates, this number increases quickly. We were able to limit computational workload by 
selecting only a single method (iq- tree) to infer phylogenies from alignments. We chose to include only iq- tree because there 
was little difference between iq- tree, RAxML or other approaches in earlier studies [3]; because iq- tree is widely used and, 
thus, represents an established method to infer phylogenies; and finally because iq- tree offers the identification of an optimal 
substitution model through ModelFinder.

We included three reference- mapping tools in this study (Snippy, NextGenMap and smalt). While Snippy performed very well, 
NextGenMap and smalt performed worse than expected, based on results from a recent benchmark [14]. Several reasons could 
explain these discrepant findings. First, it should be noted that the previous study primarily aimed to benchmark SNP calling [14], 
while our study aims to benchmark phylogenetic reconstruction in the presence of various mutational events (including indels, 
lateral gene transfer, gene rearrangements). Secondly, the genetic distance of our dataset is more comparable with the genetic 
diversity of the data used in Table 2 and Figure 2 of the recent SNP calling benchmark publication [14]. In that study, NextGenMap 
and smalt have only been tested on a dataset with a larger genetic distance between reference and sample, hindering direct 
comparisons with our study. Thirdly, this benchmark has shown NextGenMap and smalt have a lower SNP calling specificity 

Fig. 3. Kendall–Colijn metrics and Robinson–Foulds distances per de novo assembly algorithm used in workflows, across eight simulations. Displayed 
distances are calculated between the ground truth phylogeny and the phylogeny produced by the relevant workflow. Generated using SuperPlotsOfData, 
and ordered alphabetically. Large circles indicate the median of replicates. Small circles indicate separate measurements for a replica.
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than Snippy [14]. Perhaps for phylogenetic reconstruction, the specificity of SNP calling is more important than the sensitivity. 
In any case, readers should be cautioned that the results of the specifically for NextGenMap and smalt were unexpected and 
might not fully reflect the performance of these tools in other settings.

One of the challenges in benchmarking studies is to employ all methods in such a way that these can be compared sensibly. For 
k- mer alignment methods ska and kSNP, we observed that configuring the desired k- mer length differs between tools. To obtain 
aligned k- mers of 31 bp, ska requires one to set k- mer length (flag ‘-k’) to 15, resulting in the alignment of two split k- mers of 
15 bp with a middle base, amounting to a total aligned k- mer of 31 bp. However, for kSNP the k- mer length (flag ‘-k’) should be 
set to 31, to obtain a 31 bp aligned k- mers of which the middle base may vary. Configuring the k- mer length correctly resulted 
in a highly similar accuracy of ska and kSNP, while previous studies did not establish similar performance due to discrepancies 
in k- mer length configuration [25].

Fig. 4. Count of informative sites in the alignment plotted against Kendall–Colijn metric, with a linear model fitted (shading indicates 95 % confidence 
interval). Pearson’s rho and associated P value are shown.

Fig. 5. Differences between technical replicates for identical workflows across identical simulations, only differing in starting seed for the simulation. 
Workflows including MLST were excluded. Generated using SuperPlotsOfData.
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Determining the exact rates of genetic events such as point mutations or indels is challenging. In this study, we have evolved 
bacterial genomes across a range of evolutionary scenarios, which means our results should be interpreted as generalizable 
findings, rather than findings specific to E. coli and its evolutionary mechanisms.

Here, we simulated datasets that exhibited a limited genetic diversity, similar to the genetic diversity observed within species (at 
least ~95 % ANI) [44]. In the context of more diverse datasets, for example comparing different species or genera, we expect that 
k- mer alignment methods would perform worse, as these methods typically perform best with limited genetic diversity [25]. In 
accord with our results, we theorize that this is due to a faster decrease in informative sites with increasing evolutionary distance.

The current study focuses on the analysis of short sequencing reads specifically. However, previous studies have investigated the 
applicability of long- read sequencing (especially Oxford Nanopore Technologies) for outbreak analysis [45, 46]. Analysing long- 
read sequence data uses fundamentally different algorithms and approaches than short- read sequence data analysis. Future studies 
could focus on the parameters that influence the accuracy of phylogenetic reconstruction based on long- read sequence data.

This study illustrates how phylogenetic reconstruction methods based on bacterial whole- genome data compare. The simula-
tions cover diverse evolutionary scenarios for bacterial species, providing detailed insight into the performance of phylogenetic 
reconstruction methods valid across diverse sets of bacterial strains. Recently developed k- mer alignment methods achieved 
similar accuracy as the gold standard (reference mapping) and, thus, seem to be a useful alternative when no suitable reference 
genome is available. Every microbe evolves according to different evolutionary parameters, so phylogenetic workflows need to be 
able to resolve many different evolutionary scenarios. Our study provides data on the accuracy of existing phylogenetic workflows 
and a framework to assess future phylogenetic workflows.
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