
SparkGC: Spark based genome compression
for large collections of genomes
Haichang Yao1, Guangyong Hu1, Shangdong Liu2, Houzhi Fang2 and Yimu Ji2,3,4* 

Introduction
Genome plays an increasingly important role in human life, and genome technology has
become a breakthrough in the treatment of new diseases [1]. Based on this, the Euro-
pean Molecular Biology Laboratory (EMBL), Gen-Bank of American National Center
for Biotechnology Information (NCBI), and DNA Data Bank of Japan (DDBJ) are updat-
ing the database information every day. Because the cost of genome sequencing is con-
tinuously reducing, while the efficiency is increasing, the growth of biological data is
amazing [2]. Such a huge amount of genomic data has posed great challenges to genomic
data centers and genomic research institutions, such as in data storage, backup, migra-
tion, sharing, etc. [3]. The compression of genomic data naturally becomes the best
choice to resolve the challenge. Although the general-purpose compression method can
also be applied to genomic data, they do not use the characteristics of genomic data,

Abstract 

Since the completion of the Human Genome Project at the turn of the century, there
has been an unprecedented proliferation of sequencing data. One of the conse-
quences is that it becomes extremely difficult to store, backup, and migrate enormous
amount of genomic datasets, not to mention they continue to expand as the cost
of sequencing decreases. Herein, a much more efficient and scalable program to
perform genome compression is required urgently. In this manuscript, we propose a
new Apache Spark based Genome Compression method called SparkGC that can run
efficiently and cost-effectively on a scalable computational cluster to compress large
collections of genomes. SparkGC uses Spark’s in-memory computation capabilities to
reduce compression time by keeping data active in memory between the first-order
and second-order compression. The evaluation shows that the compression ratio of
SparkGC is better than the best state-of-the-art methods, at least better by 30%. The
compression speed is also at least 3.8 times that of the best state-of-the-art methods
on only one worker node and scales quite well with the number of nodes. SparkGC is
of significant benefit to genomic data storage and transmission. The source code of
SparkGC is publicly available at https://​github.​com/​haich​angyao/​Spark​GC.

Keywords:  Genome compression, Reference-based compression, Spark, Distributed
parallel

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Yao et al. BMC Bioinformatics (2022) 23:297
https://doi.org/10.1186/s12859-022-04825-5

BMC Bioinformatics

*Correspondence:
jiym@njupt.edu.cn

1 School of Computer
and Software, Nanjing
Vocational University of Industry
Technology, Nanjing 210023,
China
2 School of Computer Science,
Nanjing University of Posts
and Telecommunications,
Nanjing 210023, China
3 Jiangsu HPC and Intelligent
Processing Engineer Research
Center, Nanjing 210003, China
4 Institute of High Performance
Computing and Bigdata,
Nanjing University of Posts
and Telecommunications,
Nanjing 210023, China

https://github.com/haichangyao/SparkGC
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-04825-5&domain=pdf

Page 2 of 21Yao et al. BMC Bioinformatics (2022) 23:297

thereby their compression ratio is limited. No matter what general-purpose compres-
sion method is used, the compression ratio can only reach 7:1 at most, which cannot
completely resolve the challenge [4]. In recent years, researchers have proposed many
special-purpose genome compression methods. Compared with the general-purpose
compression methods, their compression ratio has been greatly improved [5].

As a data compression method, the compression ratio is the first evaluated factor in
most situations, so this is the direction that genome compression researchers have been
working on. But in the face of big data, the compression time is gradually emerging to
be an urgent problem for researchers to resolve [6]. The compression method is always
a trade-off between compression ratio and compression speed. The latest research
results show that the compression ratio of pair-wise human genomes compressing has
increased to an average of more than 300:1, but the compression time has also increased
to more than 10 min per person [7]. The time cost may be tolerable when compressing a
small amount of genomic data, such as 100 or 1 K human genomes. However, in the sce-
nario of data archiving or data migration in the genomic data centers, it is very common
to compress 10K, 100K, or even 1 million human genomes. At this time, the compres-
sion time required by current genome compression methods becomes intolerable.

Another problem is that with the continuous increase of genomic data, cloud storage,
the storage mode specially designed for big data, has gradually entered the bioinfor-
matics community [8]. Cloud storage enables users to use storage facilities on demand
without the huge cost of building and maintaining expensive infrastructure. With recent
services by Amazon and alike, it is possible to rent almost arbitrary configurations,
which look logically as a single machine, but is in fact distributed. In this setup, when
storing the genomic big data, the user does not need to care about using the cloud, since
the infrastructure is hidden from the user. Although most genome compression methods
can still be used in the cloud, they are almost single machine algorithms, which cannot
fully utilize the computing power of distributed nodes. Developing a genome compres-
sion method that can be executed directly in distributed parallel systems has become a
better solution [9].

Another advantage of studying parallel and scalable genome compression algorithms
is that they can implement more complex compression schemes with high space-time
requirements. The key factors of referential genome compression algorithms have been
developed from maximum exact match (MEM) search to the prediction or calculation of
precise differences between sequences. Solving the differences between two sequences
is a global optimization problem, and solving the differences among large collections
of sequences is an approximate NP-hard problem. They both have high computational
complexity [6]. Distributed parallel algorithms can speed up these solvings that make
the research of genome compression have more space.

In recent years, several distributed parallel frameworks have emerged to efficiently
manage and process large datasets. The most popular of which are Hadoop [10] and
Spark [11]. Both of them are open source big data frameworks of Apache. The core
designs of the Hadoop framework are Hadoop Distributed File System (HDFS) and
MapReduce. HDFS provides storage for massive data, while MapReduce provides the
calculation for massive data. The MapReduce framework has a limitation on program-
mability though, as it requires the programmer to write code where the Map phase is

Page 3 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

always followed by the Reduce phase. Moreover, it saves intermediate data to the disk
between Map phase and Reduce phase, which increases disk access overhead. Spark is
a general parallel framework like MapReduce. It is open source by UC Berkeley AMP
lab. Spark has the advantages of MapReduce and can also use HDFS as the distributed
file system. But different from MapReduce, Spark allows programmers to perform many
other transformations besides just Map and Reduce, while keeping data in memory
between these transformations. These distributed parallel frameworks are different from
the multi-core parallel schemes, which can be realized by modifying the code slightly.
Only if the architectural details and the specific aspects of the considered framework are
carefully taken into account for the algorithm design and implementation, genome com-
pression can be developed well on these frameworks.

In this manuscript, we propose and implement a Spark based genome compression
(SparkGC) method that allows running efficiently and cost-effectively on a scalable com-
putational cluster to compress large collections of genomes. SparkGC utilizes Spark’s in-
memory computation capabilities to improve the performance of genome compression.
The contributions of this manuscript are summarized as follows:

•	 We proposed Spark based genome compression scheme for the first time. Although
there are some genome compression methods based on distributed parallel com-
puting, such as FastDRC [12], they are all based on MapReduce framework. To our
best knowledge, there is no large collections of genomes compression method based
on Spark. Our method proved the feasibility of compressing large collections of
genomes via Spark. Furthermore, our research results indicated that Spark is more
suitable for the iterative compression of large collections of genomes.

•	 We designed and implemented SparkGC: a production-quality and highly scalable
large collections of genomes compression method. SparkGC meticulously designs
the RDD (Resilient Distributed Datasets) transformations to keep data active in
memory among the whole compression process. SparkGC improves the compres-
sion speed for about 4 times on the cluster with only one worker node and scales
excellently by increasing the number of worker nodes.

•	 We optimized the framework by using Kyro serialization and broadcast variables
compression that enable SparkGC to compress 1100 human genomes on a common
computer with just 24 GB of RAM. We optimized the encoding scheme for the map-
ping results that makes SparkGC achieve the best compression ratio among all the
state-of-the-art compression methods.

The remainder of this manuscript is organized as follows. In “Related works” section,
we discuss the related works on genome compression and its parallelization. “Meth-
odology” section presents the methodology of SparkGC. This is followed by “Results”
section, which evaluates the performance of the proposed algorithms, including com-
pression ratio, compression speed, scalability, robustness, and trade-off. We finally con-
clude the manuscript with “Conclusions” section.

Page 4 of 21Yao et al. BMC Bioinformatics (2022) 23:297

Related works
DNAZip [13] proposed in 2009 compressed James Watson’s 3 GB genome to 4 MB,
so small, that it even can be sent by email attachment. The high compression ratio
of the referential genome compression immediately aroused researchers’ interest,
made more and more researchers focus on referential genome compression research
and obtain many achievements. Table 1 summarises the related works of this paper.
More works about genome compression can be referenced in review articles [14–16].

In recent decade, the performance of referential genome compression method
continues improving, including compression ratio, robustness, scalability and appli-
cability. The object of compression is also extended from single sequence to large
collections of sequences. Researchers improve the compression method from every
stage of compression process, such as sequence pre-processing, reference selec-
tion, index building, matching scheme, parallel scheme, etc. Specifically, in terms
of sequence pre-processing, earlier proposed methods, such as FRESCO [17] and
COGI [18], converted all characters to lowercases or uppercases and treated all non-
base characters as ‘n’. The pre-processing scheme reduces the matching complex-
ity, but losses some information. Recent proposed methods basically preserved all
information of target sequences, that is, achieved lossless compression. In terms of
reference selection, COGI uses the technology based on co-occurrence and multi-
scale entropy. FRESCO uses the technology based on RsbitX. RCC [19] and ECC [6]
cluster the target genomes, and choose the centroid of each cluster as the reference
sequence. In terms of index building, researchers employed different technologies
(e.g. suffix tree, suffix array, hash array, compressed suffix tree, etc.) to adapt differ-
ent scenarios. In terms of matching scheme, researchers proposed greedy matching,
segmentation matching and approximate matching schemes. Due to the improving
technologies and schemes, the compression ratio is getting better and better, from
dozens [20] to more than 400:1 [6]. When the second-order compression scheme
is employed, the compression ratio achieves even more than 2000:1 [21]. However,
the cost is the increasing time complexity. With the exponential increase of genomic
data, intolerable compression time emerges to be a problem that compression
researchers have to work hard to resolve. Therefore, in order to reduce compres-
sion time, some researchers started to employ parallel technology. But the most used
parallel technology is the straightforward multithreaded parallel technology. With
the development of the big data processing technology, some Hadoop based genome
compression method are proposed [22].But generally speaking, the research based
on big data processing technologies still has a lot of work to be done. So far, to our
best knowledge, there is no published research on Spark based genome compression,
but only some Spark based genome analysis achievements [23].

Methodology
This section will firstly introduce the architecture of SparkGC, and then describe
separately how does SparkGC parallelize the compression tasks, and finally intro-
duce the decompression.

Page 5 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

Table 1  Summary of the related works of this paper

Year Name Methodology Characteristics Parallelization

2009 DNAZip [13] A serial of compression
techniques (Variable
integer (VINT), Delta
positions (DELTA), SNP
mapping (DBSNP), K-mer
partitioning (KMER))
are taken together to
reduce the size of a single
genome

The SNP database dbSNP
[24] and the map-
ping results between
reference and target
sequence have to be
input as prerequisites,
that limits its practica-
bility

Serial

2012 BlockCompression [25] The reference and target
sequence are divided
into fixed-length blocks.
Matching are performed
between the blocks

Compressed suffix tree
is employed to save
memory.
Straightforward approxi-
mate matching is used to
improve matching rate

Block-processing can be
distributed on several
CPUs

2013 FRESCO [17] Suffix tree is used to
index the reference
sequence.
The base after the exact
match is saved as muta-
tion

Three schemes (select-
ing a good reference,
reference rewriting, and
second-order compres-
sion) were proposed to
improve the compression
ratio

Serial

2015 COGI [18] COGI transforms the
genomic sequences to
a bitmap, then applies
a rectangular partition
coding algorithm to com-
press the binary image

The reference sequence
is selected using
techniques based on co-
occurrence entropy and
multi-scale entropy.
Compressing multiple
sequences is supported
by COGI, but the com-
pression ratio decreases
dramatically

Serial

2015 GDC2 [26] GDC2 is developed to
compress large col-
lections of genomes.
Second-order compres-
sion scheme and variable
integer encoding scheme
are employed to reduce
the size of compressed
files

GDC 2 is implemented
in a multithreaded
fashion. By default, GDC
2 uses 4 threads: 3 for
the first level Ziv–Lempel
factoring and 1 for the
second-level factoring
and arithmetic coding

Multithreaded parallel

2015 iDoComp [27] Suffix array is used to
index the reference
sequence.
Greedy matching scheme
is used to match the
reference and the target
sequence

Suffix array has to be pre-
computed and stored
in the hard drive before
compression

Serial

2016 NRGC [28] NRGC uses the score
based placement
technique to quantify
the differences between
genome sequences, so as
to obtain the best posi-
tion of each target block
on the reference blocks

NRGC has strict require-
ments on the similarity
between the reference
sequence and target
sequence, which is prone
to compression failure

Serial

Page 6 of 21Yao et al. BMC Bioinformatics (2022) 23:297

Architecture

The architecture for large collections of genomes compression based on Spark is shown
in Fig. 1. Spark architecture divides the computing cluster to master nodes and worker
nodes. The compression algorithm is deployed on the master node, but the schedul-
ing mechanism of Spark is migrating the computing tasks to nodes closest to the data,
so the compression tasks will be scheduled to worker nodes. The Driver component of
Spark executes the main function of genome compression in SparkGC. TaskScheduler

Table 1  (continued)

Year Name Methodology Characteristics Parallelization

2017 HiRGC [29] In the pre-processing
stage, HiRGC separates
the target sequence file
into the identifier, the
length of each line, posi-
tion intervals of lowercase
letters and the letter ‘N’,
special letters and base
letters, and then different
compression schemes
are used to compress
them according to their
characteristics

The greedy matching
scheme generates some
suboptimal matching
result

Serial

2018 SCCG [30] SCCG optimized the
greedy matching scheme
of HiRGC. It combines the
greedy matching with the
segmentation matching
used in NRGC, matches
the target sequence to
the corresponding refer-
ence segmentation first,
improves the compres-
sion ratio

The compression time
and memory consump-
tion increase significantly

Serial

2019 HRCM [21] HRCM supports both
pair-wise sequence
compression and
multiple sequences
compression. When
multiple sequences are
compressed, optimized
second-order compres-
sion scheme is used to
improve compression
ratio

HRCM balances well
the compression speed,
compression ratio, and
robustness, especially
for large collections of
genomes compression

Serial

2020 memRGC [7] bfMEM algorithm [31]
is used to save the
compression time and
memory usage.
memRGC extends the
MEMs if there are less
than two SNPs between
MEMs, that improves the
compression ratio

INDEL (INsertion and
DELetion) and more than
two SNPs are omitted in
the approximate match-
ing of memRGC​

multithreaded parallel

2021 HadoopHRCM [22] HDFS and Map/Reduce
architecture is employed
to improve the compres-
sion speed of HRCM

Distributed parallel
computing technology is
introduced to the FASTA
compression

Hadoop

Page 7 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

component partitions the compression tasks and schedules them to each executor. Exec-
utor is a process running on worker node to execute compression tasks and cache inter-
mediate results of RDD transformation. The master node reads the reference sequence
from HDFS or local file system, and builds the index of the reference sequence. The
driver broadcasts the reference sequence and its index as broadcast variables. The exec-
utor stores the broadcast variables to the BlockManager component. Broadcast variable
is a shared variable mechanism of Spark. It enables the programs to send large size read-
only data to all worker nodes. The worker nodes read the to-be-compressed sequences
from HDFS before the compression and write the compressed results to HDFS after
compression.

Pre‑processing

The data flow of SparkGC is shown in Fig. 2. After each sequence file is read into mem-
ory, pre-processing of the sequence file follows closely. The sequence file is divided into
two parts, base data, and auxiliary data. Base data refers to the base sequence composed
of uppercase ACGT, and auxiliary data is the identifier, line break characters, special
characters, and other information contained in the sequence. Because SparkGC is a loss-
less genome compression method, the auxiliary data of the to-be-compressed sequence
cannot be lost. They are compressed independently with specific coding schemes at the
pre-processing stage. The base data of the to-be-compressed sequence file saved as RDD
to the memory of worker nodes for compression tasks. It is the first RDD of SparkGC

Fig. 1  Architecture of Spark based genome compression

Page 8 of 21Yao et al. BMC Bioinformatics (2022) 23:297

data flow, so the RDD is indexed as RDD1 in this article. RDD is a logical entity of Spark.
It is used as a whole, but actually the data of RDD are distributed in the memory of dif-
ferent worker nodes. The base data of one to-be-compressed sequence is one partition
of RDD1. Each partition maps to a processing thread, which ensures that the process of
these partitions is independent and concurrent.

The hash index built for the reference sequence data is on the master node. However,
all worker nodes require reference sequence data and its hash index, so broadcast vari-
ables need to be created for them. In order to reduce the size of broadcast variables,
Kryo [32] is used for serialization and compression of broadcast variables. The broad-
cast variables are set to read-only, which will not cause thread-safety problems. Then the
broadcast variables are sent and cached in the memory of each worker node to prepare
for the compression stage.

Compression

The compression stage of SparkGC contains two steps which are referred to as the first-
order compression and the second-order compression. The main task of the first-order
compression is mapping the to-be-compressed sequences to the reference sequence

Sequence 1

(K=1;V=matched results)

Sequence 2

(K=2;V=matched results)

Sequence n

(K=n;V=matched results)

.

.

.

Partition 1

RDD1

MapPartition

WithIndex

(the first-level

matching)

Transformation

operater

Filter

(Filter the first

m sequences

as the second-

order

references)

MapPartition

(Build hash

index for the

second-order

compression)

coalesce

(Shuffle,

integrate all

hash

indexes)

First

Get the value

of RDD4

Action operator

Hash indexes

matrix

MapPartition

(the second-level

matching)

RDD4

SaveAsTextFile

(save to HDFS)

Broadcast

variables

(read-only)

Broadcast

variables

(read-only)

...

Matched results 1

Hash index1

Matched results 2

Hash index 2

Matched results m

Hash index m

RDD3

...

RDD2

Download to

local

BSC

Compression

Partition 2

Partition n

Transformation

operater

Transformation

operater

Transformation

operater

Transformation

operater

Action operator

Partition 1

Partition 2

Partition n

Partition 1

Partition 2

Partition m

Partition 1

Sequence 1

Sequence 2

Sequence n
Target sequences

Reference

sequence

Compressed file

Fig. 2  Data flow of SparkGC

Page 9 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

based on the hash index, that generates the MEMs. The MEMs obtained at this stage are
encoded as the tuple < position, length >. The mismatched sequence data is stored as the
original characters. Therefore, after the first-level mapping, the original sequence data is
converted to a new sequence composed of triple < position, length, mismatched string>.
All the mapped results are not saved to the file system, but saved in the memory for the
second-order compression. They are the second RDD of the data flow of SparkGC, i.e.,
RDD2. The mapped results of one to-be-compressed sequence are saved as one parti-
tion of RDD2. The partition is represented as < key, value >, where the key is the partition
number and the value is the mapped results. The partition number is used to identify the
sequence ID, so as to ensure the sequence order in subsequent processing. If the data
amount of the value exceeds the memory limitation of the worker node, Kryo serializa-
tion will be used again to compress the data to prevent compression failure because of
insufficient memory, that makes the compression of large collections of genomes suc-
cessful on an ordinary computer.

After the first-order compression, a part of the compressed sequences will be regarded
as the references of the second-order compression, hereinafter they are referred to as the
second-order references. The second-order references are filtered out according to the
sequence ID. Then, the hash index for the second-order references is built. The second-
order references and their hash indexes are cached in memory as RDD3. The partitions
of RDD3 are distributed on different worker nodes. Because like the first-order compres-
sion, all worker nodes need to use the second-order references and their hash indexes at
the second-order compression stage. Therefore, all partitions in RDD3 are merged into
one partition, i.e., RDD4. The master node then creates the broadcast variable based on
RDD4 and sends it to all worker nodes. The merging will generate shuffle, that results in
network transmission and disk access. However, after the first-order compression, the
size of the compressed sequence has been reduced by more than 100 times compared to
the original size, so the amount of shuffle data is not large. The first-order compressed
results RDD2 is also kept in memory for the second-level matching.

The essence of the second-level matching is mapping the first-order compressed
sequences to the second-order references by order using the hash indexes. The first-
order compressed sequences are read from RDD2. The second-order references and
their hash indexes are read from broadcast variables. After the second-level matching,
the original first-level mapped results are converted to the second-level mapped results
composed of triples < sequence ID, position, length> and triples < position, length, mis-
matched string>. Lastly, the second-order references are also compressed. The i-th sec-
ond-order reference is mapped with the first to the (i-1)-th second-order references. In
this way the second-order references can be losslessly reconstructed.

After the second-level mapping, all the mapped results are written to HDFS, one file
for one sequence. These files will be downloaded to the local file system, compressed by
BSC compression algorithm (http://​libbsc.​com/). So far, the whole compression is com-
pleted. SparkGC compression algorithm is summarized in Algorithm 1.

http://libbsc.com/

Page 10 of 21Yao et al. BMC Bioinformatics (2022) 23:297

Decompression

Firstly, the compressed file is decompressed by BSC decompression algorithm to get all
the second-order compressed data. The reference sequence is read and extracted in the
same way as compression. But unlike compression, there is no need to build any hash
index in decompression. So decompression and compression is asymmetric. Decom-
pression requires much less memory and time. The target sequences are read by order,
their base data and auxiliary data are reconstructed respectively. It is worth to note that
SparkGC supports decompressing the sequences interested without decompressing
all the sequences every time. The overview of the decompression is shown in Fig. 3. If
the target sequence is one of the second-order references, the i-th target sequence only
depends on its previous i-1 sequences. The target sequence can be totally decompressed
without decompressing the remainder sequences. If the target sequence is not one of
the second-order references, its decompression only depends on all the second-order

Fig. 3  Overview of the decompression of SparkGC

Page 11 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

references, other sequences don’t need to be decompressed. For large genomic datasets,
this will save decompressors a lot of time.

Because more than 95% of decompression time is I/O time, the actual limitation of
the decompression is the hard disk write speed. That is different from the compression
which is CPU-bound and memory-bound. It has no effect to parallelize the decompres-
sion. Therefore, SparkGC does not implement the parallelization of decompression.

Results
We evaluate the performance of SparkGC in this section. SparkGC was run on the clus-
ter with 4 worker nodes and 1 master node. Each node is a common computer config-
ured with 2 × 2.8 GHz Intel Xeon E5-2680 (20 cores) and 32 GB RAM. SparkGC was run
over YARN (Yet Another Resource Negotiator) in the platform.

The datasets we selected firstly were 1000 Genome Project [33] which contains 1092
human genomes. In addition, we supplemented another 10 genomes HG13, HG16,
HG17, HG18, HG19, HG38, K131 (the abbreviation of KOREF_20090131), K224 (the
abbreviation of KOREF_20090224) [34], YH [35], and Huref [36]. These 10 human
genomes are derived from different sequencing teams using different methods in differ-
ent periods. They have different characteristics so that they are widely used in genome
compression algorithms evaluation [7, 29, 30]. Therefore, our datasets totally contain
1102 human genomes and the total file size is about 3.11 TB. All the datasets can be
downloaded from open access FTP server. Details of these datasets are provided in the
Additional file 1.

Compression ratio

As a compression method, the compression ratio is always the first factor to be evalu-
ated. Firstly we arbitrarily selected HG16 as the reference to compress other 1100 human
genomes. In the robustness section, we evaluated the compression performance under
different references. In addition, we also tested the compression ratio and compres-
sion time of the state-of-the-art genome compression methods in recent 4 years. They
compressed the same 1100 human genomes under the same reference run on the same
computers. These compression methods are HiRGC [29] proposed in 2017, SCCG [30]
proposed in 2018, HRCM [21] proposed in 2019, and memRGC [7] proposed in 2020.
Their compression ratios are shown in Fig. 4. Details of the experimental results are pro-
vided in Additional file 1: Table S3.

We can see from the Fig. 4, SparkGC achieved the best compression ratio among all
the compression methods. The compression ratio of SparkGC is about 2347:1, it com-
pressed the 3.11 TB original data to about 1387 MB. Compared to HiRGC, SCCG, and
memRGC, the compression ratio is improved by 673%, 653%, and 582%. The compres-
sion ratio of SparkGC is greatly improved mainly because of the second-order compres-
sion scheme. After the first-level matching of each to-be-compressed sequence to the
reference sequence, the matched results are not written to file, but saved in memory as
intermediate data. Part of these intermediate sequences are selected as the second-order
references to build hash index, then each first-order compressed sequence is compressed
again according to the second-order hash index matrix. This compression scheme fully
utilizes the similarity among the to-be-compressed sequences, greatly reduces the size of

Page 12 of 21Yao et al. BMC Bioinformatics (2022) 23:297

the compressed file. HRCM is also a second-order compression method, but compared
to HRCM, the compression ratio of SparkGC is improved by 31%. The reason is that
SparkGC uses BSC compression algorithm to compress the second-order compressed
sequences.

Compression speed

The compression speed of compressing 1100 human genomes using HG16 as the ref-
erence sequence is shown in Fig. 5. Details of the experimental results are provided in
Additional file 1: Table S4. Because SparkGC is a distributed parallel method, it will
distribute the compression tasks on multiple nodes and run at the same time. In order
to be as fair as possible, in this experiment, the number of worker nodes of SparkGC
was set as 1, that is, SparkGC only used one worker node to perform the compression.
The compression speed of multiple nodes will be illustrated in the scalability section.

HiRGC SCCG memRGC HRCM SparkGC
0

500

1000

1500

2000

2500 2347.08

1789.66

344.22303.79

C
o
m

p
re

ss
io

n
 r

at
io

311.5

Fig. 4  Compression ratio of SparkGC and the state-of-the-art methods

HiRGC SCCG memRGC HRCM SparkGC
0

10

20

30

40

50

60 58.24

15.13

5.19

10.33C
o
m

p
re

ss
io

n
 s

p
ee

d
 (

M
B

/s
)

2.67

Fig. 5  Compression speed of SparkGC and the state-of-the-art methods

Page 13 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

All compression time of this paper corresponds to the ‘real’ or wall-clock elapsed
time. Each experiment was executed 3 times and the average time was recorded.

As can be seen from Fig. 5, although SparkGC only used one worker node to exe-
cute the compression, the compression speed achieved more than 58 MB/s, which is
much higher than the best state-of-the-art methods. It only took 15.53 h to complete
the compression of 3.11 TB genomic data. The compression speed is 5.63 times of
HiRGC, 21.75 times of SCCG, 11.21 times of memRGC, and 3.85 times of HRCM.
SCCG takes the most time, more than 14 days. It is hard to tolerate so much time
to compress 1100 human genomes. SparkGC reduced the compression time of sev-
eral days required by other methods to just more than half a day. The reason why
SparkGC can achieve such high speed on one node is that the algorithm will make full
use of the multi-thread of a single node automatically for compressing.

Scalability

The biggest advantage of SparkGC is not the performance on a single node, but its
high scalability, which is the advantage that other methods do not have. We did a
series of experiments to evaluate the scalability of SparkGC. Firstly we evaluated the
compression speed of all chromosomes on the cluster with an increasing number
of worker nodes activated, ranging from 1 to 4. The compression ratio of SparkGC
does not correlate with the number of worker nodes, so the increasing number of
worker nodes will not change the compression ratio. The total compression time of all
chromosomes under different numbers of worker nodes is shown in Fig. 6. Here we
observe that, with the increasing number of the worker nodes, the compression time
decreases greatly. When the number of worker nodes is 4, SparkGC was able to com-
press the 3.11 TB genomic data to about 1387 MB in less than 6 h. The compression
speed is about 151 MB/s.

In terms of runtime and parallelism, the following experiment evaluated the com-
pression process of SparkGC from four stages:

1 2 3 4
0

10

5.99

7.69

15.53

C
o
m

p
re

ss
io

n
 t

im
e

(h
o
u
r)

9.99

Fig. 6  Total compression time under different number of worker nodes

Page 14 of 21Yao et al. BMC Bioinformatics (2022) 23:297

1.	 Pre-processing stage completes the reading and hash index building of the reference
sequence, and creating the broadcast variables.

2.	 First-order compression stage completes the first-level matching of all the to-be-
compressed sequences to the reference sequence, then shuffles all the second-order
references and their hash indexes, and creates the broadcast variables.

3.	 Second-order compression stage completes the second-level matching of all the first-
order compressed sequences.

4.	 Post-processing stage downloads all the matched result files to the local file system
and compresses them by BSC compression algorithm, then cleans up tasks on all
worker nodes.

In these four stages, the first stage and the last stage cannot be parallelized, they
are run only on the master node. Only the second stage and the third stage can be
parallelized. Therefore, to evaluate the change of runtime of different stages with the
increasing number of worker nodes, we illustrate the compression time of Chromo-
some 1 (abbreviate as Chr1) and Chromosome 13 (abbreviate as Chr13) in detail, as
shown in Table 2.

It can be seen from Table 2 that the pre-processing stage and the post-processing
stage did not save time with the increase of worker nodes, on the contrary, their runt-
ime increased with the increase of worker nodes. Because with the increase of worker
nodes, the program needs to initialize all worker nodes, and broadcast variables need
to be sent to all worker nodes, which increases the runtime. Similarly, at the post-
processing stage, the increase of worker nodes will lead to a longer clean-up time.
Observing the first-order compression stage and the second-order compression stage
will find that these two stages scaled quite well. For example, to Chr1, when the num-
ber of worker nodes was 1, 2, and 4, the average first-order compression time of each
chromosome was 5, 2.4, and 1.5 s respectively, and the average second-order com-
pression time of each chromosome was 0.48, 0.23, and 0.12 s respectively. To Chr13,
it was 1.38, 0.83, and 0.46 s respectively at the first-order compression stage and 0.11,
0.06, and 0.03 s respectively at the second-order compression stage. The runtime was
almost decreasing at the linear speed. From the percentage of runtime at each stage,

Table 2  Runtime of different parts on different numbers of worker nodes

Chromosome Stage 1 worker node 2 worker nodes 3 worker nodes 4 worker nodes

Time (s) % Time (s) % Time (s) % Time (s) %

Chr1 Pre-processing 112 1.79 116 3.84 124 5.27 126 6.49

First-order 5577 89.23 2618 86.72 2007 85.37 1648 84.81

Second-order 531 8.50 254 8.41 188 8.00 136 7.00

Post-processing 30 0.48 31 1.03 32 1.36 32 1.70

Total 6250 100 3019 100 2351 100 1943 100

Chr13 Pre-processing 62 3.58 70 6.42 70 9.06 70 10.74

First-order 1520 87.76 921 84.50 625 80.85 512 78.53

Second-order 120 6.93 69 6.33 47 6.08 39 5.98

Post-processing 30 1.73 30 2.75 31 4.01 31 4.75

Total 1732 100 1090 100 773 100 652 100

Page 15 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

the percentage of serial computing was gradually increasing, while the percentage of
parallel computing was gradually decreasing, so the overall runtime showed a sublin-
ear downward trend.

The above experiments are all compressing 1100 human genomes. We are very inter-
ested in how the compression ratio and compression speed of SparkGC scale with the
number of the to-be-compressed sequences. Because in the actual compression sce-
nario, SparkGC will compress any size of genomic data sets. We evaluated the com-
pression ratio and compression speed of Chr1 and Chr13 when the sequence number
was 200, 400, 600, 800, and 1000 respectively, as shown in Fig. 7. In this experiment, the
number of worker nodes was 3.

We can see from Fig. 7 that SparkGC also scaled quite well to the number of the to-
be-compressed sequences. The compression ratio and compression speed of Chr1 and
Chr13 both increased with the increase of the to-be-compressed sequences. The com-
pression ratio of Chr1 gradually increased from 1756:1 to 2390:1, and that of Chr13
increased from 2085:1 to 2871:1. The compression speed of Chr1 increased gradually
from 65 MB/s to 106 MB/s, and that of Chr13 increased from 100 MB/s to 139 MB/s.
The compression ratio of SparkGC increases with the increase of the to-be-compressed
sequences is because in that case, the percentage of the second-order references
decreases. The default number of the second-order references of SparkGC is 40. The
compression ratio of the second-order references is low, because the i-th second-order
reference is compressed only using the first to the (i-1)-th sequences as references. So
the smaller i is, the smaller the compression ratio is. The compression speed of SparkGC
also increases with the increase of the to-be-compressed sequences, because the per-
centage of the first-order compression time and the second-order compression time
increases. The compression speed and compression ratio of Chr13 is higher than Chr1
is because of the different similarity of different chromosomes. Generally, the greater the
similarity of chromosomes, the higher the compression ratio and the faster the compres-
sion speed [37].

Robustness

The compression ratio of the referential compression method is easily affected by the ref-
erence sequence. Therefore, some researchers studied the reference selection [6] [17] [19].
However, with the increase of the to-be-compressed sequences, the selection of reference

(a) Compression ratio and speed of Chr1 (b) Compression ratio and speed of Chr13

200 400 600 800 1000

1800

2000

2200

2400

1756

1834

2222
2279

2390

65

82

93

104
106

C
om

pr
es

si
on

 ra
tio

Sequence number of Chr1

 ratio
 speed

60

70

80

90

100

110

C
om

pr
es

si
on

 s
pe

ed
 (M

B/
s)

200 400 600 800 1000
2000

2200

2400

2600

2800

3000

2085
2157

2663
2732

2871

100

110

135 137
139

C
om

pr
es

si
on

 ra
tio

Sequence number of Chr13

 ratio
 speed

90

100

110

120

130

140

150

C
om

pr
es

si
on

 s
pe

ed
 (M

B/
s)

Fig.7  Compression performance to the different number of target sequences

Page 16 of 21Yao et al. BMC Bioinformatics (2022) 23:297

sequences becomes hard due to its high time complexity. We evaluated the affection of
different references to the performance of SparkGC by selecting 6 genomes with different
characteristics to compress 1100 human genomes. The compressed size and compression
time of Chr1 and Chr13 under different references are shown in Tables 3 and 4 respectively.
In the two tables, AVG represents the average value under different references, it is com-
puted by (1).

where si represents the compressed file size, and the n value is the number of references.
SD is the standard deviation of all values, represents the degree of dispersion. It is com-
puted by (2).

(1)AVG =

∑n

i=1
si

/

n

(2)SD =

1

n

n

i=1
(xi − x)2

Table 3  Compressed size under different references

‘/’ indicates the method fails to compress the chromosome. Bold indicates the best value of the case

Chromosome Original size (MB) Method Compressed size (MB) under different
references

AVG SD

HG13 HG16 K131 YH Huref HG00096

Chr1 264,994 HiRGC​ 2474 1313 828 750 1026 480 1145 647

SCCG​ 2430 1284 775 706 986 464 1107 643

memRGC​ 2324 1192 650 593 887 406 1009 638

HRCM 126 140 156 154 151 136 144 11

SparkGC 123 115 130 128 125 115 123 6
Chr13 122,492 HiRGC​ 333 296 413 394 314 219 328 64

SCCG​ / 289 390 375 308 219 / /

memRGC​ 288 254 333 319 262 190 274 47

HRCM 48 56 66 65 63 57 59 6

SparkGC 44 44 52 52 50 45 48 3

Table 4  Compression time under different references

‘/’ indicates the method fails to compress the chromosome. Bold indicates the best value of the case

Chromosome Method Compression time (hour) under different references AVG SD

HG13 HG16 K131 YH Huref HG00096

Chr1 HiRGC​ 11.95 7.40 8.75 8.82 10.01 6.55 8.91 1.75

SCCG​ 21.25 21.91 37.73 37.11 39.86 36.66 32.42 7.73

memRGC​ 20.49 12.05 16.09 18.45 16.53 11.07 15.78 3.32

HRCM 11.19 8.28 9.60 8.40 9.76 5.72 8.82 1.69

SparkGC 0.70 0.54 0.57 0.49 0.63 0.40 0.56 0.10
Chr13 HiRGC​ 2.67 2.43 2.37 2.45 2.48 2.41 2.47 0.10

SCCG​ / 24.15 18.61 23.44 12.37 10.17 / /

memRGC​ 9.07 8.13 14.62 9.82 11.25 8.23 10.19 2.25

HRCM 1.64 1.43 1.47 1.40 1.44 1.25 1.44 0.11

SparkGC 0.2 0.18 0.19 0.17 0.16 0.15 0.18 0.01

Page 17 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

where x represents the AVG value of the case. It can be seen from Table 3 that the
compression ratio of SparkGC achieved the best results under all reference sequences,
and the influence of reference on SparkGC was very small. The difference betweeen
the maximum and minimum compressed size of Chr1 is 15 MB, and of Chr13 is 8 MB.
Compared with the original data of 264,994 MB and 122,492 MB respectively, these dif-
ferences can be ignored. The compressed results of HiRGC, SCCG, and memRGC under
different reference sequences are quite different, especially to Chr1. The maximum com-
pressed size of HiRGC, SCCG, and memRGC of Chr1 is 5.15 times, 5.24 times, and 5.75
times that of the minimum compressed size, respectively. When HG13 was the refer-
ence sequence, SCCG even failed to compress all sequences. The reason why SparkGC
is less affected by the reference sequence is that if the similarity between the reference
sequence and the to-be-compressed sequence is low, many identical mismatched frag-
ments will be generated after the first-level matching, and these mismatched fragments
will be matched and compressed in the second-level matching, so the compression result
has little relationship with the similarity between the reference sequence and the to-be-
compressed sequence. HRCM is also one of the second-order compression methods, so
HRCM also performs well in robustness.

As can be seen from Table 4, SparkGC performed better in the robustness of compres-
sion time. The SD values of Chr1 and Chr13 are only 0.1 and 0.01 respectively, which are
far lower than other compression methods. In terms of compression time, the maximum
and smallest minimum compression time of Chr1 are 42 min and 24 min respectively;
the maximum and minimum compression time of Chr13 are 20 min and 9 min respec-
tively, and the difference is very small.

Discussion

Data compression is always a trade-off between compression ratio and compression
speed, so is SparkGC. When the reference sequence is determined, the most important
factor affecting compression ratio and compression speed is the number of the second-
order references. In the second-level matching, the more the second-order references
are, the greater the probability of matching successfully, so the compression ratio is
higher. However, the cost is that the shuffle time and the hash index building time of
the second-order references, the transferring time of broadcast variables, and the search
time in hash index will be longer. We evaluated the trade-off between compression ratio
and compression speed of SparkGC under 7 different numbers of the second-order ref-
erences, as shown in Fig. 8. In this experiment, we evenly selected 8 chromosomes of our
datasets for compressing. They are Chr1, Chr4, Chr7, Chr10, Chr13, Chr16, Chr19, and
Chr22. The total file disk size of these chromosomes is about 1 TB.

We can see from the figure, with the increase of the number of second-order refer-
ences, the compressed size decreases, and the compression time increases. The com-
pressed size decreases from 611 MB when the number of second-order references is
10 to 460 MB when the number of second-order references is 70, the reduction rate is
24.7%. However, the compression time increases from 116 to 133 min, with an increase
of 14.7%. Therefore, the compressors can choose the appropriate number of the second-
order references according to their own needs.

Page 18 of 21Yao et al. BMC Bioinformatics (2022) 23:297

In order to expand the applicability of the method, we developed sub-modules to com-
press FASTQ sequence based on the proposed methodology. Furthermore, we used data
sets generated by different sequencing technologies including new and traditional ones
to evaluate the FASTQ compression modules. The sequencing technologies we selected
are Illumina, PacBio, and Oxford Nanopore. Details of the data sets are provided in
Additional file 1: Table S2. The compression ratio and speed are shown in Fig. 9.

From Fig. 9, it is shown that SparkGC successfully work on all test data sets. How-
ever, the performance changes with different sequencing technologies. It obtains supe-
rior performance on the second generation sequencing platform Illumina to the third
generation sequencing platforms PacBio and Oxford Nanopore. The reason is that the
third generation sequencing technologies obtain longer read length, but which is accom-
panied by a relatively higher error rate. The error bases result in more fragments when
matching the reference sequence, which affects the compression performance. In addi-
tion, the unfixed read length value also consumes a certain amount of storage space.

The evaluation of a genome compression method must take into account the main
memory usage. Compared with the stand-alone programs, it is more complex to
discuss the memory usage of SparkGC. Because the tasks of the master node and
each worker node are different, the memory usage is different. The master node is

0 10 20 30 40 50 60 70 80

450

500

550

600 611

541

514

492
482

471
460116

118

120

122

126

130

133

C
om

pr
es

se
d

si
ze

 (M
B)

Number of the second-order references

 size
 time

115

120

125

130

135

C
om

pr
es

si
on

 ti
m

e
(m

in
)

Fig. 8  Trade-off between compression ratio and compression speed

ERR174333
ERR174336

SRR16953490
SRR18961362

SRR17714832
SRR18623894

0

1

2

3

4

5
 Illumina

 PacBio

 Nanopore

3.45
3.15

4.234.11

4.98

C
o
m

p
re

ss
io

n
 r

at
io

5.32

ERR174333
ERR174336

SRR16953490
SRR18961362

SRR17714832
SRR18623894

0

2

4

6

8

10

12

14

16
 Illumina

 PacBio

 Nanopore

11.64
10.85

11.23
11.91

16.11

C
o
m

p
re

ss
io

n
 s

p
ee

d
 (

M
B

/s
)

15.71

Fig. 9  Compression ratio and speed on FASTQ data sets

Page 19 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

responsible for reading reference sequences, the aggregation of the first-order com-
pression results, and the hash index building. The memory footprint of the master
node is affected by the size of the reference sequence and the number of second-
order references. The worker node is responsible for reading the to-be-compressed
sequences, the first-order compression, and the second-order compression. The
memory usage is related to the number of to-be-compressed sequences. From our
experimental observation, compressing 1100 human genomes consumes the most
memory. However, whether on the master node or worker node, the memory foot-
print of SparkGC is less than 20 GB.

Conclusions
This research proposes and implements a genome compression method based on
Apache Spark. It can run efficiently on a multi-node cluster to compress large col-
lections of genomes. Compared to the state-of-the-art genome compression meth-
ods, the compression ratio and speed are both recognizably improved. Besides, the
method has good scalability and robustness. It will greatly benefit the storage of large
genomic datasets. However, it should be noted that developing Spark based programs
is not a trivial task. As such, they have largely only been embraced in the technology
sector. Making Spark based genome compression method easy to use and extend for
more non-computer science professionals is our goal at the next stage.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​022-​04825-5.

Additional file 1. Details of the data sets and experimental results.

Acknowledgements
We thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of our
manuscript.

Author contributions
HY and YJ wrote the main manuscript text. GH prepared the figures and tables. SL did the experiments. HF wrote the
code. All authors read and approved the final manuscript.

Funding
This work was partially funded by the National Key R&D Program of China (2018AAA0103300), The Natural Science Foun-
dation of the Jiangsu Higher Education Institutions of China (22KJB520001), Modern Educational Technology Research
Program of Jiangsu Province in 2022 (2022-R-98629), Scientific Research Start-up Foundation of Nanjing Vocational
University of Industry Technology (YK21-05-04), Research Project of Chinese National Light Industry Vocational Education
and Teaching Steering Committee in 2021 (QGHZW2021066).

Availability of data and materials
The datasets analysed during the current study are all available in the public server and can be downloaded freely.
Details of these datasets are provided in the Additional file 1. The source code of the current study is available at https://​
github.​com/​haich​angyao/​Spark​GC.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s12859-022-04825-5
https://github.com/haichangyao/SparkGC
https://github.com/haichangyao/SparkGC

Page 20 of 21Yao et al. BMC Bioinformatics (2022) 23:297

Received: 28 March 2022 Accepted: 6 July 2022

References
	1.	 Pathak GA, Singh K, Miller-Fleming TW, Wendt F, Ehsan N, Hou KC, Johnson R, Lu ZY, Gopalan S, Yengo L, et al.

Integrative genomic analyses identify susceptibility genes underlying COVID-19 hospitalization. Nat Commun.
2021;12(1):1–11.

	2.	 Liu Y, Zhang X, Zou Q, Zeng X. Minirmd: accurate and fast duplicate removal tool for short reads via multiple
minimizers. Bioinformatics. 2021;37(11):1604–6.

	3.	 Liu Y, Li J. Hamming-shifting graph of genomic short reads: efficient construction and its application for com-
pression. Plos Comput Biol. 2021;17(7):e1009229.

	4.	 Zhang Y, Li L, Yang Y, Xiao Y, Zhu Z. Light-weight reference-based compression of FASTQ data. BMC Bioinform.
2015;16(1):188.

	5.	 Huang Z, Wen Z, Deng Q, Chu Y, Sun Y, Zhu Z. LW-FQZip 2: a parallelized reference-based compression of FASTQ
files. BMC Bioinform. 2017;18:179.

	6.	 Tang T, Liu Y, Zhang B, Su B, Li J. Sketch distance-based clustering of chromosomes for large genome database
compression. BMC Genomics. 2019;20(Suppl 10):978.

	7.	 Liu Y, Wong L, Li J. Allowing mutations in maximal matches boosts genome compression performance. Bioinfor-
matics. 2020;36(18):4675–81.

	8.	 Ceri S, Pinoli P. Data science for genomic data management: challenges, resources. Exp SN Comput Sci.
2020;1(1):1–5.

	9.	 Pasquale De Luca SF, Luca Landolfi, Annabella Di Mauro. Distributed genomic compression in MapReduce
paradigm. In: International conference on internet and distributed computing systems (IDCS). 2019; Springer:
369–378.

	10.	 Dean J, Ghemawat S. MapReduce: a flexible data processing tool. Commun ACM. 2010;53(1):72–7.
	11.	 Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets. HotCloud.

2010;10(10):95–105.
	12.	 Ji Y, Fang H, Yao H, He J, Chen S, Li K, Liu S. FastDRC: Fast and Scalable Genome Compression Based on Distrib-

uted and Parallel Processing. In: International conference on algorithms and architectures for parallel processing
(ICA3PP). 2020; Springer: 313–319.

	13.	 Christley S, Lu Y, Li C, Xie X. Human genomes as email attachments. Bioinformatics. 2009;25(2):274–5.
	14.	 Hosseini M, Pratas D, Pinho A. A survey on data compression methods for biological sequences. Information.

2016;7(4):56–76.
	15.	 Law BN-F. Application of signal processing for DNA sequence compression. IET Signal Process.

2019;13(6):569–80.
	16.	 Hernaez M, Pavlichin D, Weissman T, Ochoa I. Genomic data compression. Ann Rev Biomed Data Sci.

2019;2:19–37.
	17.	 Wandelt S, Leser U. FRESCO: referential compression of highly similar sequences. IEEE/ACM Trans Comput Biol

Bioinf. 2013;10(5):1275–88.
	18.	 Xie X, Zhou S, Guan J. CoGI: towards compressing genomes as an image. IEEE/ACM Trans Comput Biol Bioinf.

2015;12(6):1275–85.
	19.	 Cheng K-O, Law N-F, Siu W-C. Clustering-based compression for population DNA sequences. IEEE/ACM Trans

Comput Biol Bioinf. 2017;16(1):208–21.
	20.	 Kuruppu S, Puglisi SJ, Zobel J. Relative Lempel-Ziv compression of genomes for large-scale storage and retrieval.

In: International conference on string processing and information retrieval (SPIRE). 2010; Springer, pp 201–206.
	21.	 Yao H, Ji Y, Li K, Liu S, He J, Wang R. HRCM: an efficient hybrid referential compression method for genomic big

data. Biomed Res Int. 2019;2019:1–13.
	22.	 Yao H, Chen S, Liu S, Li K, Ji Y, Hu G, Wang R. Parallel compression for large collections of genomes. Concurr

Comput Pract Exp. 2022;34(2):e6339.
	23.	 Mushtaq H, Ahmed N, Al-Ars Z. SparkGA2: production-quality memory-efficient Apache Spark based genome

analysis framework. PLoS ONE. 2019;14(12):e0224784.
	24.	 Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic

variation. Nucleic Acids Res. 2001;29(1):308–11.
	25.	 Wandelt S, Leser U. Adaptive efficient compression of genomes. Algorithms Mol Biol. 2012;7(1):30–9.
	26.	 Deorowicz S, Danek A, Niemiec M. GDC 2: compression of large collections of genomes. Sci Rep. 2015;5:1–12.
	27.	 Ochoa I, Hernaez M, Weissman T. iDoComp: a compression scheme for assembled genomes. Bioinformatics.

2015;31(5):626–33.
	28.	 Saha S, Rajasekaran S. NRGC: a novel referential genome compression algorithm. Bioinformatics.

2016;32(22):3405–12.
	29.	 Liu Y, Peng H, Wong L, Li J. High-speed and high-ratio referential genome compression. Bioinformatics.

2017;33(21):3364–72.
	30.	 Shi W, Chen J, Luo M, Chen M. High efficiency referential genome compression algorithm. Bioinformatics.

2018;35(12):2058–65.
	31.	 Liu Y, Zhang L, Li J. Fast detection of maximal exact matches via fixed sampling of query K-mers and Bloom

filtering of index K-mers. Bioinformatics. 2019;35(22):4560–7.
	32.	 Zhao Y, Hu F, Chen H. An adaptive tuning strategy on spark based on in-memory computation characteristics.

In: International conference on advanced communication technology. 2016; IEEE:1.
	33.	 Consortium TGP. An integrated map of genetic variation from 1092 human genomes. Nature. 2012;491:56–65.

Page 21 of 21Yao et al. BMC Bioinformatics (2022) 23:297 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	34.	 Ahn SM, Kim TH, Lee S, Kim D, Ghang H, Kim DS, Kim BC, Kim SY, Kim WY, Kim C, et al. The first Korean genome
sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res. 2009;19(9):1622–9.

	35.	 Wang J, Wang W, Li R. The diploid genome sequence of an Asian individual. Nature. 2008;456(7218):60–8.
	36.	 Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, Axelrod N, Huang J, Kirkness EF, Denisov G. The diploid

genome sequence of an individual human. PLoS Biol. 2007;5(10):1–10.
	37.	 Fernando A, Vinicius C, Sebastian W, Ulf L, Alysson B, Luis HE. On-demand indexing for referential compression of

dna sequences. PLoS ONE. 2015;10(7):e0132460.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	SparkGC: Spark based genome compression for large collections of genomes
	Abstract
	Introduction
	Related works
	Methodology
	Architecture
	Pre-processing
	Compression
	Decompression

	Results
	Compression ratio
	Compression speed
	Scalability
	Robustness
	Discussion

	Conclusions
	Acknowledgements
	References

