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Globular proteins are held together by interacting networks of amino acid residues. A number of different struc-
tural and computational methods have been developed to interrogate these amino acid networks. In this review,
we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer
simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such
methods provide into protein function. This information can be leveraged towards the design of new allosteric
drugs, and the engineering of new protein function and protein regulation strategies.
© 2016 O'Rourke et al. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
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1. Introduction

It has long been understood that interactions at the local level (e.g. H-
bonding, steric interactions) dictate the formation of protein structural el-
ements, such as α-helices and β-sheets, and that local interactions also
dictate the packing of these various structural elements to form three-
dimensional protein structure (e.g. ref. [1,2]). There is also now a better
appreciation for the local interactions that are important for loop struc-
ture and dynamics (e.g. ref. [3]). With these energetic considerations in
mind, globular proteins can be viewed as being held together by a series
of local interactions through networks of interacting amino acid residues.
These amino acid networks (Fig. 1) have also been termed ‘residue inter-
action networks’ [4], ‘protein structure networks’ [5], ‘contact networks’
[6], ‘pathways’ [7], ‘circuits’ [8], ‘wiring diagrams’ [9], ‘protein sectors’
[10] and so on. Intrinsic to this viewpoint is the idea that some interac-
tions and amino acid residues are more important than others, such
that the amino acid network generally represents a subset of all potential
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interactions and residues within a protein. In some cases, there may be
multiple amino acid networks identified (e.g. ref. [11]), where local
changes primarily affect the interactions between the amino acid residues
involved in a particular network.

A variety of diverse structural and computational methods have been
developed to delineate amino acid networks in proteins, and these
methods have provided tremendous insights into protein function. In
this Review, we highlight some of the different computational and exper-
imental methods that have been used to delineate amino acid networks
in proteins (Table 1), and indicate the insight that these approaches
have given regarding protein function. We note that other recent review
articles have been written on many of these methods, including graph
theory [6], molecular dynamics (MD) simulations [12], elastic network
models (ENM [13]), NMRmethods to study allostery and amino acid net-
works [14] and bioinformatics methods to identify co-evolving residues
[15], and as such, we do not treat these methods comprehensively. We
also recognize that the length of this review prevents us from being ex-
haustive with our examples.

2. Network approaches to understanding protein function

In biology, network interactions have been analyzed from the spe-
cies to the molecular level [16–18]. The elegance of this mathematical
theory is to simplify a complex problem into a set of nodes and edges,
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Fig. 1. Proteins can be viewed as interacting networks of amino acid residues. A. Partial
network in the alpha subunit of tryptophan synthase (PDB 1K3U) identified by NMR
methods [93]. In the network representation, the nodes are the amino acid residues and
represented by circles, and the edges are interactions between the residues and are
indicated by lines joining the circles. B. Concepts related to network theory, including
hub residues, assortativity and clustering. C. Networks can follow a hierarchy of
connectivities, ranging from smaller cliques to larger clusters. Panels B and C were
adapted from ref. [38].
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together known as a ‘graph’ [19–21]. Graphical approaches have provid-
ed intuitive pictures and useful insights for analyzingmany complex bi-
ological problems, including enzyme-catalyzed reactions [22–24],
inhibition of HIV-1 reverse transcriptase [25], inhibition kinetics of
processive nucleic acid polymerases and nucleases [26], protein folding
kinetics [27] and drug metabolism systems [28]. In the context of pro-
tein structure, the amino acid side-chains, orwhole amino acid residues,
aremost commonly treated as the nodes. An edge represents some type
of interaction between two nodes. Edges can have a range of definitions
such as the calculated energy of interaction, evolutionary conservation,
or surface overlap [29–32]. An important feature of edges is the
weighting, which may allocate different strengths to different types of
interactions and/or provide a particular cut-off distance for residues in
close sequence space [33]. There are many algorithms available to
construct and analyze amino acid networks using graph theory,
including CSU software [34], xPyder [35], PSN-Ensemble [36] and
NetworkAnalyzer [37].

Other parameters of the protein graphmay be used to further analyze
the network, and be related to different structural and functional proper-
ties of the protein. For example, a ‘hubnode’has a higher number of edges
connected to it than other nodes [38] (Fig. 1). Residues corresponding to
hub nodes may be key factors for maintaining structure and determining
function. For example, a large experimental set of T4 lysozyme protein
variants was studied, where some amino acid substitutions had little to
no effect on the function of the enzyme and some substitutions
inactivated the protein [39]. All of the deleterious substitutions were
later identified as central hub nodes [40].
Connectivity is an important feature of a protein graph. The clustering
coefficient, Cv, provides a measure of connectivity through Eq. (1):

Cv ¼ 2ev
kv kv−1ð Þ ð1Þ

where kv is the number of neighbors to node v, and ev is the number of
connected pairs among v neighbors. Residues that have a high connec-
tivity are typically linked to separate clusters or communities of resi-
dues [38]. The assortativity matrix is another parameter that helps
determine the impact a node has on the network (Fig. 1). This matrix
is a measure of the number of connections between nodes. A more ‘re-
silient’ network [41] would have a higher assortativity, providingmulti-
ple paths to connect distant regions of the protein.

A group of nodes can be classified into different types according to
how a signal might be transmitted through them (Fig. 1). A clique (or
k-clique) is a complete subgraph, meaning that it is a set of nodes and
edges that are connected to every other node in the subgraph [38]. Sim-
ilar to cliques are communities, which represent a set of connected
cliques [38]. Inspection of the cliques and communities in a given
protein might be used to track small ligand-induced conformational
changes and signal transmission, which can be indicative of the interac-
tion strength of the effectormolecule and the quality of the network as a
whole. For example, differences in the cliques and communities be-
tween the apo and ligand bound states of methionyl t-RNA synthetase
were used to understand inter-domain signaling [42]. The binding of
ATP induces the formation of new cliques that allow for communication
between distal areas of the enzyme.

A cluster has more relaxed requirements than a clique or a commu-
nity (Fig. 1). In a cluster, the nodes have a higher connectivity with each
other than with nodes outside the group, but not all interact pairwise
[38]. The largest cluster may be important in defining the core of the
protein and can involve up to 80% of the nodes in the entire network.
For example, identification of hydrophobic subclusters was used to un-
derstand long-range interactions important for stabilizing the tertiary
fold of proteins [43]. In this study, it was found that the clusters were
larger in thermophilic proteins, which may lead to higher temperature
stability.

Measures of residue centrality, including closeness (Cn) and be-
tweenness, are often used to predict residues important for the trans-
mission of information across a protein structure. The closeness
centrality [44] is defined according to Eq. (2):

Cn ¼ j−1X
i≠n

sd i;nð Þ ð2Þ

where sd(i,n) is the shortest path between nodes i and n, and j is the
number of nodes in the network. The betweenness centrality B is
determined as the fraction of shortest paths that pass through a node
[45]. Residues with high Cn or B have been shown to play critical roles
in protein function [40,46,47]. Other measures of residue centrality
have been proposed (e.g. ref. [48,49] and references therein). Recent
examples using these types of approaches include studies analyzing
allosteric pathways in tRNA synthetases [50], G-protein coupled
receptors [51], Hsp90 [52] and cyclophilin A [53].

3. More sophisticated structure-based approaches to network
analysis

Conformational fluctuations in proteins are important in mediating
their biological functions. For example, E. coli dihydrofolate reductase
(DHFR) must pass through multiple conformations as it proceeds
through its catalytic cycle [54]. Smaller fluctuations, such as those in
side chains, may be evident in X-ray diffraction data [55], though they
may be ignored during the refinement process when producing a struc-
tural model. The qFit algorithm was developed to fit these alternative



Table 1
Brief summary of the computational and biophysical methods to analyze amino acid networks in proteins addressed in this review.

Brief description Comments

Graph theory Formulized math-based approach to identify residue
connectivities and potential allosteric paths in proteins.

Often used with static protein structures, which may not reveal the full range of
potential contacts in a dynamic protein. Combining graph theory and dynamic
information (e.g. through MD simulations) is a powerful approach.

CONTACT Identify alternative side-chain conformations and their contacts based
on high quality X-ray diffraction data and electron density maps.

High quality diffraction data is generally required, especially at non-cryogenic
temperatures. This method can be combined with principles from graph theory.

MD simulations and
elastic network
approaches

Computer simulations and calculations of internal
protein motion over a wide range of timescales.

These computer simulations offer trajectories of motions, often missing in
biophysical approaches that study protein structural dynamics. These methods are
often combined with principles from graph theory. Non-equilibrium approaches
offer additional ways to identify potential allosteric pathways. These approaches
become more convincing with experimental validation.

Analysis of amino acid
perturbations using
NMR

Perturbations of protein structure/dynamic (e.g. through amino
acid substitutions) can be followed on an atom-specific basis to
reveal
potential allosteric pathways.

NMR offers great experimental methods to analyze internal motions of proteins over a
wide range of timescales at atomic resolution. Thesemethods are often used to validate
MD simulations, and/or extend analysis to longer timescales (i.e. Nmicroseconds).
Solution-state NMRmay be limited to smaller proteins (i.e. b100 kDa).

Amino acid sequence
based analysis of
networks

In an amino acid sequence alignment of hundreds to thousands of
similar proteins, identify residue positions that covary, implying
coevolution.

An appropriate number of protein sequences and an appropriate level of sequence
diversity are required. The information may be difficult to understand in the
absence of a structural/dynamic rationale.
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side-chain conformations into the electron density derived fromdiffrac-
tion data [56]. The qFit algorithm is especially useful for analyzing high
quality diffraction data that was collected at ambient temperature,
wheremore substantial proteinmotionswithin the crystalwould be ex-
pected [57]. These alternate side-chain conformations may lead to dif-
ferent interactions, providing additional information in crafting a
network.

The CONTACT algorithmhas been developed to analyze potential ef-
fects of alternative side-chain conformations [58]. For the networks
identified by CONTACT, nodes are defined as the side-chain and edges
are defined as the steric clash of van der Waals radii between residues
with alternate conformations. In the CONTACT algorithm, once it has
been determined that there is a steric clash present between residues i
and j, the algorithm switches residue j to one of its alternative confor-
mations (Fig. 2). If this change results in another clash with some resi-
due k then the algorithm moves k to a different conformation. This
process repeats until all steric clashes are relieved, thereby identifying
a particular pathway. CONTACT is capable of identifying a variety of dif-
ferent paths in a single network, so the edges areweighted by the num-
ber of pathways in which residues i and j are predicted to clash. This
method was used to generate networks for cyclophilin A [59] and E.
coli DHFR [58]; amino acid substitutions at CONTACT-determined net-
work positions led to dramatic decreases in enzyme activity in both of
these systems.
4. The importance of internal motions to amino acid networks

The network approaches described above primarily focus on a limited
set of protein conformations. It is now recognized that rarely visited con-
formations can have important effects on protein function [60]. Such
lowly populated conformations would have different sets of noncovalent
interactions, and thus, potentially different amino acid networks. Com-
puter simulations offer a means to predict and analyze these different
amino acid networks. Such simulations can be categorized intomolecular
dynamics (MD) simulations and more coarse-grained models.
Fig. 2. Alternate side-chain conformations using the CONTACT algorithm can be used to generat
clash in the van derWaals radii with the Tyr sidechain. This clash is alleviated by switching Tyr t
conformation. This process is repeated until there are no more steric clashes. This figure was a
4.1. MD simulations

It has been recognized for decades that protein structure is dynamic
[61,62]. Low frequency, collective motions have been shown to exist in
proteins and nucleic acids [63–65], and these motions can be important
for a variety of protein functions, including switching between active
and inactive states [66], cooperative effects [67], allosteric transitions
[68] and assembly of microtubules [69]. In view of these important
properties of proteins, it is imperative to consider not only static
structural information but also the internal motions of proteins; MD
simulations offer one way to do this.

MD simulations can provide trajectories of atoms or residues within
a protein. One common approach to analyze these trajectories is to
quantify correlated or anti-correlated motions using the dynamic
cross-correlation map [70]; such motions may provide information
about more concerted motions important for protein function. For
example, Moustafa et al. [71] showed that the G64S substitution in the
poliovirus RNA-dependent RNA polymerase leads to a higher fidelity
polymerase [72], perhaps by changing (anti)correlated motions in
conserved regions of the enzyme.

Non-equilibrium perturbation methods compatible with MD have
also provided insight into how signals might be propagated through a
protein. These methods include anisotropic thermal diffusion (ATD)
[73], pump-probe molecular dynamics (PPMD) [74], and rigid residue
scan (RRS) [75]. ATD is a method that examines the transfer of thermal
energy through non-bonding interactions, primarily through van der
Waals interactions between sidechains, by cooling the system to 10 K
and applying thermal energy to a residue known to be important for
function [73,75]. PPMD reveals networks by applying an oscillatingmo-
tion of varying frequency to an α-carbon, or more atoms at a greater
computational cost, and identifying residues that couple with this per-
turbation over a nanosecond timescale [74]. An advantage of the
PPMD method is that it can be applied to any standard MD simulation
and is compatible with most force fields [74]. RRS creates networks by
treating specific residues as rigid bodies, and analyzes how this treat-
ment affects the conformational properties of the protein [75].
e a network. For example, when the Phe sidechain transitions to conformation B there is a
o conformation B, which induces another clash which is then relieved by changing the Trp
dapted from Ref. [58].



Fig. 3. Nonequilibrium perturbations methods have been used to study amino acid
networks in the PDZ domain. A. Anisotropic thermal diffusion simulations start by
cooling the system to 10 K, followed by the application of a 300 K heat bath to a residue
of interest. In this case, His72, an active site residue, was heated and thermal energy was
diffused through van der Waals interactions Ile27, Phe25, Ile41, Ala47, and Leu53 [73] B.
Pump probe molecular dynamics consist of the application of oscillating motions at
varying frequencies and directions to an atom or set of atoms and observing the transfer
of that motion to other residues. The oscillations at His72 transferred to Ala76, Lys80,
and Phe25. Different oscillation frequencies and directions tend to show coupling to
different residues, and the above representation does not represent all coupling
interactions observed [74]. C. Rigid residue scan was used to systemically apply rigid
body constraints to each residue in the PDZ domain to simulate point mutations [75]. By
utilizing heat maps to look at the difference between the ligand-bound and unbound
state of the domain during a simulation with SHAPE constraints on each residue, some
residues were identified as switches (blue, including residues Ile8, Ala47, and Tyr97)
while other important residues were designated as wires (red, residues Gly29, Ile36,
His72, Ala90, and Phe100) depending on the degree to which they effect the transition
between the bound and unbound state. Panels A, B and C were adapted from references
[73–75], using PDB 1BE9.
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These methods were applied to understanding the allosteric transi-
tion of the PDZ3 protein [73–75] (Fig. 3). RRS identified a network of
nine residues that was deemed important for energy propagation
through the PDZ3 domain [75]. Switch residues were identified as
those that when rigidified in the simulation disrupted the conforma-
tional change, whereas residues that had smaller effects on the confor-
mational change were designated as wires [75] (Fig. 3).

4.2. Elastic network models

Course-grain simulations often employ normal mode analysis
(NMA), which simulates the harmonic motions of a system.When per-
formed on proteins, the lower frequency modes provide information
about potential concerted, global motions. Early NMA was limited to
smaller systems due to the computational cost of simulating every
interaction between every atom. More modern applications of NMA
typically take advantage of a coarse graining technique known as the
elastic network model (ENM), which has allowed for the analysis of
large macromolecular complexes such as the GroEL tetradecamer
[76–78]. ENM simulations have such low hardware requirements com-
pared to MD simulations that they can be simulated using web-based
tools such as ANM 2.0 [79] (e.g. see Fig. 4). Modifications and improve-
ments to ENM include theGaussian networkmodel (GNM) [80], the an-
isotropic network method (ANM) [81], the robust elastic network
model (RENM) and the heterogeneous anisotropic elastic network
model (HANM) [82,83].
Fig. 4. The elastic network model simulates global harmonic motions by simplifying
biomolecules to a network of interacting nodes. A. In these types of models, Ri and Rj are
interacting residues, and their interactions create a separation vector that is represented
by Rij. The separation vector can be essentially treated as a ‘spring’ with a given spring
constant, depending on the interaction energy. The yeast chorismate mutase
homodimer (PDB 1CSM) with trypophan bound is shown as: B. a ribbon diagram, and C.
a network representation with the help of ANM 2.0, a web-based tool for ENM normal
mode simulations [79]. The network represention shown is ‘mode 16’, with the arrows
indicating the direction of motion. ENM typically treats each alpha carbon as a node in a
network of springs and nodes. The springs represent interactions within a set cutoff
distance.
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As an example, NMA was applied for an ENM-based simulation of
the maltose transporter MalFGK2 [84]. Three low-frequency modes
that contribute to channel-gating motions were analyzed, and residues
involved in these low-frequency modes were perturbed by changing
the spring constant between the residue and surrounding residues.
The perturbations that created the greatest change in normal mode fre-
quencies were mapped onto the protein, and the identified residues
formed a network that was found to connect the channel gate on the
periplasmic side of the complex, the cytoplasmic side, and the interac-
tion points of the subunits of the complex [11].

A similar perturbation method, fluctuation perturbation analysis
(FPA), was applied to a variety of proteins by Zheng et al. [85]. For exam-
ple, FPA was performed to predict key residues involved in the confor-
mational change of myosin during its power stroke, which is a
necessary part ofmuscle contraction. The residues formed a 3D network
connecting the active site to the force-generating component and the
actin binding cleft [85].

5. NMR perturbation methods

NMR studies provide insight into the conformational dynamics of
proteins over awide-range of timescales [86]. Oneway to gain informa-
tion about potential networks is to perturb the protein in someway (e.g.
ligand binding, amino acid substitutions) and analyze correlated chang-
es to NMR parameters. For example, Clarkson et al. generated a series of
Val to Ala substitutions in eglin c and mapped dynamic responses by
NMR experiments across different timescales to identify networks that
propagate primarily through structural or dynamic changes [87]. The
same research group performed a similar analysis with the PDZ domain
[88], whose results were consistent with the MD methods discussed
above.

Correlations between chemical shift changes induced by a series of
perturbations can also help define a network [31,89]. Perturbations of
the protein conformational equilibrium through ligand binding or
amino acid substitutions can result in chemical shift changes both
local and remote from the site(s) of perturbation. Residues with covary-
ing chemical shift changes across a series of perturbations are proposed
to be involved in the same conformational change and thus belong to
the same amino acid network [31]. The original method was developed
Fig. 5. Amino acid networks in the alpha subunit of E. coli tryptophan synthase (αTS) are
dependent onwhat is bound to the enzyme. A. Conversion of indole-3-glycerol phosphate
(IGP) to glyceraldehyde-3-phosphate (G3P) and indole catalyzed byαTS, highlighting the
roles of Glu49 and Asp60 in the chemical mechanism. B. The NMR method CHESCA [31]
was used to delineate amino acid networks in both the ‘resting state’ in the absence of
ligands (left) and ‘working state’ during active turnover [93]. In both cases, two clusters,
represented by red and blue spheres, were identified. Intriguingly, the catalytic residue
Glu49 changes clusters from the resting to working states, implying that these clusters
might be important in regulating the catalytic activity of αTS. The protein structure is
derived from PDB 1K3U.
by Melacini and colleagues [31], and was termed CHESCA (CHEmical
Shift CovarianceAnalysis). Melacini and coworkers used their algorithm
to define two different amino acid networks in the protein EPAC; one of
these networks was associated with ligand binding and the other
network was thought to be important for allosteric signaling [31].
Other groups have developed similar algorithms (e.g. Ref. [90,91]).

In our own work, we have used a method similar to CHESCA to de-
fine amino acid networks in the alpha subunit of tryptophan synthase
[92,93] (Fig. 5). In our approach, we used a series of amino acid substi-
tutions as our source of perturbations, which allowed us to interrogate
amino acid networks in the ligand-free protein (i.e. the ‘resting’ state)
and when the enzyme was actively turning over (i.e. the ‘working’
state) [93]. Remarkably, the amino acid networks were different
between the resting and working states [93]. Of special importance
was the behavior of the catalytically-important residue Glu49, which
was allocated to different clusters in the resting versus working states
[93]. Previous work had also shown that Glu49 undergoes an important
conformational change upon binding substrate [94]; the change in
network interactions may help to re-position Glu49 for catalysis.

6. Bioinformatic approaches to delineating amino acid networks

Since the amino acid networks are functionally-important then they
may also be evolutionarily conserved. Insight into amino acid networks
might then be provided by analysis of multiple sequence alignments
(MSA) in the absence of structural information, as has been done
through algorithms including statistical coupling analysis (SCA [10,21,
95]), mutual information (MI [96]), McLachlan Based Substitution
Correlation (McBASC [97]) and Observed Minus Expected Square
(OMES [98]). A more thorough evaluation of these methods is found
in Livesay et al. (2012) [15].

The SCA method has been successfully used to identify functionally
significant networks in the PDZ domain [99], plant peroxidase [100],
Fe/Mn superoxide dismutase [101], G protein-coupled receptor, chymo-
trypsin class serine protease, and hemoglobin families [102]. In SCA, en-
ergetic connectivity between amino acid residues is taken as being
evolutionarily conserved to bestow common functions within protein
families [99]. A key assumption of the SCAmethod is that the probability
of finding a particular residue at a particular position without any evo-
lutionary constraints on that position will be the same as the mean
abundance of that residue in all proteins [99]; deviation from that
mean frequency indicates conservation. The co-conservation of residues
at two or more positions in the MSA indicates statistical coupling [99].
The statistical degree to which two sites are coupled is measured by
the frequency that a change in the amino acid identity at one site is as-
sociated with a change in the coupled site [99]. The magnitude of the
evolutionary constraint on a particular position is described through a
Boltzmann distribution [99].

One particular noteworthy example of the power of the SCA
approach is found in the engineering of a light-responsive dihydrofolate
reductase (DHFR) enzyme. Ranganathan et al. used SCA on an MSA of
418 sequences to provide a basis for the discovery of novel allostery in
DHFR [103]. SCA revealed a ‘sector’ that acts as a wire, which transmits
allosteric signals between surface residues and the active site. To further
investigate how these wires might affect DHFR activity, a light-sensitive
PAS domain, LOV2, was inserted into the DHFR sequence at solvent-
exposed sites. This library of DHFR-LOV2 chimeras was characterized
through kinetic studies, and it was found that the chimeras with the
LOV2 domain inserted at sites that were part of the cluster had an
altered catalytic efficiency as compared to those that had the LOV2
domain inserted at non-cluster sites [103].

7. Summary and outlook

The characterization of amino acid networks by diverse experimen-
tal and computational methods has provided deeper understanding of
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the function and regulation of proteins. Network analyses have provid-
ed insight into internal pathways thatmaybe important for propagating
allosteric signals, and have suggested that all proteins have intrinsic al-
losteric properties [104]. Such properties would help to explain how
amino acid changes remote from a ligand binding-site or enzyme active
site [105] can nonetheless influence the function of the protein. This
viewhas practical consequences, including in understanding drug resis-
tance (e.g. ref. [106]), the development of new allosteric drugs that may
target surface-exposed network residues [107,108], and in protein
engineering applications [109,110], where such proteins would have
wide ranging applications from biosensing to synthetic biology. The in-
tegration of various methods (e.g. ref. [111]) will likely provide greater
insight into amino acid networks and provide additional lessons
regarding the strengths and weaknesses of various approaches. These
approacheswill continue to increase our understanding of protein func-
tion, and provide novel avenues towards modulating these functions in
practical applications of drug and protein design.
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