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Abstract

Human-induced climate change is considered a conspicuous threat to biodiversity in the

21st century. Species’ response to climate change depends on their exposition, sensitivity

and ability to adapt to novel climates. Exposure to climate change is however uneven within

species’ range, so that some populations may be more at risk than others. Identifying the

regions most exposed to climate change is therefore a first and pivotal step on determining

species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mam-

mal local exposure to climate change across species’ ranges. We identified areas in the

Brazilian Amazon where mammals will be critically exposed to non-analogue climates in

the future with different variables predicted by 15 global circulation climate forecasts. We

also built a null model to assess the effectiveness of the Amazon protected areas in buffer-

ing the effects of climate change on mammals, using an innovative and more realistic

approach. We found that 85% of species are likely to be exposed to non-analogue climatic

conditions in more than 80% of their ranges by 2070. That percentage is even higher for

endemic mammals; almost all endemic species are predicted to be exposed in more than

80% of their range. Exposure patterns also varied with different climatic variables and

seem to be geographically structured. Western and northern Amazon species are more

likely to experience temperature anomalies while northeastern species will be more

affected by rainfall abnormality. We also observed an increase in the number of critically-

exposed species from 2050 to 2070. Overall, our results indicate that mammals might face

high exposure to climate change and that protected areas will probably not be efficient

enough to avert those impacts.

Introduction

Human-induced climate change increases species extinction risk and is considered a promi-
nent threat to biodiversity during and beyond the 21st century [1–3]. Novel (non-analogue)
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climate conditions are expected in almost a third (12–39%) of the global surface. Likewise, 10–
48% of Earth’s extent is projected to experience disappearing of current climate conditions [4].
As climate changes, many species might be exposed to climatic conditions likely to exceed their
physiological tolerance. That exposure will probably result in physiological stress [5], reduction
in fitness [6–8] or even extinction [9], especially if species are unable to track other suitable
environmental conditions or undergo some kind of in situ adaptation [10–13].

Tropical species are particularly at risk from climate change [14–16]. Despite the smaller
amount of change expected in the tropics when compared to temperate regions, tropical spe-
cies are currently living closer to their thermal safety margin [5,15–19]. Thus, even small
changes in climate might have deleterious consequences on species long-term survival because
high conservatismof upper thermal limits prevent species to develop adaptations to increased
temperature that will probably exceed their thermal tolerance [20,21]. Further, tropical species
are more likely to have to cope with climate change in situ, since shallower temperature gradi-
ents within tropical lowlands prevents species to disperse and track other suitable climatic con-
ditions [14]. The combination of increase of non-analogous climate conditions, higher
sensitivity, narrower climatic niches and geographic distributions, and higher species richness,
set the tune for tropical species being more vulnerable to climate change [4,16,19,22].

Exposure to climate change varies geographically within species’ ranges because projected
changes on temperature and precipitation are unevenly distributed around the globe (see Gar-
cia et al. [23]). Therefore, estimating how much and where populations are most at risk is para-
mount to understand the effects of climate change on species. It is also critical to evaluate if
these population in different parts of a species’ range are safe; and, therefore, we need to look at
Protected Areas (PAs). PAs play a central role in averting negative consequences of climate
change [24]. They are supposed to sustain different microclimate conditions in heterogeneous
habitats that are essential for species to avoid extreme climatic conditions [21]. Additionally,
PAs buffer species against other human-induced threats such as habitat loss and
fragmentation.

The Brazilian Amazon is a perfect study case to understand species vulnerability to climate
change for mainly two reasons. First, it is the largest intact tropical rainforest in the world cov-
ering around 5 million km2, which corresponds to 61% of the Brazilian territory. Second, the
Amazon has one of the most vast species composition on Earth harboring one out every five
plant species (40,000 vascular plants), several bird (1300) and mammal (399) species [25]. It
holds the highest number of mammals species among all Brazilians biomes; from 701 Brazilian
mammals, 399 occur the in Amazon [26]. Moreover, the conservation status of the Brazilian
Amazon is particularly interesting. Although it has been transformed in a mosaic of altered
environments due to population growth and economic activities [27], it also holds the largest
network of protected areas existing in Brazil, covering at least 23.5% of its territory [25].

Here, we quantified mammal local exposure to climate change across species’ range and
identify which areas in the Brazilian Amazon have the highest concentration of species with
critical exposure to different climatic variables. We also assessed the effectiveness of Amazon
network of PAs in buffering the impacts of climate change on species. To do so, we compared
the number of critically-exposedspecies found in each PA to the expected values of species
richness estimated by a null model that randomly allocated PAs within the Amazon while
maintaining their size, shape and orientation. Our null models overcomes some previous short-
comings (see Lemes et. al. [28] and Ferro et al. [29]) by explicitly incorporating the current dis-
tribution of the network of Amazon PAs in randomization process, making the null model
more realistic.
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Materials and Methods

Species’ data

Data on species distribution was obtained from range maps for terrestrial mammals on the
International Union for Conservationof Nature website (IUCN version 2015–2; www.
iucnredlist.org/technical-documents/spatial-data). We followed Paglia et al. [26] to account for
taxonomic differences and to check for species occurrences in the Amazon. A total of 376
mammal species inhabiting the Brazilian Amazon were analyzed in this work. Species were
considered endemic to the Amazon when occurrences in Brazil were limited to that biome,
according to Paglia et al. [26]. We overlapped each range map into an equal-area grid of 0.5 x
0.5 degrees of latitude/longitude (around 55 km at equator line; see comment on spatial resolu-
tion in the ‘Climatic data‘ section) containing 12,807 and 1,767 cells covering the full extent of
species’ range and the extent of the Brazilian Amazon, respectively. We assumed that a species
was present in a cell if any portion of its distribution map overlapped the respective cell.

Climatic data

We selected four bioclimatic variables to quantify mammal exposure to climate change: mean
annual temperature, temperature seasonality, maximum temperature of warmest month, and
precipitation seasonality. Those variables encompass multiple climate dimensions representing
general trends, variation (seasonality) and extremes (maximum) climatic relevant aspects that
affect, direct or indirectly, species distribution and survival (see S1 Table for further details
about climatic variable selection and collinearity among variables). Although other factors
might also affect species distribution, several studies indicate that climate is the main driver of
species distribution at large spatial scales [30–32].

We obtained bioclimatic variables relative to current (1950–2000) and future (2050 and
2070) periods from the WorldClim database (version 1.4; www.worldclim.org/version1). Cur-
rent variables were generated from interpolation of observeddata from weather stations [33].
We used future climate projections derived from 17 downscaledAtmosphere-Ocean General
Circulation Models from CMIP5 (AOGCMs; ACCESS1-0, BCC-CSM1-1, CCSM4, CNRM-
CM5, GFDL-CM3, GISS-E2-R,HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, INMCM4,
IPSL-CM5A-LR, MIROC-ESM-CHEM, MIROC-ESM,MIROC5,MPI-ESM-LR,MRI-
CGCM3, NorESM1-M) for one high-emission greenhouse gases scenario (Representative Con-
centration Pathways, RCPs 8.5; IPCC 2013) to quantify species local exposure to climate
change. Some climate models may have low accuracy for the Amazon. In order to address this
issue, we removed the models (GFDL-CM3 and INMCM4) that exhibited the largest variation
in relation to predicted average values of climate variables. By excluding models with extremely
divergent predictions, we avoided substantial bias in the analysis. The most extreme green-
house gas emission scenario RCP8.5 was chosen because it encompasses all set of greenhouse
gases emission scenarios used in the IPCC’s fifth Assessment Report [34]. Also, the chosen sce-
nario has predictions most likely to be supported in the future, because trends on greenhouse
emission since 2000 have been closer to those predicted by RCP8.5 than any other hindcast
[35,36].

Current and future bioclimatic variables were obtained at the resolution of 10 arc-minutes
(~ 0.16° of latitude/longitude) and rescaled to our grid resolution using mean of values within
0.5° cell (see Hijmans et al. [33]). Weather stations are sparsely distributed on fairly populated
regions, such as the Brazilian Amazon. The WorldClim climate data are therefore interpolated
from probably insufficient records, which enhances uncertainty on expected values. Higher
resolution climatic data (0.1° cell, for example) do not necessarily imply on a higher data
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quality and might be pure statistical artefacts. In addition, the 0.5° resolution was chosen to
counterbalance the inaccuracies associated with applying high resolution climatic data to a rel-
atively coarse IUCN species distribution maps [37]. Calculations were done in R version 3.2.2
[38] mainly using the LetsR [39] and Raster packages and their dependencies. All figures pre-
sented in this paper are original and were created in R and ArcGIS 10.1 (ESRI, Redlands, CA,
USA).

Estimates of species local exposure to climate change

To identify the most exposed cells to climate change across species geographic range, we fol-
lowed three steps. First, we used current climate conditions (1950–2000) within the entire spe-
cies’ range to identify the amplitude (maximum and minimum limits) of each climatic variable
to which species are currently exposedwithin its range. This procedure is useful to identify
areas within species’ ranges where future climate conditions will probably exceed current cli-
matic variability. In addition, IUCN distribution maps are built upon minimum convex poly-
gons of species’ occurrence records. Therefore, using the extreme climate values of
environmental conditions associated with species’ records allows us to avoid uncertainties
related to dataset source, because occurrence records and IUCN range maps would probably
produce similar results.

Second, for each grid cell and each climatic variable we calculated the standard deviation of
projections derived from the 15 AOGCMs. The mean of each cell-based projection minus their
corresponding standard deviation was considered the value of each climatic variable in the
future (2050 and 2070). In doing so, we incorporated the variation from different future cli-
mate projections by assuming the value that a particular climatic variable may achieve in future
as the mean minus one standard deviation. Therefore, our approach is extreme because we
selected the highest emission greenhouse gas scenario, but conservative for assuming the lower
values of climate variables.

Third, we identified cells within species’ range in which future climate conditions may
exceed the current climate conditions experiencedby the species. Species for which future cli-
mate conditions exceed their current tolerances in more than 80% of their ranges were desig-
nated as “critically-exposed”. We chose this percentage because significant reductions (� 80%)
of a species range is one criteria used by IUCN to qualify a species as critically endangered
(IUCN 2016). Endemic species were also analyzed separately, to assess their exposure in rela-
tion to other groups. Finally, we mapped areas with highest concentration of critically-exposed
species to each climatic variable separately and thereafter, we combine these maps to build a
“combined” exposure map.

Data on protected areas

We obtained federal and state spatial data on PAs from the Chico Mendes Institute for Biodi-
versity Conservation (ICMBio, www.icmbio.gov.br) and the Brazilian Ministry of Environment
(MMA; www.mma.gov.br). We overlapped the polygons of PAs to our 0.5 x 0.5° grid. Not all
overlapping cells were considered “protected”; only those for which PAs polygons overlapping
regions covered more than 30% of the surface of the cell. We followed this procedure to keep
the real proportion of the Brazilian Amazon territory covered by PAs. In this study, the net-
work of the Brazilian Amazon PAs was therefore composed by 79 federal and 53 state PAs,
covering approximately 24% of the biome (S1 Fig). Consequently, the proportion of grid cells
assigned as “protected” (24%) is similar to the proportion of Amazon territory covered by fed-
eral and state PAs (23.5%) [25].
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Effectiveness of Protected Areas–Null model

We assessed the effectiveness of PAs by comparing the number of critically-exposedspecies
inside each PA to the estimated number of species predicted that should be found inside the
PA according to a null model. That null model randomly allocated PAs within the Amazon
while retaining their size, shape and orientation (see Lemes et. al. [28] and Ferro et al. [29]).
We restricted the possibilities of randomly allocated PAs to sites (cells) not covered by any PA
already established. Hence, when a PA was randomly allocated to a site already covered by a
PA, a new randomization run were done. In doing so, we took into account the currently estab-
lished network of Amazon PAs in the randomization process. That incorporation of a realistic
baseline on the randomization process has never been attempted before, to our knowledge, but
adds substantial light on the predicted outcomes on PAs effectiveness in face of climate change.
We used the equation below to compare the observed species richness in each PA (OR) against
the species richness (RR) obtained by 1000 (n) randomization runs. A given PA was considered
effectivewhen OR� RR at least 95% of runs, or p� 0.05 (Eq 1)

p ¼
Xn

i¼1

ðRRi � ORÞ þ 1

nþ 1
ð1Þ

Results

Our results indicated that 46% (year 2050) and 85% (year 2070) of all species were exposed to
novel climate conditions in more than 80% of their ranges, although different climatic variables
revealed contrasting patterns of exposure (Table 1). Overall, we found that the majority of criti-
cally-exposed species to temperature anomalies (interannual average, variability and extremes)
were concentrated in western and northern Amazon (Fig 1). Critically-exposedspecies to rain-
fall anomalies were predominately concentrated in the northeastern portion of the biome (Fig
1). Few species were exposed to precipitation anomalies. However, climate variability within
species’ range (maximum and minimum values) was higher for precipitation compared to tem-
perature, which might have affected differential exposure (S2 Fig). Most of the critically-
exposed species were found in low-uncertainty areas (Fig 1). Given that climatic conditions
will continue to change from 2050 to 2070, our results showed that the number of critically-
exposed to climate change also tend to increase (Figs 1 and 2, Table 1).

We found that 99% (54 species) of the endemic mammals analyzed in this study belonging
to mammalian orders Primates (38), Rodentia (15) and Didelphimorphia (1) might be criti-
cally-exposed to climate change in 2050 (Fig 2, S2 Table). Further, some endemic and non-

Table 1. Current and future climate conditions (average and standard deviation) in Brazilian Amazon. The number of critically-exposed mammals

(species with more than 80% of their range exposed) exposed to different climatic variables separately and taken together are showed. These results were

quantified using an average of 15 General Circulation Models for a high-emission greenhouse gases scenario (RCP 8.5) for 2050 and 2070.

Critical Average Exposure

Temperature (˚C)

Extreme Temperature

Anomaly (CV)

Monthly Extreme

Temperature (˚C)

Extreme Rainfall

Anomaly (mm)

All variables

combined

Present 25.76 ± 1.02 57.58 ± 30.07 32.84 ± 1.19 58.41 ± 17.66 -

Future (2050) 28.60 ± 0.97 87.63 ± 27.6 36.60 ± 1.32 63.79 ± 18.40 -

Future (2070) 29.95 ± 0.98 103.64 ± 27.6 38.35 ± 1.50 65.81 ± 18.8 -

Number of species

exposed (2050)

141 (37%) 17 (4%) 96 (25%) 11 (3%) 173 (46%)

Number of species

exposed (2070)

255 (68%) 32 (8%) 166 (44%) 12 (3%) 321 (85%)

doi:10.1371/journal.pone.0165073.t001
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endemic mammals might be critically-exposed to different magnitude of increasing tempera-
tures, ranging from 2.2°C to 3.5°C (Fig 3).

The majority of critically-exposedspecies were barely represented in PAs (S3 Table).
Although the Amazon federal and state PAs cover around 23.5% of the Amazon [25], only 24–
28% of PAs are likely to harbor more species than expected by our null model (S1 Fig). Further,

Fig 1. Areas in the Brazilian Amazon with highest number of critically-exposed species in relation to four climatic

variables separately and taken together and uncertainty maps (standard deviation) from 15 climate models for the

Brazilian Amazon. Species were considered “critically-exposed” when future climate exceeds the current climate variability for

more than 80% of their range. Colors close to red indicate localities with higher number of species. These results are based on a

high-emission greenhouse gases scenario (RCP8.5) for 2050 and 2070. All shapefiles are from the Brazilian Ministry of the

Environment.

doi:10.1371/journal.pone.0165073.g001

Fig 2. Number of critically-exposed mammals in the Brazilian Amazon exposed to four climatic variables taken

together. Species were considered “critically-exposed” when future climate exceeds the current climate variability for

more than 80% of their range. These results are based on a high-emission greenhouse gases scenario (RCP8.5) for 2050

and 2070. Climatic variables were mean annual temperature, temperature seasonality, maximum temperature of warmest

month, and precipitation seasonality.

doi:10.1371/journal.pone.0165073.g002
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the number of PAs considered effective decreased from 37 to 32 from 2050 to 2070, respec-
tively (S3 Table).

Discussion

In this paper, we quantified mammal local exposure to climate change and identified areas in
the Brazilian Amazon with the highest concentrations of critically-exposedspecies. Further, we
highlighted that these species are barely represented by the Amazon network of Protected
Areas. Exposure was not equal along the species’ range, implying that some populations will be
more at risk than others. On average, 85% of the Amazon mammals will be exposed in more
than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost
all endemic species are predicted to be exposed in more than 80% of their range. The ability to
identify populations at higher risk is paramount to implement proactive on-the-ground con-
servation actions, aiming to increase population resilience against negative effects of climate
change [23,40].

Fig 3. Magnitude of temperature exposure of critically-exposure mammals in the Brazilian Amazon. Areas with highest

concentrations of species exposed to low and large magnitude of temperature are shown in blue and red, respectively. Areas with

lowest concentration of species exposed to largest magnitude of temperature are shown in yellow. The Amazonian “arc of

deforestation” is indicated in gray (dashed line). These results are based on an ensemble of 15 climate models for a high-emission

greenhouse gases scenario (RCP 8.5) for 2070. All shapefiles are from the Brazilian Ministry of the Environment.

doi:10.1371/journal.pone.0165073.g003
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However, exposure itself does not mean vulnerability. Although our results highlight a gen-
eral pattern of local climate exposure in the Amazon, the overall picture of species vulnerability
depends ultimately on their sensibility and adaptability to new climate conditions [4,41,42].
Studies have pointed out that some species’ ecological and physiological traits are more related
to vulnerability in endotherms [41,43]. For example, larger, exclusively diurnal or nocturne
mammals are more sensitive to climate change than smaller mammals and those with flexible
activities periods [5,44]. Despite these findings, all else being equal, populations in places
undergoing larger climatic changes are more likely to be negatively affected [23,45]. Physiol-
ogy, behavior and morphology of individuals are expected to be adversely affected by reduc-
tions in climatic suitability, ultimately interfering on population dynamics [23,46]. Although
exposure represents only one distal component that affect species vulnerability, it constitutes a
first-order assessment to identify where species are more potentially vulnerable to climate
change, particularly when data on species sensitivity and adaptive capacity are scarce [47]. Sub-
sequently, this information can be used to complement species extinction risk assessments
[23].

Species living in tropical regions are particularly vulnerable to climate change [15,16]. Trop-
ical species tend to live closer to their maximum critical temperature (maximum temperatures
that a species can withstand without additional energy expenditure to keep body temperature
constant; [21]). Thus, even the slighter amount of climate change projected for the tropics
might exceed species thermal tolerance. It follows that the additional amount of energy expen-
diture necessary to maintain homeostasis reduces energy available for other functions, such as
reproduction. That decreased available energymay also lead to fitness reduction, loss of genetic
variation at population level and possibly local extinction [9,48].

Among the most exposed endemic species, Primates will likely be the mammalian group
most vulnerable to climate change. Besides living in areas where greater climate change is
expected, Primates in the Amazon are climatic and geographically restricted and thereby
expected to be more sensitive to climate change [7,17,49]. In addition, these species will proba-
bly be unable to keep pace with climate change even at relatively low magnitude of climate
change due to high velocity of climate change expected in the tropics and poor dispersal abili-
ties [50,51]. As a consequence of that high expected vulnerability, some conservation actions,
such as assisted migration and ex situ conservation, have been proposed as potential manage-
ment strategies for climate change adaptation [51].

Protected Areas are the keystone of current conservation strategies and play a vital role in
buffering species against extreme exposure to climate change. PAs may be the only guarantee
that species’ habitat will remaining in the future, since Amazon have been more and more frag-
mented [27]. Protecting species habitat, even when it may be highly exposed to climate
changes, is fundamental to increase species’ resilience against climate change. PA’s support dif-
ferent microhabitats conditions and resources that are essential for species avoiding be high
exposure, for example, behaviorally avoid overheating by moving betweenmicrohabitats [21].
Therefore, protecting species’ habitat in PA’s is fundamental to increase species resilience
against climate change at the same time that avoid other synergetic threats as deforestation. In
addition, our findings strengthen the need to assess the PAs effectiveness using dynamic
approaches, since climate is predicted to continuously change from 2050 to 2070. Those
expected changes impose new challenges for establishment of PAs or adaptation of current
PAs network.

We also found that the magnitude of species exposure to climate change was uneven across
the Brazilian Amazon territory. Species inhabiting south-western regions are likely to experi-
ence high magnitude of climate change in the future. Although the number of critically-
exposed species may be higher at other regions, Amazon south-western species are also
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threatened by massive deforestation rates. That region is popularly known as the “Arc of
Deforestation” [52] for its currently high rates of forest clearing. Climate change potentially
interacts with deforestation and synergistic effects on biodiversity may be higher than their iso-
lates impacts [53]. Particularly in the Amazon, deforestation and selective logging are known
to create local and regional climate anomalies, for creating fire-prone warmer and drier micro-
habitats. [27,54]. Large amounts of ashes and smoke released by burnings also feeds back fire
susceptibility and alters water regimes [27,54]. Species inhabiting the Arch of Deforestation
may therefore be exposed to the synergistic effects of climate change and deforestation and be
more vulnerable than would be expected by the individual effects of those stressors.

In summary, in this work we highlight a general pattern of areas in which species with the
potential to be critically-exposed to effects of climate change are concentrated. In addition, we
showed that the current network of PAs has small effectiveness to protect these species. Such
an examination provides the first step to a more comprehensive assessment of species vulnera-
bility, and might guide conservation decisions on where to take place on-the-ground actions
aiming at minimizing negative effects of climate change on species.

Supporting Information

S1 Fig. Spatial distribution of effective and non-effective protected areas (PAs) in the Bra-
zilian Amazon. Effective PAs are those supposed to buffer species against effects of climate
change as assessed by a null model that allocated each PA within the Amazon keeping its size,
shape and orientation. These results are based on a combination of four climatic variables and
a high-emission greenhouse gases scenario (RCP8.5) for 2070. See text for further details. All
shapefiles are from the Brazilian Ministry of the Environment.
(TIF)

S2 Fig. Current (1950–2000) climatic variability (maximum andminimum) present within
all extent of 376 Amazonmammal species’ range (range not exclusively within Amazon
extent).Maximum and minimum values for each climatic variable within species’ range are
shown in red and green, respectively.
(TIF)

S1 Table. Factor Analysis showing the collinearity among 19 bioclimatic variables.Values
in bold indicate variables used to quantify mammal exposure to climate change in the Brazilian
Amazon. The minus sign (-) indicates very small values not shown
(PDF)

S2 Table. The 376 mammal species inhabiting the BrazilianAmazon analyzed in this
study. A species was considered critically-exposedwhen more than 80% of its range was
exposed to four climatic variables taken together. Endemic species are signed with an asterisk
(�).
(PDF)

S3 Table. Effectivenessof the Brazilian Amazon Protected Areas (PAs) in representing crit-
ically-exposedmammal assessedby comparing species richness of each PA against richness
estimated by a null model. Federal and state PAs are subdivided into two categories: Sustain-
able Use (SU) and Full Protection (FP). PAs assigned with (�) were considered as effective. See
methods for further details.
(PDF)
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