
Integration of Biochemical and Electrical Signaling-
Multiscale Model of the Medium Spiny Neuron of the
Striatum
Michele Mattioni1, Nicolas Le Novère1,2*

1 European Molecular Biology Laboratory-The European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom, 2 Babraham Institute, Babraham,

Cambridge, United Kingdom

Abstract

Neuron behavior results from the interplay between networks of biochemical processes and electrical signaling. Synaptic
plasticity is one of the neuronal properties emerging from such an interaction. One of the current approaches to study
plasticity is to model either its electrical aspects or its biochemical components. Among the chief reasons are the different
time scales involved, electrical events happening in milliseconds while biochemical cascades respond in minutes or hours. In
order to create multiscale models taking in consideration both aspects simultaneously, one needs to synchronize the two
models, and exchange relevant variable values. We present a new event-driven algorithm to synchronize different neuronal
models, which decreases computational time and avoids superfluous synchronizations. The algorithm is implemented in the
TimeScales framework. We demonstrate its use by simulating a new multiscale model of the Medium Spiny Neuron of the
Neostriatum. The model comprises over a thousand dendritic spines, where the electrical model interacts with the
respective instances of a biochemical model. Our results show that a multiscale model is able to exhibit changes of synaptic
plasticity as a result of the interaction between electrical and biochemical signaling. Our synchronization strategy is general
enough to be used in simulations of other models with similar synchronization issues, such as networks of neurons.
Moreover, the integration between the electrical and the biochemical models opens up the possibility to investigate
multiscale process, like synaptic plasticity, in a more global manner, while taking into account a more realistic description of
the underlying mechanisms.
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Introduction

A model can be considered multiscale when at least one of these

conditions is true: (i) the variables used in the model span different

orders of magnitude either in time or space, e.g. from milliseconds

to minutes, or from nanometers to millimeters; (ii) parts of the

model are simulated with different time and/or spatial resolutions,

influencing each other through a systematic exchange of variables

[1]. In computational neuroscience, multiscale modeling is

necessary on various fronts. While spatial stochastic simulations

of a femtoliter and a few thousands molecules are computationally

tractable and can provide good approximations of the dynamics

happening within a spine of a neuron [2], they are hardly usable

for an entire neuron. Neither are they desirable if we only need to

understand the electrical properties of the cell. A possible solution

could be to integrate spatial simulation of small compartments

with multicompartment Hodgkin-Huxley based models. These

multiscale models could help understand the overall electrical

behavior of the neuron, keeping the ability of zooming in a specific

part of the neuron, using the spatial simulations to gain detailed

understanding of the biochemical reactions occurring there.

Modeling large neuronal networks poses the same problem.

Simulating highly detailed multicompartment neurons require

substantial computational power, making them a sub-optimal

choice to model significant parts of the brain [3]. Dedicated

hardware and software are needed, such as the supercomputer

IBM BlueGene/L, used by the Blue Brain project [4]. Alterna-

tively, a possible solution is to model large networks using integrate

and fire neurons [5,6], and integrate them with multicompartment

models only in the cases where a detailed understanding of

electrophysiology at subcellular level is needed.

The timescale issue also occurs when modeling the interactions

between electrical and biochemical processes. Both domains could

be modeled together using Ordinary Differential Equations

(ODEs) or Partial Differential Equations (PDEs). However, the

difference of characteristic timescales between the fast and slow

reactions (sub-second for electrical processes, multi-minutes for the

biochemical ones) will impact the efficiency of the numerical

solver. Moreover, the electrical and the biochemical system mostly

interact when a certain type of event happens, like a stimulation,

and can be considered independent otherwise. This makes

continuous integration an unnecessary burden.

Synaptic plasticity is the biological process that modulates the

strength of the connections between two neurons at the synaptic

level, based on prior activity. Plasticity can be defined using a time

relationship, which compares different responses of the synapse to
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the same stimuli (such as post-synaptic potentials) over time.

Several factors influence the strength of the synapse, such as the

number, state and type of receptors present in the postsynaptic

density (PSD) [7]. Long Term Potentiation (LTP), reflecting an

increase of synaptic strength, and Long Term Depression (LTD),

reflecting a decrease in synaptic strength, are two widespread

forms of synaptic plasticity. The timescales of the events involved

in these biological processes span from microseconds to minutes,

or even up to hours and days when translation and transcription

occur [8]. Temporal distinction is used to classify Long Term

Memory (LTM) into two groups: Early-Long Term Memory (E-

LTM), where there is no protein translation, and the maximum

timescale is usually in the range of minutes, and Late-Long Term

Memory (L-LTM), when the synthesis of new proteins is required

and the range is of hours or longer [9].

Only a multiscale modeling approach can address the wide

range of timescales, involved in spatial, electrical and biochemical

processes [10] The integration of different submodels in a single

larger model is becoming more frequent in Systems Biology,

thanks in part to standards that are providing guidelines to

approach the problem [11] Simple models can indeed be created

independently, and later joined together in a more complex one

[12]. This approach is feasible with models sharing the underlying

mathematical framework, for instance process representation in

chemical kinetics models of biochemical pathways. However, the

same strategy cannot be applied to merge models of biochemical

and electrical signaling. These two aspects of neuronal function

are usually modeled using two different mathematical approaches,

which are solved using different methods.

According to the Clustered Plasticity Hypothesis (CPH),

proposed by Govindarajan et al. [13], neighboring spines have

the ability to influence each other, even if not all are directly

stimulated. The computational unit is therefore not the spine alone

as proposed by Matsuzaki et al. [14], but the dendritic branch

where the stimulated spines reside. It has to be noted that

Govindarajan et al. [13] are referring to an ensemble of stimulated

spines. Therefore each spine itself still contributes to the synaptic

plasticity, either being in a L-LTP or L-LTD status, but also

integrates with the others. This creates specialized engrams,

composed of precise set of spines. An engram is a persistent change

in the brain that is formed in response to a stimulus, and is the

neuronal substrate for a memory (also known as a memory trace).

In a recent paper, Govindarajan et al. [9] have demonstrated this

neighboring influence on a hippocampal slices. Among the

proposed mechanisms by which neighboring spines could influ-

ence each other are: (i) the supralinear integration of inputs

[15,16], (ii) the diffusion of proteins like Ras [17–19], which are

able to migrate from one stimulated spine to neighboring ones.

Given the continuous interaction between the biochemical and

the electrical processes, a multiscale model of a neuron with

explicit descriptions of spines would help to understand how both

processes interact, which timescales are involved, what are the

consequences on a single spine, and help assess the interactions of

a stimulated spine with the neighboring ones. In this manuscript,

we use this approach to study the Medium Spiny Neuron (MSN)

of the striatum.

Results

TimeScales Framework, a General Approach to Integrate
Biochemical and Electrical Modeling

TimeScales works as a meta-simulator, able to run a collection

of two or more different models as an holistic system, connecting

them together and taking care of the synchronization. The

modeling frameworks used by the different components can be

different, resulting in an Hybrid Model. To perform an optimal

synchronization, two main types of information must be available

to the synchronization algorithm: (i) the time of events, (ii) the

variables to exchange. To achieve this objective, the simulators

need to expose three methods: a set method, to export the value of

a variable, a get method, to import the value of a variable and a step

method, to advance the simulator forward in time.

The algorithm synchronizes two simulators only when an event

affect both, otherwise it runs the simulators separately. The main

idea behind the algorithm is to run the two simulators apart from

each other as long as possible, and to minimize the time spent in

the time consuming synchronization loop. Since the synchroniza-

tion is event-driven, the instant an event happens is the key

information for the system. Events can be known a priori, as it is the

case in this paper where stimulations are defined, or events can

emerge from the simulation of the system, as would be the case for

example in a neuronal network. Currently TimeScales focuses only

on the first case, but we suggest how it is possible to extend the

framework to operate in a situation where the events are generated

during the simulation. In the first case, the events can be presorted

chronologically in a lookup table which is checked to decide if a

synchronization has to be performed or not. The first chronolog-

ical event will be the point where the synchronization will happen.

The event will be removed from the queue, and the procedure will

be repeated until the end of the time of the simulation, as shown in

pseudo code below.

events_queue = create_events_queue()

while (events_queue ! = [ ]):

event_time = events_queue.pop()

run_separately(event_time)

synchronize(event_time)

run_separately(tstop)

Deciding the Model Hierarchy
In a master-slave configuration, the master process distributes

the work to the slave processes, which execute it and return the

result back to the master. The master then assembles the complete

result. This strategy is usually adopted to parallelize the execution

of complex programs, see for instance the MPI packages [20,21].

The idea of a master-slave configuration for multiscale modeling

has been used for example by Cao et al. [22], where the analysis of

a tunnel structure has been modeled using two different grids,

composed by master and slaves nodes at different resolutions,

where the force applied to the master node is the result of the

forces applied on the slaves nodes.

It is possible to think of the TimeScales framework as a master-

slave configuration where the event-driven algorithm acts as the

master process, coordinating and integrating the result coming

from the slaves, which are the simulators to synchronize. The main

difference with a classic master-slave configuration is the type of

computation performed by the simulators. In the TimeScales

framework, a precise hierarchy must be respected, to decide which

simulators’ variables should be read first and transferred to the

other simulator. The processes happening in the simulator running

the model with the faster timescale, Sim1, always needs to have

up-to-date values at the beginning of each iteration loop.

Therefore, the simulator from which the variables should be first

read is the one dealing with the slower timescale Sim0. Indeed, (i)

the simulator with the faster timescale is the one receiving external

input, e.g. it is the one directly affected by the event; (ii) the

Hybrid Neuronal Simulation
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simulator with the slower timescale will not be affected as soon as

the event arrives, however the effect will be important after a

relative long Dt, during which the behavior of the fast simulator

Sim1 will have been strongly affected.

Synchronization
Figure 1a represents schematically how the two simulators are

synchronized at timepoint of event zero (e0). The synchronization

involves four different steps, which comprise the exchange of

corresponding variables between the simulators and the time

increment. To synchronize the simulations at the time of event e0,

the relevant variables are read from Sim0, transformed and set in

Sim1 (1). Sim1 is then advanced by Dtsync (2). At which point the

relevant variables are read from Sim1, transformed and set in

Sim0 (3). Sim0 is then advanced by the same time as Sim1 (4).

Figure 1b represents a succession of events, until both simulators

reach the end of the simulation.

The Hybrid Model of the MSN consists of an electrical model

and a biochemical model connected together. Every spine has a

double model, electrical and biochemical, which are connected

and interact (Figure 2). During the synchronization loop, the

relevant biochemical variables of interest are retrieved, scaled,

converted into the corresponding variables of the electrical model.

The electrical simulator is then advanced for a Dt. The newly

computed relevant electrical variables are retrieved, scaled,

converted into the corresponding variables of the biochemical

model. The biochemical simulator is then run for the same Dt.

The synchronization loop is triggered each time an event happens.

When all the events have been cleared, both simulators are

advanced independently until tstop is reached. The flow chart of

Figure 1. Synchronization principle. The dashed arrows refer to the variable exchanges from one simulator to the other. The solid arrows
represent the time progression of the simulators. A, one synchronization loop. 1,2,3,4 represent the successive phases which are taking place at every
synchronization cycle. B, repetition of the synchronization through several events. The brown boxes represent the synchronizations happening
during one synchronization cycle. The duration of a synchronization is decided by the tbuffer parameter. Sim0 is the slow timescales simulator, Sim1 is
the fast timescales simulator.
doi:10.1371/journal.pone.0066811.g001
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the event-driven algorithm applied to the Hybrid Model of the

MSN is shown in Figure 3.

The synchronization event for the Hybrid Model is the release

of Glutamate (Glu) at the level of the cortico-striatal synapse. It is

modeled as trains of inputs of varied frequencies stimulating the

AMPA and NMDA receptors present in each spine’s PSD section

(see Method section). The times tstim, at which each input will be

delivered, are computed before the simulation is started, and they

are stored in a list. Both simulators are advanced until the first tstim

point. The synchronization loop is triggered and the current

weight for the AMPAR synapse is calculated from the relevant

variables in the biochemical simulator (see Methods). The stimulus

is then delivered with the updated weight and the NEURON

simulator is advanced for a Dt~tstim{tcurrent. The same Dt is used

to advance E-CELL3. After the first synchronizations, the two

simulators are forced to keep synchronizing with each other for a

Dtsync~tstimztbuffer, where tbuffer is an arbitrary time. During this

Dtsync, the two simulators are updated every millisecond, and the

variables are exchanged between the two simulators. A detailed

description of the variable exchange is presented in the Method

section. After the synchronization loop has been completed, the

synchronization loop is entered once again if there is another

stimulus, otherwise both simulators are advanced until reaching

the tstop. For example, if there is an event at time 1 s (tstim~1000)

and tbuffer is set at 10 ms, Dtsync, is equal to ½1000,1010� and

during this delta the two simulators are kept in sync every ms.

When the time t of the simulation is greater than 1010 the

algorithm returns to the fast regime and advances the two

simulators separately until the next event or tstop.

Comparing the Event-driven Algorithm with Other
Synchronization Strategies

If the two simulators are synced at regular fixed timesteps with a

while loop, the number of synchronization instances is determined

by the duration of the stimulation, slowing down the computation.

An event-driven algorithm reduces the number of synchronization

events only to the stimulation events time, switching to a smaller

Dt when a synchronization happens, and advancing the simulators

separately until the next synchronization event, or the end of the

simulation if there are no more events in the queue. To evaluate

the framework, the same set of simulations have been run using

the events-driven algorithm and a while cycle. The rollback

method proposed by [23] has also been taken into consideration.

However, it cannot be used to test the Hybrid Model, because the

simulators need to be advanced in parallel, while in the Hybrid

Model, the simulators must be advanced in precise sequential

order, as explained above. By comparison, in a while cycle, the

two simulators are synced every Dt, and run separately. Figure 4a

shows the comparison between the event-driven algorithm and the

simulations run using a while cycle, with different Dt. Table 1

shows how many stimulation events are missed by the while cycle.

The events-driven algorithm is faster than the while cycle in the

case the Dt is very small. If Dt is larger the while cycle is faster at

the price of missed events. It is important to stress that whereas

intercepting the events is important, it is only one aspect of the

synchronization. Another important aspect is how fast are the

changes happening in the variables that need to be exchanged,

and what is the best Dt used to synchronize the two models. This

value is intrinsic to the multiscale model. For example a value of 1
ms has to be used for the Hybrid Model to achieve an acceptable

approximation of the transferred variables, as explained in the

Method section.

Figure 2. Schematic representation of the Hybrid Model. The electric model is shown in blue and the biochemical model is shown in red. Each
spine’s biochemical model is connected with the spine’s electrical counterpart, all of which are integrated with the main electrical model of the
neuron.
doi:10.1371/journal.pone.0066811.g002
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In the Hybrid Model, the sparseness of the model is defined as

the number of spines stimulated in the simulation. Figure 4b shows

how the event-driven algorithm compares with a while cycle under

different sparseness. The computational time of the while cycle

increases in a linear fashion with the sparse connectivity, from 2 to

32 spines stimulated. On the contrary, the simulation time does

not depend on the sparseness in the case of event-driven

synchronization.

Single Spine Stimulation
To test the system, we ran a set of simulations with all the spines

instantiated in the electrical model, and only one stimulated

directly. The spine was stimulated with two different conditions: (i)

a two pulses train with an interval of 100 ms and (ii) a train at

8 Hz for 2500 ms, i.e. 20 pulses with an interval of 125 ms. In the

first condition, the first train was applied at 230 and 330 ms, while

the second train was applied at 15100 and 15200 ms (Figure S1).

The calcium which entered the spine according to the electrical

model was converted and injected in the biochemical model. This

amount was not sufficient to trigger the binding of Calmodulin to

CaMKII, and activate the phosphorylation of AMPARs (Figure

S2). A completely different response was obtained in the second

condition, with two interesting results emerging (Figure S3). The

first stimulation train starts at 2230 ms, while the second one starts

Figure 3. Event-driven algorithm applied to the Hybrid Model. Algorithm applied using E-CELL3 as the biochemical simulator (Sim0) and
NEURON as electrical simulator (Sim1).
doi:10.1371/journal.pone.0066811.g003

Table 1. Missed events.

Dtsync Total events Events missed Percent

10 240 0 0%

10 480 0 0%

10 720 0 0%

10 960 0 0%

100 240 120 50%

100 480 240 50%

100 720 360 50%

100 960 480 50%

Missed events using the while synchronization with Dt equal to 10 and 100 ms.
doi:10.1371/journal.pone.0066811.t001

Hybrid Neuronal Simulation
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at 15100 ms. The first train is able to trigger a higher

depolarization of the spine, due to the increased weight

(phosphorylated AMPARs, Figure S3b). This depolarization was

clearer with the second input train, when the weight is increased

by the previous stimulus, even after a delay of 15000 ms. Increased

weights result from the activated Calmodulin-CaMKII complex

able to phosphorylate AMPARs, increasing their number in the

PSD (Figure S4), and therefore the weight of the synapse. The

number of phosphorylated AMPARs kept increasing in the

absence of stimulation because of the slower timescales of the

biochemical reactions. When the second train arrives, the weight

of the synapse has started to decrease due to the action of PP1.

Figure 4. Comparison of the event driven algorithm with while loops and different sparseness. A, comparison of the event driven
algorithm with while cycles. B, comparison of the event driven algorithm with while loops under different sparseness. The event driven algorithm
offers a significant improvement over the usage of a while loop with a small Dt. The slight improvement of the while loop with D0:5 and D1:0 for the
highest number of events is due to a different load on the cluster at the time the simulations were ran. B, scalability of the event algorithm with the
increase of sparseness, compared to the while loop approach which cannot cope with it.
doi:10.1371/journal.pone.0066811.g004

Hybrid Neuronal Simulation
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However, it it still higher than during the first train, resulting in a

stronger depolarization of the spine, which also propagates to the

soma level (Figure S3c).

We compared the effect of the biochemically-regulated synapses

of the hybrid model with an electrical-only model of the spine. The

stimulation of the spine with two successive trains reveals that the

second train is able to elicit a stronger response than the first. The

increase is proportional to the frequency of stimulation. The cause

of the increased response is the increased weight of the synapse,

mirroring the increased number of AMPARs produced by the

biochemical model. With the biochemical model turned off, no

differences can be observed between the responses elicited by both

trains, as shown in Figure S5.

The ability of the spine to respond in different manners to two

stimuli is well known [16]. What this model allows is the possibility

to investigate how the spines can interact with each other at

different times, when the stronger response is made available via

biochemical memory, which would be completely lost if only an

electrical model was used.

Multiple Spine Stimulation
In the introduction, we have presented the CPH and how

different spines can influence neighboring spines. In particular,

Govindarajan et al. [13] have suggested that spines are working in

engrams. When one spine gets stimulated, the plasticity of the

neighboring ones is influenced, although indirectly.

Table 2. Characteristics of stimulation trains.

Frequencies Inputs Duration

8 Hz 50 6.25 s

20 Hz 50 2.50 s

40 Hz 50 1.25 s

40 Hz long 100 2.50 s

Durations, frequencies and number of events for a single train of stimulations.
doi:10.1371/journal.pone.0066811.t002

Figure 5. Spines stimulated by the first and second trains of input. Upper left, the ‘‘500’’ series; bottom right the ‘‘1400’’ series. The red
spines are the ones receiving the double trains, the green ones are the ones receiving only one train. The axes are in mm.
doi:10.1371/journal.pone.0066811.g005

Hybrid Neuronal Simulation
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To understand how neighboring spines could influence each

other,we have stimulated 18 spines: nine spines (554, 555, 556,

558, 559, 560, 562, 563, 564) located on the distal dendrite

dend1_1_2 and another set of nine spines (1468, 1469, 1470,

1472, 1473, 1474, 1476, 1477, 1478) on the symmetric distal

dendrite dend4_1_2. The stimulation consists of two trains

delivered at different frequencies: 8, 20, 40 Hz, each one of 50

inputs. A fourth stimulation at 40 Hz of double duration was also

performed. The first train is delivered to all the spines while a

second train is applied only to the spines 555, 559, 563, 1469,

Figure 6. Response of the spine to the first and second trains. Spine 559 is stimulated with both trains, spine 560 only with the first one.
doi:10.1371/journal.pone.0066811.g006

Figure 7. Different responses of spines differentially located. d1 is the average for the spines of the ‘‘500’’ series, closer to the soma, in
dendrite dend1_1_2, while d4 is the average for the spines of ‘‘1400’’, farther from the soma, in dendrite dend4_1_2.
doi:10.1371/journal.pone.0066811.g007

Hybrid Neuronal Simulation

PLOS ONE | www.plosone.org 8 Ju 2013 | Volume 8 | Issue | e668117ly



1476, 1473, as shown in Figure 5. The number of stimuli, the

frequency and the duration of each train are summarized in

Table 2. The first train always starts at 2000 ms and the second

train at 15000 ms.

No action potential was triggered at the soma level. At the spine

level instead, a consistent depolarization was achieved, both on the

spine directly stimulated and on the neighboring spines, not

directly stimulated during the second train of inputs. This result is

possible because while the first train is delivered to 18 spines, the

second train stimulates only 6 of them. Their response is increased

by the plasticity mechanism operating at the biochemical level,

increasing the number of phosphorylated AMPARs and therefore

the synaptic weight in the electrical synapse.

Effect of Frequencies
Figure 6 shows how the spines react to the 8 Hz stimulation; the

depolarization is high in the spines, but influences only marginally

the soma. At the arrival of the second train, spine 560 gets

depolarized with the current coming from spine 559 and the

contribution from the other 2 spines in the same dendrite, 555 and

563. Spine 559 is used as the example of the double stimulated

spine, while the 560 is plotted as an example of a singly stimulated

one. The difference of depolarization for the two sets is due to the

Figure 8. Depolarization and variation of phosphorylated AMPARs triggered by two trains of input. Spine 559 receives two trains of
stimuli, while spine 560 receives only one train. A, spine 559. B, spine 560.
doi:10.1371/journal.pone.0066811.g008

Hybrid Neuronal Simulation
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different axial resistance of the dendrite, which diameter decreases

in function of the distance from the soma. The spines stimulated

on dendrite dend1_1_2, 500 series were in the range m from the

soma, while spines on the dend4_1_2, 1400 series were in the

range 286:28,259:14m. The spines closer to the soma are attached

to a larger dendrite, thereby they experience a smaller axial

resistance. This permits to achieve an higher depolarization (see

Figure 7), which in turn influences the biochemical system, and

therefore the synaptic weight.

To analyze in detail the effect of electrical stimulations on

biochemical pathways, we focused on spines 559 and 560. The

former receives a double stimulation and the latter a single one.

The timecourse of biochemical AMPARs is plotted in Figure 8

together with the electrical timecourse and the times of stimulation

(black dots). During the first stimulation, the weight of the synapses

carried by both spines increases after the first train, peaking

around 10000 ms. The behavior is completely different when the

second train is delivered, with an increase in the direct stimulated

spine 559 and a decrease in spine 560. Calcium entering the spine

followed the same kind of timecourse, increasing twice in the

doubly stimulated spine 559. The difference is due to the

contribution of the increased number of AMPARs, which are

permeable to calcium. This also causes a positive feedback through

the increase of active CaMKII, and the recruitment of phosphor-

ylated AMPARs to the PSD. The situation is different for spine

560 where the number of AMPARs continues to increase after the

first train, peaking around 10000 ms. In this model, calcium

diffusion from one spine to another is not explicitly modeled,

therefore the small amount of calcium entering the spine 560 is the

result of the depolarization induced by the neighboring stimulated

spines, especially via the contribution of voltage gated calcium

channels (VGCCs) (Figure S6).

In the 20 Hz simulation, which features only 50 inputs but runs

for 2.50 seconds instead of 6.25 seconds in the 8 Hz, the synaptic

weight increases very quickly with the first train, reaching the peak

around 8000 ms. The second train hits the spines at 15000 ms,

causing a depolarization in both spines. In this case, the number of

AMPARs phosphorylated by CaMKII is higher than in the 8 Hz

stimulation. Moreover, when the second train is delivered to the

spines, this number is already decreasing, with the consequent

decrease of the synaptic weight.

The model was also stimulated at 40 Hz with two different

lengths of trains: (i) 50 inputs for 1.25 seconds (Figure S7), (ii) 100

inputs for a total length of 2.50 seconds (Figure S8). In none of the

cases, the number of phosphorylated AMPARs during the first

train increases as fast as in the 20 Hz stimulation. But it massively

increases on delivery of the second train. Figure 9 summarizes the

biochemical response triggered by the different frequencies. All the

stimuli deliver the same amount of inputs, except for the long train

at 40 Hz, which delivers twice as much, as described in Table 2.

The ability of the slow frequencies to trigger a larger response on

the first train is due to the distribution of the inputs across a longer

time, which gives the biochemical system time to respond

according to its own timescale. Therefore, as far as the

biochemical system goes, the distribution of the initial inputs has

already a major impact. When the second train arrives, the key for

the faster phosphorylation of the AMPARs lies in the activity state

of the biochemical memory. For the 40 Hz stimulation, it allows

the system to provide a response of the same magnitude as for the

8 Hz and 20 Hz stimulations.

The different behaviors produced by the four stimulations are

directly related to the evolution of the biochemical system, and the

subsequent synaptic weight determined by the phosphorylation

and dephosphorylation of AMPARs by CaMKII and PP1

Figure 9. Effect of stimulation frequency on AMPARs phosphorylation in the stimulated spine. The same amount of inputs are delivered
for all the frequencies but 40 Hz long. The lower frequencies are able to trigger a higher phosphorylation, and therefore a higher conductance of the
AMPARs in response to the first train. However, in response to the second train the high frequencies can still trigger a comparable phosphorylation of
the AMPARs, even if the inputs are delivered after a large amount of time due to the stiffness of the biochemical pathways.
doi:10.1371/journal.pone.0066811.g009

Hybrid Neuronal Simulation

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e66811



respectively. In the absence of stimulation, the number of

phosphorylated AMPARs is kept at equilibrium by the CaMKII

and PP1. The action of PP1 is inhibited by the phosphorylated

form of DARPP-32, which is under the control of PP2B (see

methods). An overview of the timecourses for the biochemical

system is plotted in Figure 10. For the 8 Hz stimulation, the flux of

calcium is spread over a long interval, which permits both PP1 and

CaMKII to be slowly activated (Figure 10a); CaMKII is present at

the spine at a higher concentration than PP1, and therefore able to

phosphorylate more AMPARs. At 20 Hz, Calcineurin dephos-

phorylates DARPP-32 (Figure 10b). DARPP-32 is therefore not

able to inhibit PP1 any longer and at the same time the

concentration of active CaMKII is decreasing. This delay

introduced by Calcineurin and DARPP-32 explains the peak of

the AMPARs visible in Figure S9 around 8000 ms. The situation

is different for the 40 Hz stimulations. In both short and long

stimulations, the first train is not able to cause a consistent increase

of CaMKII, because it is too brief (see Figure 10c and Figure 10d).

However, when the second train arrives at 10000 ms, CaMKII is

activated very quickly, comparatively to PP1, which gets activated

by the Calcineurin-DARPP-32 pathway and has an effect at a later

stage.

Contribution to the Plasticity of Neighboring Spines
Govindara et al. [9] have stimulated spines on an hippocampus

dendrite and shown, by monitoring the increase of spine head’s

volume, that the synaptic weight of neighbors of stimulated spines

was increased. We performed a similar simulation where only one

spine was stimulated with a double train at 8 Hz, and the

responses of the closest spines, together with a spine distant circa

40m were tracked (see Figure S10). To decrease the computational

time, only the spines on the same stimulated dendrite was

instantiated. Figure 11 compares neighbor and distant spine. As

expected, the depolarization of the distant spine 75 (Figure 11a) is

less pronounced than the one of the neighbor spine 96 (Figure 11b).

On the arrival of the second input, the depolarization is stronger

due to the presence of more AMPARs in the stimulated spine. The

higher depolarization is able to open VGCCs, causing a

Figure 10. Fractional activation of enzymes for different stimulations. All curves correspond to spine 559. A, 8 Hz; B, 20 Hz; C, 40 Hz; D,
40 Hz long stimulation. The long intervals between successive entries of calcium in the 8 Hz and 20 Hz stimulations allow CaMKII and PP1 to get
activated (after calcium binds calmodulin). The number of phosphorylated AMPARs increases because CaMKII concentration is higher than PP1
concentration. The situation is different with the 40 Hz stimulation, where the first train is too short to activate CaMKII significantly, causing only a
small increase. However, when the second train arrives, CaMKII is activated quicker than PP1, causing an increase of phosphorylated AMPARs.
doi:10.1371/journal.pone.0066811.g010
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subsequent increased amount of calcium to enter the biochemical

model, (Figure 11c). This result is consistent with the result found

by Govindara et al. [9].

Discussion

The plasticity of a synapse carried by a spine results from

complex interactions between biochemical networks and electrical

channels [7]. These interactions are usually not modeled, the

modeling effort focusing either only on the biochemical aspects or

on the electrical ones. In the simulation we presented, two main

questions have been addressed: (i) how different frequencies affect

the response of a spine when the biochemical contribution is also

taken in consideration, (ii) how a stimulated spine influences

neighboring spines. While it is known that the input frequency and

the duration have an effect on the depolarization of the spine [24],

the role of the biochemical component is usually not investigated

due to the longer timescales. We studied how the response of one

spine stimulated with different trains of inputs changes, highlight-

ing the role of the biochemical contribution on the increase of the

synaptic response, and the resulting depolarization of the spine in

response to the different stimulations. The overall effect contrib-

utes to substantial changes in the voltage response, not visible if the

biochemical contribution is not taken into account (Figure S5).

How Spines Influence each Other
The ability of spines to influence one another is a subject of

much research, starting with the debated role of the neck [25–31]

to the mechanism of inter-spines synaptic plasticity. The dispersed

plasticity model suggested by Frey et al. [22] postulates a synaptic

tag, that identifies spines in which the strength of the synapse

should increase, and those in which it should decrease or even

disappear. The synaptic plasticity would therefore result from a

process happening solely within the stimulated spine. On the

contrary, the clustered plasticity hypothesis proposes that spines

work together as an ensemble and influence each other, as

advanced by Govindarajan et al. [13]. The influence of a

stimulated spine on the plasticity of the surrounding ones was

shown by the same authors later [9].

Two main aspects can be highlighted in our simulations: (i) the

biochemical component of the response of the stimulated spine to

the first input train increases the electrophysiological response to

the second input train, which in turn contributes to a larger

depolarization of the surrounding spines. This triggers the opening

of the VGCCs, resulting in an increased flux of calcium in the

biochemical model (directly derived from the electrical one as

explained in the Method section); (ii) the smaller response of the

distant spines is not sufficient to increase calcium flux enough, and

does not affect visibly the synaptic plasticity, in contrast with the

closest spines (Figure 11). We conclude that the amount of

calcium, the position of the spine on the dendritic tree, the location

relative to the other stimulated spines, the timing of the stimulus,

and the state of the biochemical enzymatic cascades, are all

connected variables which influence each other in a complex

manner.

Multiscale modeling is an approach used to address complex

phenomena, which variables span several orders of magnitude.

For this reason, it is used in several scientific fields, such as climate

and weather forecast [33] and approaches used to integrate

molecular dynamics and quantum physics [34]. Examples can also

be found in biology, such as carcinogenesis and physiology [35].

To create a multiscale model, it is possible to combine submodels

of interest with the use of analytical techniques or by creating an

interface between them. Analytical methods can only be used

when the models to combine are simple [1], while different types

of interfaces can be used in the case of complex submodels [36]. In

a multiscale model built with two interlinked modules, the timing

of synchronization is a major factor to take in account, together

with the number of times the synchronization happens. Borrowing

the terminology from the study of networks, it is possible to define

the interlink as connectivity, which could be defined as sparse when

the number of synchronization requested during the whole

simulation is low, and dense when the number of synchronization

between the two models is high.

In a dense connectivity scenario, one solution is to synchronize

the modules at a fixed Dt throughout the entire simulation. The

size of the interval is critical. A small interval will ensure an

accurate synchronization between the systems, however it will be

computationally expensive. Conversely, a large interval will speed

up the simulation, but the likelihood to miss a synchronization

event will increase. This approach has been used by Ray et al.

[37], with a one millisecond as fixed interval, in one of the first

works to integrate electrical and biochemical signaling. In a recent

paper, [38] have presented a model of a whole Mycoplasma

genitalium cell, integrating 28 different modules, coupled through

16 global variables. The authors assumed that the modules were

independent on a short timescale. They therefore decided to

synchronize all the modules every second.

In a sparse connectivity scenario, if the two models are

simulated in a parallel fashion, a rollback technique can be used,

as demonstrated by Cvijovic et al. [23]. Although the work has

been carried out on yeast, the technique is of interest in

synchronizing any models. The rollback technique consists in

advancing the models as far as possible in time, while an event

detection system makes sure there is no need to synchronize them.

If an event happens, and a synchronization is necessary, the

models are rolled back to the latest time point before the event

happened. They are then synchronized and the simulation

continues, again running them separately as far as possible. The

rollback action is expensive, therefore this technique can be

applied only if the connectivity is sparse and if the models models

are running in parallel.

A different solution to the problem of synchronization has been

proposed by the Multi Simulator Coordinator (MUSIC) [39], a

library which facilitates the interaction between simulators, taking

advantage of the Message Passing Interface (MPI) [21,40] for the

communication. MUSIC does not take into account the sparseness

of the connectivity. Instead it defers the decision to simulators,

providing an Application Programming Interface (API) to make

them synchronize. The layer between the models simulated by

different simulators can be implemented with the MUSIC library

[39], which permits a one way stream of data from one simulator

to another. MUSIC has been used as the communication tool

between a detailed population of neurons modeled with

PyMOOSE [37], and a bigger population of artificial neurons

simulated using NEST [41] in 2010 [42]. The variable shared

between the simulators was the spikes’ time, which resolves into a

stream of floats passed between the simulators. To achieve the

synchronization, every simulator which supports MUSIC has the

ability to emit a tick, a signal meaning the possibility to share the

Figure 11. Response of non stimulated spines. Influence of stimulation of spine 97 on depolarization and number of AMPARs of distant spine
75 (panel A) and neighbor spine 96 (panel B). The amount of biochemical calcium in the two spines is plotted on panel C.
doi:10.1371/journal.pone.0066811.g011
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internal variable at that time point. Every tick is therefore used as

checkpoint, where the variables are exchanged. The synchroniza-

tion of this point is achieved using a while loop, and the ticks need

to be emitted at regular time. As the dt for the numerical

integration gets smaller, the number of ticks required increases

[39]. This approach is efficient only when the connectivity

between the two systems is dense, justifying a constant while loop

to sync the simulators. However, in case of sparse connectivity, the

constant synchronization between the two systems creates an

overhead.

A sparse connectivity takes place when we consider electrical

and biochemical simulations together. One important difference

between a biochemical and an electric process lies in the time

needed by each process to produce a change in the system. For

example, a synaptic input triggers a voltage response in a spine

head which peaks in 100 ms, while the phosphorylation of

AMPARs takes minutes to peak. A multiscale approach has been

used to run coupled simulations of biochemical and electrical

activities by [37], where the two systems are run separately and

then synchronized with a while loop at a constant dt. The variables

are copied from one system to the other, and the simulation is then

run until completion. The time at which the simulators need to

synchronize is hard-coded in the model, without being driven by

events. In our case, the time of the events/stimuli is set at the

beginning of the simulation according to which protocol is used. It

is not hard-coded in the algorithm, which make re-using the same

algorithm easier with any set of events.

A consistent strategy, usable with both sparse and dense

connectivities and that minimizes the number of synchronization

between the modules would help advancing multiscale modeling in

computational neuroscience. In this paper, we present a possible

solution to the problem, with an event-driven algorithm which can

be used in conditions of sparse and dense connectivities and which

limits the number of synchronizations. The algorithm advances

the simulators separately for as long as possible, and synchronize

them only at the event time, guaranteeing the time consistency at

the synchronization step. This brings two main results: (i) no

unnecessary synchronization is performed, (ii) the simulators are

synchronized at a precise time. The internal numerical integration

strategies used are therefore completely decoupled from the

synchronization algorithm itself. Another advantage of the event-

driven algorithm is that simulators do not have to implement ad hoc

support, but only exposes three public methods which usually are

already used privately, or can be easily implemented. The

algorithm is able to decrease the computational time when the

connectivity is sparse, and provides a flexible way to address

several inputs at different times. It has been tested with a set of

events known before the simulation, such as a train of inputs at a

certain frequency, This does not allow variable events emerging

from the simulation. A way to overcome this limitation is

presented in the Methods section, where the event driven

algorithm is extended to accept events created during the

simulation. The algorithm is integrated in the TimeScales

framework, which uses Python as its main language and tested

with the simulators NEURON [43] and E-CELL3 [44].

The way variables are exchanged at the level of the interfaces

can have an impact on the results of the multiscale model. The

approach used by Ray et al. [37] is to copy the current variable of

interest, e.g calcium concentration, from the electrical simulator

directly into the biochemical simulator. This strategy can be

adopted when the variable exchanged is not subject to a quick

change in the biochemical simulator. If the variable changes very

quickly in the biochemical simulator, an instantaneous increase of

the value could lead to artifacts, where the value could jump

between high and low. For example, in the biochemical model of

our Hybrid Model, calcium is quickly buffered by Calmodulin. If

an inject type strategy is used, the concentration of free Calcium

will change rapidly between a high value after the value is copied,

and a low value as soon the Calmodulin buffers it. This creates an

artifact, where the rise and decline of the free Calcium in the

electrical model is not mirrored by a rise and decline in the

biochemical model. We propose a solution which uses the first

derivative of the variable free Calcium in the electrical model to

calculate the constant for the flux of Calcium entering the

biochemical model. The flux in E-Cell is implemented as

Unimolecular Flux which provides a timecourse of calcium

concentration in the biochemical simulator resembling the

electrical one. The current solution calculates the constant to

drive the UniMolecular Flux as the derivative of the calcium

concentration at time t and tztDsync. This offers a good

Table 3. Parameters for the sodium and potassium channels.

�gg(S=cm2) HHform V1=2 k(mV ) provenance of t

NaF 1:5, soma m3|h m {23:9 {11:8 Tabulated

0:0195, dendrites h {62:9 10:7 Tabulated

NaP 4|10{5 , soma m|h m {52:6 {4:6 [48]

1:38|10{7 , dendrites h {48:8 10 Tabulated

KAf 0:225, soma and proximal m2|h m {10:0 {17:7 Tabulated

0:021, middle and distal h {75:6 10 [48]

KAs 0:0104, soma and proximal m2|(a|hz(1{a)) m {27:0 {16 [48]

9:51|10{4 , middle and distal a~0:996 h {33:5 21:5 [48]

KIR 1:6|10{4 m m {82 13 Tabulated

KRP 0:001 m|(a|hz(1{a)) m {13:5 {11:8 Tabulated

a~0:7 h {54:7 18:6 Tabulated

BKKCa 0:001

SKKCa 0:145

The conductance of KIR was changed from 1:4:10{4 to 1:6|10{4 to match the membrane voltage when all the spines were instantiated.
doi:10.1371/journal.pone.0066811.t003
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estimation. One possible way to improve this approach would be

take into account the slope of the electrical calcium concentration

in order to compute a variable Dt used in the synchronization

phase.

Interaction between Electrical and Biochemical
Components in the Hybrid Model

Electrical and biochemical processes are tightly coupled in

determining neuron properties and behaviors. However, until

recently they have rarely been modeled together. The reasons

behing such a division are diverse, including the difference of

communities, the different mathematical frameworks, and the

different timescales involved. Nevertheless, the biochemical

cascades are influenced by the opening of electrical channels,

whose states are in turn influenced by the biochemical cascades.

Examples of this interaction loop are the influence of the MAPK

pathway on the AMPARs [45], the integration between potassium

channel activity and the dopamine controled cascades [46], and

the effect of DARPP-32 as a key switch responding to dopamine

and glutamate signals [47].

To integrate the electrical and biochemical aspects of the

signaling in MSNs, we modeled the calcium-modulated pathway

Calmodulin-CaMKII-Calcineurin, which influences the weight of

the synapse by changing the number of phosphorylated AMPARs

in the post-synaptic density. To model the feedback loop, we

developed the Hybrid Model of the MSN, which is the first

multiscale model of the MSN to date. The Hybrid Model features

a symmetric dendritic tree with electrical conductances distributed

according to experimental data [48], together with 1504 explicitly

modeled spines, each one containing an electrical and a

biochemical component, see Methods section.

We showed that 1) modeling the biochemical aspect of the

synaptic signaling has a major impact on the electrical response of

the spine, providing a plasticity rule for the increase of the synaptic

weight, compatible with the low resistivity of the neck as suggested

by [30]; 2) stimulated spines are able to influence the plasticity of

neighboring spines, forming an engram as suggested by [13],

without affecting the plasticity on distant spines. These two results

are emerging from the current version of the Hybrid Model, which

takes into account only one biochemical cascade known to

influence synaptic plasticity. Several other signaling pathways are

involved in shaping the plasticity of the spines, some of which are

significantly altered in diseases, like Parkinson’s [49,50]. In

particular, the role of dopamine as a neuromodulator, able to

change the effect of glutamate [47,51] could be investigated.

DARPP-32, stimulated by cAMP and therefore activated also by

dopamine, is actually already present in the biochemical model.

Since the Hybrid Model is run using the modular Timescale

framework, it would be possible to integrate other simulators, like

STEPS [2], to explore the contribution of three-dimensional

diffusion of proteins such as Ras [18] to the plasticity of

neighboring spines.

Minimum Step to Create an Interface
Usually different models, dedicated to the study of a different

aspects of life, are written for different simulators. Some work is

therefore needed to solve the problems of communication and

integration. Usually, any two simulators can be interfaced if both

can offer at least three public methods: (i) step(), (ii) set(), (iii) get().

The method step() is used to advance the simulator to an arbitrary

time point, while set() and get() are used to write and read the

values of variables. All these methods should be callable at run-

time, without breaking the internal integration method used by the

simulator. Keeping those requirements in mind, we have explored

possible solutions and suitable software to test them.

If both simulators are running as parallel applications using

(MPI) [21,40], it is possible to exchange variables and synchronize

them using the MUSIC [39] library. At the time we started our

project, the MUSIC library was not yet implemented in

NEURON, or in any other simulation software able to solve

biochemical models. The use of MPI does not offer any

computational benefit for single cell models, therefore this solution

was discarded.

Simulators are usually specialized to solve models using a given

approach. This is in particular the case for electrical propagation

Table 4. Parameters for the calcium channels.

�PP(cm=s) HHform V1=2 k(mV ) provenance of t

CaL1.2 6:7|10{6 m2|(a|hz(1{a)) m {8:9 {6:7 [48]

a~0:17 h {13:4 11:9 [48]

CaL1.3 4:25|10{7 m2|h m {33:0 {6:7 [48]

h {13:4 11:9 [48]

CaN 1:0|10{5 m2|(a|hz(1{a)) m {8:7 {7:4 [48]

a~0:21 h {74:8 6:5 [48]

CaQ 6:0|10{6 m2 m {9:0 {6:6 0.377 ms

CaR 2:6|10{5 m3|h m {10:3 {6:6 1.7 ms

h {33:3 17 Tabulated

CaT 4|10{7 m3|h m {51:73 {6:53 Tabulated

h {80 6:7 Tabulated

doi:10.1371/journal.pone.0066811.t004

Table 5. Spine dimensions and surface.

Section Diameter (mm) Length (mm) Surface (mm2)

PSD 0.5 0.05 0.471

Head 1.175 1.0 5.86

Neck 0.1 1.5 0.487

doi:10.1371/journal.pone.0066811.t005
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of voltage using the cable equation, or biochemical cascades using

chemical kinetics. GENESIS [52] with the KinetiKit extension

[53] tried to merge both visions of the neuronal world, proposing a

simulator able to solve biochemical signaling and electrical

modeling. The way to connect the two parts of the simulator is

only stated in the book of GENESIS [52] as technically feasible.

However, to the best of our knowledge, no working model has

been published. GENESIS core was rewritten in the Multiscale

Object-Oriented Simulation environment (MOOSE) and in 2008

[37] presented a way to couple NEURON with PyMOOSE, the

Python binding of MOOSE. While this was the first attempt to run

electrical and biochemical simulation together, the integration

between the two systems was achieved with a loop synchronizing

with a fixed Dt of 1 s. More recently [45] explored the multiscale

modeling approach using solely the MOOSE software. The

multiscale model consisted of 3 spines of an hippocampal neuron

where biochemical processes were synchronized with electrophys-

iological ones using a while loop.

In our work, the electrical part of the multiscale model was

modeled with NEURON [43], which provides a way to

implement the three methods described above using a new Python

interface [54]. For the biochemical component, different simula-

tors were considered. We initially explored the COmplex PAthway

SImulator (COPASI) [55] and SBMLOdeSolver [56]. However

they did not expose the public methods we have identified above.

We also tested the STochastic Engine for Pathways Simulation

(STEPS) [2], a stochastic simulator which permits to model

reaction diffusion in an arbitrary 3D space and the Python

Simulator for Cellular Systems (PySCES) [57]. PySCES provides a

Python runtime interface. However it was not possible to advance

the simulation to an arbitrary point in time and continue the

simulation from there. Therefore we have decided to work with E-

CELL3 [44], which had the three public methods we required,

and had a Python run-time interface. To achieve more flexibility,

making sure the sync between two different simulators is

performed only when it is needed, and to adapt to a complex

firing pattern, we have developed an event-driven synchronization

algorithm and fitted it into the TimeScales framework. TimeScales

can be extended to incorporate any other simulators which offers a

Python run-time control like PyMOOSE, STEPS or COPASI.

The work presented here can open up to more complex

multiscale simulations, providing the ability to explore different

combinations of modules. In particular, simulations could

investigate the role of different biochemical modules which cannot

be merged in one large model, combine an electrical module with

the study of the dynamic morphing of morphology (for example in

spine [29,58,59]), combine detailed multicompartment model of

neurons and large scale network simulations [60], or explore the

other end of the scale, combining a detailed multicompartment

model with a thermodynamics energy module.

Methods

MSN Electrical Module
The dendritic tree described in [48] was used as a base for our

electrical model. The symmetric tree is formed by 4 proximal

dendrites, each dividing in 2 medial dendrites, subsequently

dividing in two distal dendrites, for a total of 28 dendritic

branches.

The fourteen electrical conductances distributed in the model

are also based on [48]. They are divided in two sodium currents,

Fast (NaF) and Persistent (NaP); six potassium channels, Potassium

Figure 12. Spine dimensions and equivalent circuit. The dimensions are expressed in mm, the post-synaptic density is in green, the head in red
and the neck in blue.
doi:10.1371/journal.pone.0066811.g012
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Inward Rectifier (KIR, also known as Kv 2.1), Potassium slow A-

type (KAs, also known as Kv1.2), Potassium fast A-type (KAf , also

known as Kv4.2), Potassium 4-AP resistant persistent (KRP),

Potassium small conductance calcium dependent (SKKCa) and

Potassium large-conductance calcium dependent (BKKCa); six

calcium channels, N-type, Q-type, R-type, T-type, L-type Cav1.2

high voltage activated and L-type Cav1.3 low-voltage activated.

The channels are modeled using the Hodgkin-Huxley formalism

following the general equation 1, with m and h determined by

equations 2 and 3 respectively.

Iz~gz mx hy(Vm{Ez) ð1Þ

m’~
m?{m

tm

with m?(Vm)~
1

1zexp
Vm{V1=2

k

� � ð2Þ

h’~
h?{h

th

with h?(Vm)~
1

1zexp
Vm{V1=2

k

� � ð3Þ

m?, h?, tm and th are the steady state activation and time

constants for m and h at voltage Vm. V1=2 and k are the half-

Figure 13. Fit of the spine membrane surface and spine distribution per branch. Panel A shows the polynomial fit (17th order) of the spine
membrane surface using digitized data from [64]. In panel B, the histogram of the spine distribution calculated with the equivalent spine surface is
shown in blue. The final number of spines used (371 per branch, 1504 total), after removal of the noise due to spines positioned over the soma and
the proximal dendrites, is shown in green.
doi:10.1371/journal.pone.0066811.g013
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activation constant and the slope of the Boltzmann fit to m? and

h? and gz is the maximal conductance of the channel. The

channels are implemented in NEURON as ‘‘mod’’ files. Four

channels, KAs, KRP, N-type and L-type calcium 1.2, are modeled

using a modified version of the Hodgkin-Huxley equation, as

described by eq. 4, where a is a coefficient used to increase (a~1)

or decrease (a~0) the inactivation of the variable.

Iz~gz mx (ahz(1{a))(Vm{Ez) ð4Þ

The parameters for the channels are taken from [48], and are

reported in Table 3 for the potassium and sodium channels, and in

Table 4 for the calcium channels.

If the time constants had a fixed value, we used the value

reported. In the case of dynamically calculated ones, we refer to

the paper provided the mathematical expression used. In the case,

the values are tabulated, they are calculated by NEURON at run-

time, and their value can be found in the model code which is

available (see below).

Electrical Dendritic Spine Model
The model of the spine is an extension of the one presented in

[61]. Each electric spine is modeled using three electrical sections,

PSD, head and neck, which are connected with an axial resistance

as shown in Figure 12. Each spine is connected with the dendritic

tree through the neck. The sections are modeled as cylinders with

the geometrical dimensions shown in Table 5.

The PSD is an internal section of the spine’s head and its

contribution to the surface has not been included to the total

spine’s surface, which measures 6:35mm2. The channels inserted in

the PSD are the L-type Cav1.2 high voltage activated and L-type

Cav1.3 low-voltage activated [50]. The AMPA synapse and the

NMDA synapse have been modeled as co-localized, as they have

been shown to be in the CA1 hippocampal neurons [62], using a

double exponential. The channels inserted in the spine head are

the Q-type, R-type, N-type and SKKCa. We have inserted the KIR

in the head and in the neck according to [46]. However, other

potassium channels could be present instead of KIR, such as KAf

[49]. The spine has been developed as an ad hoc Python class,

which initializes the three electrical sections and the biochemical

simulator if an input is delivered.

Spines Distribution
In [48], spines are not modeled explicitly, and a correction to

account for the loss of total surface is applied, increasing the length

and the diameter of the sections. It uses the Segev method [63],

according to the equation 6, with l and d the length and the

diameter of the dendrite respectively, and F the fraction between

the sum of dendrites and spines areas, divided the area of the

dendrite.

l’~l F2=3

d ’~d F1=3

F~
AdendzAspines

Adend

ð5Þ

Figure 14. Interaction between ion channels and biochemical signaling. DARPP-32 forms a complex with PP1 after having been
phosphorylated by PKA (grey line). Two possible pathways can be activated according to the concentration of calcium: at low calcium concentration
Calmodulin forms a complex with Calcineurin, dephosphorylating DARPP-32, releasing PP1 inhibition, with subsequent dephosphorylation of
AMPARs (orange line). At high calcium concentration, the complex CaMKII/Calmodulin is able to phosphorylate AMPARs (yellow line). The calcium
flux incoming from the ionic channels AMPARs, NMDARs and VGCCs is represented in light blue.
doi:10.1371/journal.pone.0066811.g014
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The total increased surface of the model is 14973 mm2, while the

surface calculated with the original dimension is 5278 mm2. The

number of spines to add to the model is 1526, obtained by dividing

the difference, 9695 mm2, by the surface of the spine, 6.35 mm2. To

keep the symmetry of the model, we reduced the number of spines

to 1524, that is 381 per branch.

The distribution of the spines is not uniform [64]. They are

virtually absent on the proximal dendrites, very concentrated at

the last part of the medial dendrites and the initial part of the distal

dendrites (50 mm circa from the soma) and their density slowly

decreases towards the end of the distal dendrites (see Figure S11).

To calculate the distribution of the spines on the dendritic tree we

digitalized the data from [64] describing the spine membrane

surface in function of the distance from the soma. We then fitted

the result with a 17th order polynomial function, as shown in

Figure 13b.

To obtain the total surface area of the spines for one of the four

dendrites, formed by one proximal, two medial and four distal

branches, we divided the total spine membrane area, obtained by

integrating the polynomial, by four. The area has then been

discretized using a spine equivalent area, to calculate how many

spines should be inserted at each position of the dendrites. The

result is the blue histogram, Figure 13b, which, due to the noise of

the digitized data, shows a total of 5 spines at the soma and

proximal dendrites’ location. These spines have been excluded,

resulting in a new spine distribution, shown on the green

histogram, with a total of 376 spines per branch.

Biochemical Signaling Module
The biochemical model, integrated with the electrical one, is

represented in Figure 14 using the System Biology Graphical

Notation (SBGN) [65]. The model includes the allosteric

Calmodulin model from [66], the reactions between the

Calcineurin-Calmodulin complex with DARPP-32, PKA and

PP1 presented in [67]. Dephosphorylation of AMPAR by PP1 and

phosphorylation of AMPAR by the complex Calmodulin-CaMKII

were added for the purpose of the present work.

The source of biochemical calcium is the total flux of electrical

calcium coming from the Voltage Gated Calcium Channels

(VGCC)s, the AMPARs and the NMDARs, injected in the

biochemical model after been scaled and computed as explained

below. The amount of calcium influences the behavior of

Calmodulin, an allosteric protein which can bind both Calcineurin

and CaMKII [66]. When the amount of calcium is small,

Table 6. Calmodulin parameters for binding calcium.

Parameter Value Reference

kon 106 M21s21 [66]

kR
offA

8:32 s21 [66]

kR
offB

1:66|10{2 s21 [66]

kR
offC

17:4 s21 [66]

kR
offD

1:45|10{2 s21 [66]

kT
offA

2:10|103 s21 [66]

kT
offB

4:19 s21 [66]

kT
offC

4:39|103 s21 [66]

kT
offD

3:66 s21 [66]

kCaM
RT 106 s21 [66]

kCaM
TR

48:38 s21 [66]

kCaMCa
RT 6:2829|104 s21 [66]

kCaMCa
TR

768:81 s21 [66]

kCaM2Ca
RT 3:96|10{3 s21 [66]

kCaM2Ca
TR 1:2217|104 s21 [66]

kCaM3Ca
RT

249:2 s21 [66]

kCaM3Ca
TR 1:94144|105 s21 [66]

kCaM4Ca
RT

15:6816 s21 [66]

kCaM4Ca
TR 3:085144|106 s21 [66]

doi:10.1371/journal.pone.0066811.t006

Table 7. Additional parameters for the biochemical model.

Parameter Value Reference

Ca2+ pump:

vmax 4|10{3 M s21 [79]

Km 1|10{6 M [79]

Ca2+ leak:

k 4|10{5 M s21 [79]

CaMR binding targets:

konCaMKII 3:2|106 M21 s21 [79]

koffCaMKII
0:343 s21 [80]

konCaMKIIp 3:2|106 M21 s21 [80]

koffCaMKIIp
0:001 s21 [80]

konPP2B 4:6|107 M21 s21 [81]

koffPP2B
0:4 s21 [82]

CaMKII autophosphorylation on Thr286:

kThr286p 6:3 s21 [83]

PKA phosphorylates DARPP-32 on Thr34:

konDP KA 5:6|106 M21 s21 [84]

koffDP KA
10:8 s21 [85]

kcatDP KA
2:7 s21 [85]

Calcineurin (PP2B) dephosphorylates DARPP-32 on Thr34:

konDpP P2B 4:1|106 M21 s21 [85]

koffDpP P2B
6:4 s21 [86]

kcatDpP P2B
0:2 s21 [86]

DARPP-32Thr34p binding PP1:

konDpP P1 4:0|106 M21 s21 [86]

koffDpP P1
0:4 s21 [87]

PP1 dephosphorylates CaMKII:

konCaMKIIpP P1 3:0|106 M21 s21 [87]

koffCaMKIIpP P1
0:5 s21 [88]

kcatCaMIIpP P1
2:0 s21 [88]

CaMKII phosphorylates AMPAR on Ser831:

kcatCamKII
0:5 s21 [89]

kMCaMKII 90|10{6 M [68]

PP1 dephosphorylates AMPAR on Ser831:

kcatPP1
0:5 s21 [68]

kMPP1 2|10{6 M [68]

doi:10.1371/journal.pone.0066811.t007
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Calmodulin binds Calcineurin, forming a complex which is able to

dephosphorylate threonin 34 of DARPP-32. DARPP-32 then no

longer inhibits PP1, which is able to dephosphorylate AMPARs

(orange lines in Figure 14). This in turn decreases the number of

available AMPARs in the PSD. In the presence of high

concentration of calcium, Calmodulin binds CaMKII and this

complex is able to phosphorylate directly AMPARs on Serin 831,

causing the incorporation of the protein in the PSD [68] (yellow

lines in Figure 14).

Table 6 reports the parameters used for the allosteric model of

the Calmodulin, taken from [66]. Table 7 reports the values and

references for the constants used in the other reactions. Table 8

reports the initial concentrations.

Variables Exchange and Transformation
Synaptic strength is under the control of a feedback loop: the

concentration of calcium in the spine after an excitatory stimulus is

governed by the number and type of channels in the membrane,

especially the VGCCs, which start to open only around -50 mV

[69]. NMDARs and AMPARs permeable to calcium also

contribute to the dynamics of calcium concentration in the spine

[70]. One of the ways by which the weight of a synapse is

increased or decreased consist in changing the number of

AMPARs in the PSD [7,8,71]. The trafficking of AMPARs is a

complex process which involves different pathways [68,71–74].

AMPARs can be phosphorylated by CaMKII on Serine 831 and

dephosphorylated by PP1 [68]. The phosphorylation increases the

number of AMPARs in the membrane and therefore the flux of

ions able to enter the neuron. In the Hybrid Model this feedback

loop (Figure 15) is at the core of the interconnection between

biochemical and electrical. The two models are updated during

the synchronization cycle for a Dtbuffer every Dtsync.

In the electrical model, the intracellular calcium concentration

in each spine is calculated as a thin shell around the membrane as

in [48], according to the equation 6 [75],

½Ca�i~k
{ICa

2Fd
{p

Kt½Ca�i
½Ca�izKm

z
½Ca�i,inf{½Ca�i

tr

ð6Þ

where ½Ca�i is the intracellular calcium concentration, ICa is the

inward calcium current, F is the Faraday constant, equal to

96.489 C/mol, and d~0:1mm is the shell depth. The pump term

is represented using Michaelis-Menten formulation with a

turnover Kt~10{4 mM/ms and a Michaelis constant

Km~10{4 mM. tR represents the diffusive term equal to 43 ms

[76] and ½Ca�i,inf ~10{5 mM as the equilibrium intracellular

calcium. The parameters k and p were left to their original values,

k~10000 and p~0:02, as in [48]. The biochemical concentration

of the calcium is obtained by calculating the flux as the derivative

of the concentration of the electric calcium during the Dtsync, as

shown in eq. 7.

kflux~
d½Ca�
dtsync

~
½Ca�t1{½Ca�t0

t1{t0

ð7Þ

kflux is used to run for the same Dtsync a ConstantFluxProcess,

which is zeroth order reaction in E-CELL3. This process

introduces the calcium in the spine. All the other biochemical

reactions also take place at that time, with a possible change of the

concentration of the phosphorylated AMPARs. The current

approach to synchronize calcium from the electrical and

biochemical models uses a fixed dtsync. This solution could be

improved, for instance using a variable dtsync which follows the

steepness of the electrical Calcium concentration. Figure S12

shows how biochemical calcium, composed of free and buffered

calcium, approximates the shape of the electrical calcium.

Modifications of the weight of the AMPA synapses are usually

expressed as the relative change between resting and excited

conditions [70]. We used a similar approach to calculate the

electric weight using the equation 8, where (#AMPAR-P)teq
is the

number of AMPARs at a time where the system is at equilibrium

and (#AMPAR-P)t is the number of AMPARs at the current time

t. The result is normalized and used to change, at run-time, the

weight field of the NetCon object for the respective synapse. The

final synapse’s electric weight is a multiplicand of the total

conductance of the AMPAR channel, and will affect the ion flux at

the next stimulus in that particular spine.

weight~
(#AMPAR{P)t

(#AMPAR{P)teq

ð8Þ

Events Delivery and Biochemical Spines’ Relationship
Each spine can be individually stimulated with different spike

trains. To deal with the complexity of the simulation, a workflow

which involves the integration between Sumatra, Neuronvisio and

TimeScales has been developed.

Sumatra [77] is a an electronic labbook for managing and

tracking projects based on numerical simulations and analysis, with

the aim of supporting reproducible research. It permits automated

storing, tagging and retrieving of the results. Neuronvisio [78] is a

Table 8. Initial concentrations.

Concentrations Value Reference

½AMPAR� 1:5|10{6 M [90]

½Ca2z�basal 10{8 M [91]

½CaMT
0 � 3|10{5 M [66]

½CaMKII� 7|10{5 M [92]

½DARPP{32� 3|10{6 M [88]

½PKA� 1:2|10{8 M [93]

½PP1� 2|10{6 M [94]

½PP2B� 1:6|10{6 M [95]

doi:10.1371/journal.pone.0066811.t008

Figure 15. Feedback loop between calcium concentration and
synaptic weight.
doi:10.1371/journal.pone.0066811.g015
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3D viewer for the NEURON simulator, which provides a modular

system to save numerical arrays coming from different simulators in

one coherent storage method, with the ability to reload the whole

dataset at a later stage. While TimeScales is used to run the

simulation itself and is responsible for the creation of the event queue

and the instantiation of the required biochemical simulators,

Sumatra is used to track which stimuli and parameters are used in

each simulation, and Neuronvisio’s manager module is used to store

the computational results.

At setup time, two actions have to be undertaken to ensure the

events are delivered and processed at the proper time by each

stimulated spine: (i) inputs must be instantiated in the electrical

model at the proper synapse, (ii) a biochemical model must be

created in the stimulated spines. The type of stimulation,

frequency and duration, as well as the stimulated spines stimulated

are defined in the parameter file, which follows Sumatra’s

conventions (Sumatra uses the parameters module from Neuro-

Tools package http://neuralensemble.org/trac/NeuroTools). In

the electrical model the synaptic inputs are managed using a

VecStim object that creates events to the specific synapses, i.e.

NMDA or AMPA, following the vector, using the stimulus module

in the neuronmanager package. Instead, the biochemical model is

managed by the ecellManager object, which instantiates the

biochemical model and brings it to the appropriate equilibrium.

This approach allows to transform any existing electrical spine to

one which has also a biochemical counterpart on demand, making

sure the events are delivered to the proper synapses, and the spines

will be synced before any inputs are delivered.

Synchronization on Demand with Events Unknown Prior
to Simulation

In case the events are not known beforehand, the algorithm can

be adapted to perform the synchronization on demand when a

new event is detected. To achieve this result, the fastest timescales

simulator should be able to broadcast the event’s time. The fastest

timescales simulator should always be advanced first. When an

event is detected, the synchronization should be performed,

calculating the Dsync following the same procedure than when the

events are known beforehand. The following listing explains how

to achieve this, using NEURON as the fast simulator and E-Cell as

the slow timescales simulator:

while (t,tstop):

event_time = advance_neuron(tstep)

advance_ecell(tstep)

if event_time:

synchronize(event_time)

Model and Framework Source Code Availability
The model of the multiscale MSN, with the code of the

TimeScales framework is available under the BSD license at

https://github.com/mattions/TimeScales. The model of the

multiscale Spiny Neuron has also been submitted to the Open

Source Brain project http://www.opensourcebrain.org/projects/

multiscale-medium-spiny-neuron-mattioni-and-le-novere. It will

be uploaded to ModelDB.

Supporting Information

Figure S1 Two stimuli at different times on the same
spine. The two pulses are applied at 100 ms and 15000 ms; A,

complete timecourses; B, Zoom on the first stimulus; C, zoom on

the second stimulus.

(TIF)

Figure S2 Effect of a short stimulation on the weight of
the AMPA synapse. A, weight applied to the synapse on the

electrical model. B, phosphorylated AMPA timecourse which is

used to calculate the weight. A small stimulus triggers a minimal

variation of the phosphorylated AMPA.

(TIF)

Figure S3 Single spine, response to a 8 Hz train
stimulation. Response of the MSN model to a 8 Hz train

stimulation. The weight increases during the stimulation. The

response to the second train is larger in the spine because of the

change of the synaptic weight connected with the biochemical

model, which changes the number of AMPARs. A, complete

timecourses; B, responses to the first train starting at 2100 ms; C,

responses to the second train starting at 10100 ms.

(TIF)

Figure S4 Effect of a large stimulation on the weight of
the AMPA synapse. A, weight applied to the synapse on the

electrical model. B, phosphorylated AMPA timecourse used to

calculate the weight. A large stimulus triggers a significant

variation of the phosphorylated AMPA, and the electrical response

changes as a result.

(TIF)

Figure S5 Difference of responses due to biochemical
pathways. Double stimulations of a single spine (532) with

increased frequencies. Y-axis represents the difference between the

average peak voltage of responses to first and second train of

stimulations. In the hybrid model, the second train is able to

trigger an increased response compared to the first one (blue plot).

This is due to the increased weight of the synapse mirroring

increased number of AMPARs produced by the biochemical

model. Not surprisingly, with the biochemical model turned off,

there are no differences between the responses elicited by both

trains (green plot).

(TIF)

Figure S6 Calcium response in the adjacent spines.
Calcium response of two adjacent spines. A, spine 559 receives two

trains of stimuli. B, spine 560 only receives one train of stimuli.

During the second train of stimuli, a small amount of calcium

enters spine 560 due to the action of voltage-gated calcium

channels activated by the stimulation of spine 559.

(TIF)

Figure S7 Difference of AMPARs phosphorylation in
adjacent spines following a 40 Hz stimulation. A, spine

559 receives the first and the second trains of stimulation. B, spine

560 receives only the first train.

(TIF)

Figure S8 Difference of AMPARs phosphorylation in
adjacent spines following a longer 40 Hz stimulation. A,

spine 559 receives the first and the second trains of stimulation. B,

spine 560 receives only the first train.

(TIF)

Figure S9 Difference of AMPARs phosphorylation in
adjacent spines following a 20 Hz stimulation. A, spine

559 receives the first and the second trains of stimulation. B, spine

560 receives only the first train.

(TIF)

Figure S10 Tracking the effect of biochemical depolar-
ization on adjacent and distant spines. Spines stimulated in

one branch. Spine number 97, in red, is directly stimulated with
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two trains, while spines 75, 96 and 98, in green, are monitored to

assess the influence of the electrical depolarization on the

biochemical calcium. The axes are in mm.

(TIF)

Figure S11 The multiscale MSN model. Multiscale MSN

model rendered with Neuronvisio [78]. Upper panel, whole MSN.

Lower panel, model zoomed with one of the sections selected (a

spine head).

(TIF)

Figure S12 Comparison between electrical and bio-
chemical calcium. A, timecourse of calcium in a spine head

of the electrical model. B, timecourse of calcium in the

biochemical model of the corresponding spine head. The

‘‘biochemical’’ calcium is calculated using the equation and

approximates the ‘‘electrical’’ calcium.

(TIF)
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