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FAK and paxillin, two potential targets in pancreatic cancer
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AbstrAct
Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer in large part 

due to late diagnosis and a lack of effective screening tests. In spite of recent progress 
in imaging, surgery and new therapeutic options for pancreatic cancer, the overall 
five-year survival still remains unacceptably low. Numerous studies have shown 
that focal adhesion kinase (FAK) is activated in many cancers including PDAC and 
promotes cancer progression and metastasis. Paxillin, an intracellular adaptor protein 
that plays a key role in cytoskeletal organization, connects integrins to FAK and plays 
a key role in assembly and disassembly of focal adhesions. Here, we have reviewed 
evidence in support of FAK as a potential therapeutic target and summarized related 
combinatorial therapies.

INtrODUctION

Pancreatic ductal adenocarcinoma (PDAC) is a 
deadly disease and the fourth leading cause of cancer 
deaths. It has one of the highest mortality rates for 
solid tumors and the overall five year survival rate is 
unacceptably low [1]. Invariably, the initial diagnosis 
occurs at a stage when the cancer is already advanced 
leading to poor prognosis [2]. Surgery is possible only in 
25% of the patients and the gain in survival rises from a 
dismal 5% to a modest 25% [3, 4]. Tumor cell migration 
and invasion are the most critical steps in progression of 
pancreatic cancer and they both occur at an early stage. 
PDACs are surrounded by dense fibrous tissue due to the 
intense desmoplastic fibrotic response, one of the hall 
marks of pancreatic cancer [5]. Some of the associated 
risk factors PDAC are diabetes, chronic inflammation 
(pancreatitis), alcohol and cigarette smoking. Tobacco 
smokers are three times more prone to develop PDAC than 
nonsmokers[6]. In addition, hepatitis B or C infections 
can also increase the incidence of PDAC[7]. There are 
no effective PDAC screening tests available. Adjuvant 
therapies include fluorouracil-based chemo radiation 
(fluorouracil and gemcitabine) [8, 9]. However the benefits 
are marginal as the cancer rapidly acquires drug resistance 
[10, 11]. 

In PDAC, the pancreatic stellate cells (PSCs), 
responsible for the generation of fibrous tissue in the 

pancreas, play a vital role in tumorigenesis. During 
development of pancreatic cancer or during inflammation, 
PSCs undergo morphological and functional changes to 
become myofibroblast -like cells. They express α-smooth 
muscle actin (α-SMA) and have high capacity to produce 
ECM proteins like type-1 collagen and fibronectin. Key 
intracellular signaling pathways like mitogen activated 
protein kinases (MAPK), cytokines, growth factors and 
microRNAs activate PSCs and promote interaction 
between PSCs and cancer cells that further fuel pancreatic 
cancer development [12-14]. In vitro, PSC culture 
supernatant stimulated migration, invasion and colony 
formation of pancreatic cancer cells. In addition, injection 
of PSCs along with PDAC cells into orthotopic murine 
models increased tumorigenicity along with metastasis 
[15, 16]. PSCs are known to accompany cancer cells to 
metastatic sites and stimulate angiogenesis [17]. Recently 
Lu J. et al., using a modified Boyden chamber assay, 
showed that PSCs stimulate migration of pancreatic cells 
via haptotactic mechanisms, which are mediated through 
collagen-1, activated α2/β1 integrin-FAK signaling 
pathway [18]. Apart from their indispensable role in 
fibrogenesis, PSCs through their secretion of matrix 
metalloproteinases (MMP) and their inhibitors (tissue 
inhibitors of metalloproteinase, TIMPs) have the potential 
to promote metastasis [3, 19]. 

About 10% of the patients inherit PDAC, an aspect 
that was recently reviewed and will not be addressed 
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here [20, 21]. The inheritance of familial pancreatic 
cancer (FPC) is mostly autosomal dominant with a 
heterogeneous phenotype. Germline mutations in BRCA2, 
PALB2 and ATM are known to trigger pancreatic cancer 
in some families [22]. Lipocalin-2 and tissue inhibitor 
of metalloproteinase 1 have recently been identified as 
potential serum markers for early detection of FPC [23].

Pancreatic cancer is characterized by several 
chromosomal abnormalities. There are frequent losses 
in multiple chromosome arms including 1p, 3p, 4q, 6q, 
8p, 9p, 12q, 17p, 18q, and 21q and gains in 8q and 20q 
[24]. A seminal paper by Kinzler and coworkers [25] 
described detailed gene expression analysis of tumor 
transcripts amplified from 24 pancreatic cancers. The 
transcripts represented more than 23,000 genes. They 
identified 12 core cellular signaling pathways that favored 

pancreatic cancer tumor growth and metastasis which 
were genetically altered in 67-100% of the tumors. Here 
we highlight, in particular, those pathways involving FAK 
and paxillin as potential therapeutic targets in pancreatic 
cancer Figure 1 [26]. 

FOcAL ADHEsION KINAsE (PTK2)

FAK is an intracellular, highly conserved, non-
receptor tyrosine kinase encoded by PTK2 located on 
human chromosome 8q24.3. It is ubiquitously expressed 
in all cells [27, 28] and was initially identified in v-Src 
transformed chicken embryo fibroblasts [29]. FAK is 
associated with many aspects of metastasis such as 
adhesion, migration and invasion. FAK is overexpressed 
and activated in a variety of cancers including colon, 

Figure 1: FAK plays a significant role in multiple signaling pathways that contribute to pancreatic cancer growth and 
metastasis. Several receptor systems induce FAK activation that then contributes to the unique function. For instance, RTK signaling 
through FAK contribute to pancreatic tumor growth and metastasis; however VEGFR mediated signaling through FAK triggers angiogenesis. 
In addition, K-RAS, which is frequently mutated in pancreatic cancer, is also linked to FAK. FAK also influences lamellipodia formation 
through activation of small GTPases and promotes homotypic cell adhesion indirectly through paxillin. Suppression of p53 expression 
by nuclear FAK may also indirectly contribute to tumor growth by inhibiting apoptosis. It is therefore very likely that there is subtle 
compartmentalization of FAK in the cell and the final effector function could be the result of a combination of FAK mediated and non-FAK 
mediated signals.
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breast, lung, thyroid, head and neck, liver, pancreatic and 
esophageal and is correlated with poor survival rates [30, 
31]. The underlying mechanism of FAK overexpression is 
unclear. FAK is upregulated in PDAC and this increased 
expression is correlated with the size of the tumor [32]. 

FAK serves as a scaffolding protein and an integral 
component of focal adhesions and is anchored via paxillin. 
It regulates paxillin function via phosphorylation and 
plays an important role in lamellipodia formation and 
cell motility. Figure 2 describes in brief, some of the 
key signaling molecules that FAK interacts with. The 
125 kDa FAK protein is mainly composed of N-terminal 
FERM domain with an autophosphorylation site (Y397), 
followed by a proline rich region (PR1), central catalytic 
kinase domain, two additional proline rich regions (PR2 
and PR3) and a C-terminal focal adhesion-targeting 
(FAT) domain (Figure 2). The FERM domain of FAK is 
structurally similar to cytoskeletal proteins such as talin 
and the ezrin-radixin-moesin (ERM) family of proteins 
and also signaling molecules such as the JAK family 
tyrosine kinases and tyrosine phosphatases [33, 34]. It 
mediates FAK interaction with integrins and growth 
factor receptors [27, 35, 36]. The N-terminal PR1 region 
serves as a docking site for SH3-containing proteins such 
as cellular Src, whereas the C-terminal PR2 and PR3 
regions mediate interactions with other SH3-containing 
proteins such as p130Cas, endophilin A2, Graf, and 

ASAP1 [37-39]. The catalytic kinase domain of FAK is 
highly conserved and contains major phosphorylation 
sites Y576 and Y577and the ATP binding site K454 
[40]. The crystal structure of FAK kinase domain shows 
an open confirmation, which is very similar to the 
fibroblast growth factor receptor-1 (FGFR-1) and vascular 
endothelial growth factor receptor (VEGFR) [41]. The 
binding of p130Cas with FAK plays an important role 
in promoting cell migration, which is mediated through 
RAC activation whereas the binding of FAK with GRAF 
and ASAP1 regulates cytoskeletal dynamics and focal 
contact assembly. The FAT domain is mainly required 
for interactions with other scaffold proteins such as 
paxillin or talin during focal adhesion formation [42-
46]. The C-terminal domain of FAK is known as FRNK 
(FAK-Related Non-Kinase) acts as a negative regulator 
of FAK activity by inhibiting activation and signaling of 
endogenous FAK [47]. FRNK is expressed in significant 
quantities during neonatal development in vascular smooth 
muscle cells; however in adults its expression is highly 
down regulated. Overexpression of FRNK in cells is 
known to inhibit cell migration; cell spreading and growth 
factor induced signaling to MAP kinase. Suppression of 
FAK kinase activity by FRNK obviously can affect both 
kinase and scaffold mediated FAK functions; however the 
in vivo effects of FRNK in adult remain to be seen [48]. 
FAK activity is further regulated through its interaction 

Figure 2: FAK and its potential interacting partners. In cancers, highly active receptor tyrosine kinases such as MET and EGFR 
phosphorylate Src that then interacts with FAK Y397 through SH2 domain. Juxtaposed Src phosphorylates FAK at Y576 and Y577 and 
possibly other sites, resulting in a highly active FAK both in terms of the kinase activity and as an adapter protein. In addition, it is also 
connected to RAS through GRB2 and SOS that feeds into MAPK pathway. The CT FAT domain interacts with paxillin that binds to the 
relatively short cytoplasmic tails of integrins. Although the FERM domain is capable of interacting with integrins and RTKs, the more 
favored interaction appears to be through paxillin anchored to focal adhesions.
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with the FAK-inhibitory protein FIP200. The suppressor 
of cytokine signaling (SOCS) proteins also interacts with 
FAK and facilitates the poly-ubiquitination of FAK and its 
degradation [49]. 

ActIVAtION OF FAK bY INtEGrINs

Signaling pathways mediated by integrins play a 
critical role in cancers in general and pancreatic cancers 
in particular (Figure 3). Integrins belong to family of 
transmembrane receptors and they link extracellular 
matrix proteins (ECM) with the intracellular actin 
cytoskeleton to regulate cell shape and motility. Integrins 
are heterodimeric receptors composed of α and β subunits. 

There are 24 known α subunits and 9 β beta subunits and 
the particular combination of two subunits (α, β) generate 
a specific integrin receptor. Each integrin recognizes a 
specific ligand such as vitronectin, fibronectin, laminin 
and collagen, which are present in either interstitial 
spaces or in basement membrane. Integrins also serve 
as coreceptors to ICAM-1, VCAM-1. Apart from their 
role in cell adhesion, binding of integrins to ECM 
proteins activates integrin-associated tyrosine kinases, 
resulting in the tyrosine phosphorylation of downstream 
signaling molecules. Figure 3 describes some of the 
important mediators of these signaling pathways. Thus 
by controlling these signaling events, integrins play an 
important role in the regulation of cell migration and cell 

Figure 3: Cell signaling pathways in which FAK plays a key role in tumorigenesis. FAK plays a central role in both Integrin 
and RTK mediated signaling and plays a key role in cytoskeletal changes, lamellipodia formation and cell proliferation and motility. 
Interaction of integrins with ECM also triggers downstream activation of FAK resulting in its autophosphorylation at Y397. In parallel, the 
RTK mediated activation of c-Src and its related kinases such as Fyn and Lck, results in the generation of an open SH2 domain that docks 
on to Y397 and further propagation of the signals. Src mediated Y925 phosphorylation recruits GRB2 which then leads to the activation of 
RAS and subsequently ERK2. The Y925 site in FAK is a part of paxillin interaction site and its phosphorylation is likely to disrupt FAK 
localization to focal adhesions. Interestingly, ERK2 mediated FAK phosphorylation at S910 also destabilizes paxillin-FAK interaction. 
Moreover, ERK2 mediated phosphorylation of paxillin can positively influence FAK adherence to focal adhesions. FAK thus promote cell 
proliferation and motility that ultimately translates to cancer metastasis. In addition, FAK has the potential to interact with p53 promoter 
site and down regulate p53 transcription, thus promoting cell survival.
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survival [50, 51]. The relatively short cytoplasmic tails 
of integrins interact with cytoskeletal adapter proteins, 
such as paxillin (described below in greater details), 
which then recruits FAK. Ligand mediated clustering of 
integrins promotes FAK autophosphorylation at Y397, 
which then interacts with the SH2 domain of c-Src that is 
activated by RTKs. This site can also potentially interact 
with the SH2 containing proteins such as Shc, PI3K, 
Grb2 and phospholipase C. Binding and subsequent 
activation of Src leads to further tyrosine phosphorylation 
of FAK at Y407, Y576 and Y577, in its kinase domain to 
facilitate maximum activation [35, 52, 53]. Src mediated 
phosphorylation of FAK at Y925 creates a docking site 
for GRB2 which activates the small GTP protein RAS and 
the downstream ERK2 (MAPK) that is known to play an 
important role in directed cell motility and invasion. 

FAK AND rEcEPtOr tYrOsINE 
KINAsEs

Several of the well-known oncogenes are receptor 
tyrosine kinases (RTKs) such as EGFR, MET, EPH, 
VEGFR and KIT. They play an indispensable role in 
tumor growth and signaling through these receptors also 
contributes to cancer cell motility and metastasis. This is 
due in part to their ability to activate FAK and MAPK 
(Figure 2). The connection between RTKs and FAK 
appears to be indirect. The most likely scenario is through 
the ability of RTKs to activate Src family tyrosine kinases 
(STK) whose SH2 domain binds to FAK. This further 
feeds signals that promote cell motility. 

FAK AND K-rAs

K-RAS protein is a GTPase, and an early player 
in the signal transduction pathways regulating cell 
proliferation and differentiation [54]. Pancreatic cancer 
has maximum K-RAS alterations as compared to any 
other tumor type. In 75 - 90% of pancreatic tumors, there 
are activating point mutations of the K-RAS oncogene at 
codons 12, 13 and 61 [55, 56]. The most common of which 
is substitution of the wild type glycine residue (codon 12) 
by cysteine, arginine, valine, or aspartic acid [55]. These 
mutations result in the generation of constitutively active 
K-RAS. The active K-RAS mutants in turn activate related 
downstream signaling pathways including RAF-MAPK, 
MEK1/2 and PI3K-AKT, resulting in uncontrolled cell 
growth and metastasis. 

In pancreatic cancer, K-RAS mutations usually 
develop in the early phase of carcinogenesis and patients 
with mutated K-RAS have significantly less overall 
survival compared to patients with wild type K-RAS. This 
clearly suggests that mutations in K-RAS can initiate and 
advance pancreatic cancer. Apart from mutations, K-RAS 
is frequently amplified in pancreatic cancer. The role of 
FAK in K-RAS mediated cell migration and motility is 

controversial [57, 58]. K-RAS mediated activation of 
MEK1 results in phosphorylation of FAK at Ser910 
resulting in the suppression of its kinase activity [59]. This 
most likely occurs through activated RAS that signals via 
Fgd1-Cdc42-PAK1- MEK-ERK signaling cascade. MEK1 
phosphorylates FAK S910 that results in the recruitment 
of PIN1 and PTP-PEST. The co-localization with FAK 
occurs at the lamellipodia of migrating cells. PIN1 binding 
and prolyl isomerization of FAK can cause PTP-PEST to 
interact with and dephosphorylate FAK at Y397 resulting 
in suppression of FAK kinase activity. Despite the 
inhibition of FAK kinase activity, activated RAS can still 
promote cell migration, invasion, and metastasis through a 
FAK independent pathway. It is therefore possible that the 
use of FAK inhibitors in those pancreatic cancers wherein 
RAS is highly activated may not be of any use as FAK is 
already suppressed. This however remains to be seen as 
FAK is known to be highly active in majority of pancreatic 
cancers [32]. It is also noteworthy that despite the 
significant role played by mutated RAS in various cancers, 
to date no successful treatment has been developed that is 
based on targeting RAS.

FAK AND PAXILLIN

Paxillin is a major component of focal adhesions 
that form a structural link between extracellular matrix 
and actin cytoskeleton. It is a multidomain, 68 kDa 
protein, first identified as a phosphotyrosine protein in 
cells transformed by v-Src [60, 61]. In cancer cells, its 
function is regulated through Src and FAK mediated 
phosphorylation [62, 63]. Paxillin lacks any intrinsic 
enzymatic activity and functions mainly as an adaptor 
protein, by creating an array of docking sites for other 
proteins, thus promoting the assembly of multiprotein 
complexes.

 Active FAK is located at the leading edge of the cell 
where it regulates the assembly and disassembly of focal 
adhesions that result in directional movement. Paxillin 
appears to be responsible for the disassembly of adhesions 
at the cell front. This is mediated by the interaction FAK/
Src complex with paxillin. A recent study indicates that 
paxillin recruitment to the cell front protrusions occurs 
after the assembly of the focal adhesion [64]. Several 
studies have now shown that both FAK and paxillin are 
important for cell migration and participate in the dynamic 
assembly and disassembly of focal adhesions [65-68]. 

The interaction between paxillin and p130Cas with 
FAK is through the FAT domain in FAK and appears to 
be constitutive. The SH3 mediated binding of p130Cas 
to FAK results in the increased tyrosine phosphorylation 
of p130Cas at multiple sites. This in turn stimulates SH2 
mediated binding of Crk adaptor protein to p130 Cas 
ultimately resulting in the activation of RAC mediated 
membrane ruffling or lamellipodia formation and the 
promotion of cell motility/invasion [69]. 
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The significance of paxillin and FAK interaction 
can be appreciated by the recent report that a FAK mutant 
which fails to interact with paxillin resulted in a decrease 
in FAK in focal adhesions and a noticeable decrease in 
its phosphorylation. This ultimately led to a significant 
reduction in adhesion, migration and invasion. It is 
therefore clear that targeting FAK in cancer therapy is 
likely to also suppress paxillin-mediated functions [70]. In 
this fashion, paxillin could serve as a biomarker for FAK 
therapeutics. 

Paxillin also interacts with various other structural 
proteins such as vinculin and actopaxin, regulators of actin 
organization (COOL/PIX and PKL/GIT) and the adaptor 
protein Crk. Through these protein-protein interactions 
paxillin plays a pivotal role in various physiological 
processes such as gene expression, matrix organization, 
tissue remodeling, cell proliferation, cell survival, cell 
motility and metastasis [44, 46, 71]. 

Hic-5 and Leupaxin are related to paxillin and are 
frequently found to coexist. While paxillin is ubiquitously 
expressed in most of the tissues (except for nervous 
system) [72-74], Hic-5 is mostly expressed in smooth 
muscle tissues, particularly the vasculature [75, 76] and 
Leupaxin is mainly expressed in leukocytes [77]. Gene 
knockout studies in mice resulted in distinct phenotypes 
for paxillin and Hic-5. Loss of paxillin resulted in early 
embryonic lethality whereas the Hic-5 knockouts were 
viable with minor vascular defects [78, 79] indicating that 
paxillin interactions are more vital. 

The carboxy terminal of paxillin is composed of 
four LIM domains, which are zinc-binding structures, 
whereas the amino terminal has five LD motifs and 
multiple SH2- binding domains. LIM domains are double 
zinc finger motifs that target paxillin to focal adhesions. 
LD motifs mainly function as binding sites for other 
proteins. Moreover, the N terminal region of paxillin 
has a proline rich region that serves as a dock for SH3 
containing proteins. There are several alternatively spliced 
isoforms of paxillin that, based on their expression levels, 
could influence the overall function, however this aspect 
needs further study [72, 80]. 

Paxillin is known to acquire gain of function 
mutations that are associated with alterations in the 
malignant progression of many tumors [81-83] including 
breast, lung [84-86], prostate [87], melanoma [88] and 
colorectal cancer [89]. The most common mutation, 
A128T as identified from our laboratory, is linked to 
invasive tumor growth [79, 84, 90-92].

In addition to integrin signaling, paxillin also 
plays a vital role in RTK mediated signaling which is 
especially important in tumor growth and metastasis. 
EGF, TGF-β, platelet derived growth factor (PDGF) and 
androgen receptor mediated signaling are all known to 
induce paxillin phosphorylation, an event linked to tumor 
growth and metastasis [93-97]. Paxillin expression levels 
are known to correlate with HER2 levels in breast cancer 

cells and patient samples and thus may be a predictor of 
therapeutic efficacy [83, 98].

Paxillin and its relative Hic-5 appear to play a key 
role in invadopodia, which are cell protrusions that aid 
tumor metastasis. They are rich in membrane-bound and 
soluble matrix metalloproteinases (MMPs) that dissolve 
the fibrotic and ECM envelope that surrounds the tumor. 
They have an actin core and several actin-binding and 
nucleating proteins including paxillin and Hic-5. In 
addition, paxillin tyrosine phosphorylation is necessary 
for promoting invadopodia dynamics. Hic-5 also appears 
to be an essential component of invadopodia formed in 
cells that have undergone a TGF-α-mediated EMT and 
forced expression of Hic-5 in epithelial cells can eliminate 
the need for TGF-α. Paxillin may be dispensed with in 
cases wherein Hic-5 expression levels are relatively high. 
A similar role for leupaxin in cancer cell invadopodia has 
been noted. The Rho GTPases along with the Rho proteins 
that are anchored through paxillin appear to act in concert 
and coordinate invadopodia movements.

Cancer cell motility can be described as 
mesenchymal or amoeboid and the ability of cancer 
cells to switch between the two is known as plasticity. 
Paxillin and Hic-5 play a critical role in breast cancer cell 
morphology and plasticity during invasion. Abrogation 
of Hic-5 expression promotes an amoeboid phenotype 
while suppression of paxillin levels results in favoring of 
a mesenchymal morphology [99].

Paxillin may have an important role in cervical 
cancer. It was shown to interact with the bovine form of 
the human papillomavirus (HPV) E6 protein and promote 
cell transformation [100-102]. Most importantly, paxillin 
also regulates anchorage independent growth and cell 
survival through its own tyrosine phosphorylation, which 
facilitates interaction with p210BCR/ABL, FAK and 
vinculin [73, 97, 103-105]. In addition, its interaction 
with the anti-apoptotic protein BCL-2 appears to 
promote cell survival in the absence of cell adhesion in 
both cancerous and normal cells. This is partly mediated 
through FAK signaling [106, 107]. It has been previously 
shown that Wnt5A, JNK and paxillin are overexpressed 
in pancreatic cancer and Wnt5A/JNK signaling stimulates 
cell migration in pancreatic cancer by activating paxillin 
[108, 109]. Our lab has studied the effect of activating 
mutations of paxillin on mitochondrial dynamics in lung 
cancer. Live cell imaging showed that compared to wild 
type, some mutant clones had enhanced focal adhesion 
and lamellipodia formation (A127, P233L and P487L). 
Paxillin mutants exhibited altered association with BCL-
2, Dynamin-related Protein-1(DRP-1) and Mitofusion-2 
(MFN-2) proteins resulting in dysregulated mitochondrial 
dynamics. Our results suggest that paxillin mutants 
through their interactions with BCL-2 and DRP-1 could 
regulate cisplatin drug resistance in human lung cancer 
cells [110].
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FAK AND PI3 KINAsE

PI3K is a cellular oncogene and an essential 
intracellular lipid kinase that plays an important role 
in cell survival. FAK through phosphorylated Y397 is 
known to directly interact with the SH2 domain of p85, 
the regulatory subunit of PI3K[111, 112]. Both SH2 and 
SH3 domains of p85 appear to play a role in the binding 
of PI3K to FAK [113]. FAK has recently been shown 
to activate the PI3K pathway to suppress doxorubicin-
induced apoptosis[114]. PI3K-AKT pathway is essential 
for cell survival and shown to be constitutively active in 
most PDACs. Targeting this pathway with small molecule 
inhibitors or by knock down strategies results in growth 
inhibition, both in vitro and in vivo [115]. In another study, 
dual targeting of PI3K-AKT2 with RNA interference 
resulted in significantly increased apoptosis and reduced 
proliferation and colony formation in vitro and in vivo. 
This clearly indicates that simultaneous targeting of key 
molecules in PDAC is an effective treatment strategy [116, 
117].

FAK AND tUMOr sUPPrEssOr GENEs

tP53

TP53 is an important tumor suppressor gene. 
According to cosmic database 49% of pancreatic cancers 
have TP53 mutations [118]. MK 1775 a Wee 1 inhibitor 
targets aberrant p53 by blocking cell cycle checkpoint 
regulation [119]. The interaction between p53 and FAK 
appears to serve two purposes. The fact that FAK has 
been discovered in nucleus and that it can bind to p53 
and inhibit apoptosis supports a role for FAK activity 
in tumorigenesis. It was also found that p53 can bind to 
the FAK promoter site in the nucleus and suppress its 
transcription thereby aiding p53-mediated cell cycle arrest 
and apoptosis [120].

sMAD4

In normal cells, the cytokine TGF-β acts, as a tumor 
suppressor; however in cancer cells it is known to promote 
metastasis. It signals through SMAD4, a transcription 
cofactor, that stimulates gene transcription. SMAD4 is 
known interact with FAK. There appears to be a cross 
talk between TGF-β and RTKs. TGF- signaling is also 
known to induce clustering of some RTKs through FAK. 
Moreover 20% of pancreatic cancers are known to harbor 
SMAD4 mutations that correlate with poorer prognosis and 
increased metastasis [121, 122]. 

MErLIN

Merlin is a tumor suppressor protein, coded by the 
NF2 gene (Neurofibromatosis type II). It is a membrane 
cytoskeleton protein, which links actin filaments to 
the cell membrane, and mediates tumor suppression 
through contact-mediated growth inhibition [123, 124]. 
It has been shown that NF2 function or expression is 
lost in various cancers through mutation or chromosome 
deletion [125-127]. This is particularly relevant in 
malignant mesothelioma where 50% of patients have loss 
or inactivation of Merlin. Merlin deficient cancer cells, 
including mesothelioma cells are very sensitive to FAK 
inhibition. A study by Shapiro and coworkers reported 
that mesothelioma cells showed increased sensitivity to 
the small molecule FAK inhibitor VS-4718 in vitro as 
well as in vivo tumor xenograft models. This study clearly 
demonstrated a synthetic lethal relationship between 
Merlin loss and FAK inhibitor sensitivity in MPM [128]. 

FAK INHIbItOrs

Several approaches are used to target and 
inhibit FAK activity in cancer cells. Initial trials 
included, knockdown of FAK using siRNA, antisense 
oligonucleotides and adenoviral dominant-negative 
FAK-CD. These methods induced significant FAK down 
regulation, inhibited cancer cell proliferation, increased 
apoptosis and thus decreased tumorigenicity [129-131]. 
However these approaches have limitations for clinical 
research because of their toxicity in vivo. This led to 
development of small molecule inhibitors of FAK. These 
are divided mainly into two groups. The first group is 
comprised of inhibitors that target enzymatic or catalytic 
kinase dependent functions of FAK. The other group 
consists of the compounds that inhibit kinase independent 
functions of FAK, such as its protein-protein interactions 
with other binding partners [53, 132, 133]. 

FAK Kinase inhibitors

These are ATP analogs that effectively suppress the 
kinase activity of FAK [134-137]. These inhibitors bind to 
the residues surrounding ATP- binding pocket of kinases 
and since this pocket is similar in majority of the kinases, 
they unfortunately tend to have far off target effects. The 
most well-known and specific FAK inhibitors are either 
pyrimidine (NVP-TAE-226, PF-573228, PF-562271 and 
GSK2256098) or pyridine based (VS-6063, VS-4718 and 
VS-5095). 
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FAK Scaffold inhibitors

FAK is known to interact with many proteins such 
as Paxillin, Src, EGFR, Her-2, MET, PI3K, VEGFR-3 
and the scaffolding function of FAK plays an important 
role in cancer cell signaling. Disrupting the formation of 
these complexes can inhibit downstream FAK signaling 
in cancer cells. 

All the recent inhibitors are listed in the Table 1. 

FAK and combinatorial therapy

Multiple signaling pathways such as those mediated 
through RTKs, FAK, Src, AKT, MAPK and PI3K/mTOR 
are known to play important roles in tumorigenesis and 
also contribute to drug resistance. A strategy specifically 
to overcome resistance of cancer cells to chemotherapy 
and also to increase the efficacy of drugs is to use a 
combinatorial approach. A combination of FAK inhibitors 

Name Target Specificity Cancers targeted Clinical Trial References

TAE-226 
Novartis

Kinase inhibitor 
ATP competitive FAK & PYK2 Glioma & ovarian Preclinical 136, 143, 144

PF-573,228 
Pfizer

Kinase inhibitor 
ATP competitive FAK Prostate & breast Preclinical 137

GSK2256098 
GlaxoSmithKline

Kinase inhibitor 
ATP competitive FAK Ovarian & 

pancreatic Phase I 26

NVP-TAC544 Kinase inhibitor
ATP competitive FAK N/A Preclinical 26

VS-4718 (PND-1186) 
Verastem

Kinase inhibitor
ATP competitive FAK & PYK2 Breast & ovarian Phase I 26

VS-6062 (PF562271 and 
PF271) 
Verastem

Kinase inhibitor
ATP competitive FAK & PYK2

Breast, prostate, 
pancreatic, head 
& neck

Phase I 26, 135

VS-6063 
Verastem

Kinase inhibitor 
ATP competitive N/A Ovarian I/Ib and II 26, 151

1H-Pyrrolo(2,3-b) 
Merk Serono

Kinase inhibitor 
Non-ATP 
competitive 

Hinge region of 
FAK N/A Preclinical 138

Compound 1 and 2 
Takeda

Kinase inhibitor 
Non-ATP 
competitive 

FAK Y397 site N/A Preclinical 138

Y15 (Compound 14) 
Cure FAKtor 
Pharmaceuticals 

Kinase inhibitor
Non-ATP 
competitive

FAK Y397 site Colon Preclinical 133,146,147 

C4 
Cure FAKtor 
Pharmaceuticals

Scaffold 
inhibitor

FAK /VEGFR 
pathway

Pancreatic & 
breast Preclinical 148

R2 (Roslins) 
Cure FAKtor 
Pharmaceuticals

Scaffold 
inhibitor FAK & p53 Colon Preclinical 149

Y11 
Cure FAKtor 
Pharmaceuticals

Scaffold 
inhibitor FAK Y397 site Colon & Breast Preclinical 26

Table 1: Inhibitors of FAK kinase and scaffold function
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along with inhibitors of other signaling molecules has 
proven more effective than single drug alone [138]. 

The dual inhibition of FAK with a dominant 
negative form FAK-CD and EGFR inhibitor AG-1478 or 
Src inhibitor PP2 was much more effective as compared 
to FAK inhibition alone. This combination treatment 
resulted in increased cell detachment, inhibition of AKT/
ERK1/2 and Src, and increased apoptosis, as evidenced 
by increased cleaved caspase 3 and 8 in breast and colon 
cancer cells [139, 140]. 

TRAIL is known to induce apoptosis in cancer cells; 
however its clinical use has been limited due to rapid 
development of resistance [141]. Dao et al., using PANC-
1 cells (TRAIL resistant pancreatic cancer cells), showed 
that PH11, a novel Focal Adhesion Kinase (FAK) inhibitor 
in combination with TRAIL rapidly induced apoptosis. 
PH11 appeared to downregulate c-FLIP via inhibition 
of FAK and the PI3K/AKT pathways, thereby rendering 
PANC-1 cells susceptible to TRAIL induced apoptosis 
[142].

The combination of FAK inhibitor TAE-226 and 
docetaxel, an antimitotic drug, demonstrated a significant 
decrease in ovarian tumor growth, increased apoptosis 
in endothelial cells, reduced microvessel density and 
prolonged survival [143]. In another study it was shown 
that TAE-226 also increased radio-sensitivity of head and 
neck cancer cells [144]. The combination of FAK inhibitor 
PF-562271 with SU11248, an angiogenesis inhibitor, 
decreased tumor growth and inhibited angiogenesis of 
human hepatocellular carcinoma in rat xenograft model 
[145]. The combination of FAK inhibitor Y15 with Src 
inhibitor PP2 significantly decreased viability of colon 
cancer cells along with decrease in Y397 FAK and Y418 
Src phosphorylation [146]. Also recently it was shown that 
the combination of FAK inhibitor Y15 with gemcitabine 
was more effective in suppressing tumor growth in a 
pancreatic cancer mouse xenograft model than the use 
of a single drug alone [147]. The combination of another 
FAK inhibitor, C4 with doxorubicin was more effective 
in inhibiting breast cancer xenograft tumor growth and 
angiogenesis in mice [148]. In another study Y15 was used 
in combination with temozolomide and was shown to be 
very effective in blocking U87 glioblastoma xenograft 
tumor growth model [149]. Roslin (R2), a small molecule 
that disrupts the interaction of FAK with P53 significantly 
decreased tumor growth in colon cancer. It also sensitized 
HCT16 cells to doxorubicin and 5-fluorocil [150]. 

A recent development in cancer therapeutics further 
strengthens FAK as a viable cancer therapeutic target. 
In ovarian cancers resistant to taxane treatment, it was 
observed using reverse-protein arrays, that levels of YB-
1, a RNA binding protein, which regulates transcription, 
are elevated. AKT mediated phosphorylation of YB-1 
promotes resistance; however FAK inhibition prevents 
this, thereby making these cancers susceptible to taxane 

treatment [151]. The above studies further reinforce the 
importance of combination therapy, where FAK inhibitor 
sensitizes cancer cells to chemotherapy.

cONcLUsIONs AND FUtUrE PErsPEctIVEs

PDAC is a devastating disease with poor prognosis. 
Of the known signaling pathways that contribute to PDAC, 
FAK plays a vital role in signaling pathways mediated 
through integrins, RTKs, RAS, and TGF β Moreover, it 
is also likely to suppress p53 expression. We therefore 
speculate that therapeutic targeting of FAK in PDAC is 
therefore likely to succeed, particularly when this strategy 
is combined with other chemotherapeutic treatments. 
Signaling pathways downstream of activated FAK 
including paxillin will be important to study in the context 
of FAK inhibition and other therapeutics to identify novel 
biomarkers. In the future, emerging technologies may 
allow for direct therapeutic targeting of paxillin. 
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