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Abstract

Determinants of lifetime health are complex and emphasize the need for robust predictors of disease risk. Allostatic load
(AL) has become a clinical framework to estimate the cumulative biological burden associated with chronic stress. To assist
knowledge translation in the developmental origins of health and disease field, clinically valid methods for reliable AL
assessment in experimental models are urgently needed. Here, we introduce the rat cumulative allostatic load measure
(rCALM), as a new preclinical knowledge translation tool to assess the burden of chronic stress. First, we identified an array
of stress-associated physiological markers that are particularly sensitive to hypothalamic–pituitary–adrenal axis dysregula-
tion by ancestral prenatal stress. Second, we determined which of these markers are susceptible to an intervention by envi-
ronmental enrichment (EE) to mitigate AL. The markers most responsive to stress and EE therapy were assembled to be-
come operationalized in the rCALM. Third, the new rCALM was validated for the ability to indicate future disease risks. The
results show that the rCALM estimates the burden of chronic stress and serves as a proxy to estimate stress resilience and
vulnerability to disease. Using the rCALM we showed that enrichment therapy can offset the adverse health outcomes
linked to a high AL. Thus, the rCALM provides a model for the development of new test strategies that facilitate knowledge
translation in preclinical animal models.

Key words: allostatic load; allostasis; biomarker; generational stress; transgenerational inheritance; environmental enrich-
ment; corticosterone; precision medicine; animal model; developmental origins of health and disease (DOHaD) scale; disease
prediction

Introduction

The majority of complex diseases are determined or at least
influenced by environmental and lifestyle factors. In particular,

the burden of stress is felt across all major physiological sys-
tems and influences long-term health trajectories. Allostasis is
defined as the ability to achieve stability through change [1].
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Stress triggers the multiple and often opposing physiological
systems including the immune system, metabolic system and
the neuroendocrine system in the attempt to maintain homeo-
dynamic stability [2]. If stress becomes chronic or recurrent,
maintaining allostasis becomes more difficult. A concept that
has been proven helpful in identifying the long-term burden on
health by cumulative stress is allostatic load (AL). AL refers to
the cost of chronic exposure to fluctuating or heightened neural
or neuroendocrine response resulting from chronic or repeated
environmental challenge [2]. The biological concept of AL incor-
porates elements of stress pathophysiology in one comprehen-
sive model [3] and has become a central paradigm to predict or
diagnose complex human disease within the developmental
origins of health and disease framework.

The classic AL model unifies multi-systemic interactions by
combining primary and secondary mediators of stress into a
single index [4]. Primary mediators include stress hormones ac-
tivated by the sympathetic–adrenal–medullary axis (with epi-
nephrine, norepinephrine), the hypothalamic–pituitary–adrenal
[HPA axis, with corticotropic releasing hormone, adrenocortico-
tropic hormone, cortisol or corticosterone (CORT)] and primary
immune modulators or cytokines [e. g. interleukin (IL)-6] di-
rectly influenced by stress [5]. Secondary mediators that are a
result of chronic or long-term stress responses include meta-
bolic changes (e.g. glucose, cholesterol, fat deposition), cardio-
vascular alterations (e.g. blood pressure) and immune
regulators (e.g. IL-1b, IL-2) [5]. The AL model has predictive ca-
pacity to detect individuals at risk of tertiary outcomes [5].
Tertiary outcomes or comorbidities from elevated primary and
secondary mediators include a decline in health and cognition,
accelerated ageing, metabolic diseases (i.e. diabetes), cardiovas-
cular and immune systems diseases and also death [6, 7].

In 1997, Seeman et al. [8] proposed operationalizing AL
through the use of an allostatic load index (AI). AI is measured
as the sum of dysregulated physiological biomarkers [8] that in
turn reflect the multi-systemic physiological toll imposed on
the body for maintaining allostasis. To predict cognitive decline
associated with ageing in the MacArthur Studies of Successful
Aging [7–9], AI included measures of blood pressure, waist–hip
ratio, serum high density lipoprotein, total cholesterol, glycosy-
lated hemoglobin serum, dehydroepiandrosterone sulphate,
overnight urinary cortisol and overnight urinary noradrenalin
and adrenalin as indices of cardiovascular activity, metabolism,
HPA axis activity and sympathetic nervous system activity [10].
The AI was shown to reproducibly predict adverse health out-
comes such as diabetes, physical and cognitive decline and ele-
vated mortality risk [7, 9–14]. The AI has been demonstrated to
effectively predict future health risks and disease vulnerability
as opposed to any biomarker individually [7, 15].

In contrast to extensive clinical studies, no measure of AL
has been developed for animal models. An AI would facilitate
the comprehensive interpretation of HPA axis activation, pre-
dict stress vulnerability or resilience and risk of disease or func-
tional recovery following an insult. Thus, development of an AI
is critical to enhance the translational value of preclinical ani-
mal models of disease. The purpose of this proof-of-principle
study was to create an AI for laboratory rats using common bio-
markers. The effectiveness of the new AI, which here has been
termed the “rat cumulative allostatic load measure” (rCALM),
was tested in a rat model of transgenerational stress and vali-
dated by applying it to an intervention based on environmental
enrichment.

Results
Stress and Enrichment Modify Core Markers of AL

The means and standard deviations of individual biomarkers
are summarized in Table 1. Corticosterone levels showed a
main effect of Enrichment as enriched housing significantly re-
duced basal circulating CORT levels across all groups [F(1, 42) ¼
16.16, P < 0.001]. The elevated plus maze (EPM) revealed more
risk assessment behaviour in stressed animals (P < 0.05) com-
pared to their non-stressed counterparts. Further pairwise com-
parisons also revealed that enrichment in the transgenerational
prenatal stress (TPS) and multigenerational prenatal stress
(MPS) groups showed significantly reduced risk assessment
behaviours compared to the standard housing rats (P < 0.05).
Blood glucose levels showed an effect of Enrichment in the con-
trol group (P < 0.05), and an effect of TPS (P < 0.001) and MPS (P
< 0.0001) compared to controls. Morris water task (MWT)
revealed a significant increase in swim speed in TPS-EE (P <

0.05) and MPS-EE (P < 0.05) compared to their respective control
groups (TPS, MPS) and an increase in swim speed in TPS and
MPS compared non-stress controls (P < 0.05). Furthermore,
MPS elevated lactate and creatine levels compared to controls
(P < 0.05).

The 10th, 25th, 50th, 75th and 90th percentile distribution of
each biomarker and the cut-offs used for dichotomizations are
summarized in Table 2. The rCALM index was able to reveal
effects of housing conditions on stress responses. Mean rCALM
scores were highest in the MPS and TPS animals and were low-
est in groups exposed to environmental enrichment. The sum-
mary of the average rCALM scores is shown in Fig. 1A. rCALM
scores were significantly different between treatment groups
(H ¼ 19.866, P ¼ 0.0013). Specifically, rCALM scores were signifi-
cantly higher in MPS rats compared to control animals (P <

0.0001), and TPS animals (P ¼ 0.0003). Enrichment had a signifi-
cant effect on the MPS group (P ¼ 0.0023), while decreasing the
rCALM score across all groups.

The dichotomized biomarkers showed significant differen-
ces in swim speed in the MWT (H ¼ 12.796, P ¼ 0.0254), IL-1b (H
¼ 11.51, P ¼ 0.0422), lactate (H ¼ 17.2, P ¼ 0.0041) and creatine (H
¼ 18.18, P ¼ 0.0027) levels. Notably, all of the high-risk animals
showing an rCALM score of 5 or higher revealed elevated IL-1b

and creatine values.

Predictive Value of the rCALM Index Versus Individual
and Subgroup Biomarkers

Correlations for all individual biomarkers are shown in Table 3.
Values that correlated with mean grey value (MGV) include lac-
tate (R ¼ �0.42, P < 0.05), creatine (R¼�0.41, P < 0.05) and the
rCALM score (R ¼ �0.551, R2 ¼ 0.3036, P < 0.05; Fig. 1B). To deter-
mine if rCALM still has predictive value without the influence of
lactate and creatine, both were removed from the AI to test the
predictive value. rCALM scores without the influence of lactate
and creatine were still significantly different between treatment
groups (H ¼ 13.110, P ¼ 0.0224). rCALM still had the largest val-
ues in TPS and MPS animals, with enriched environment lower-
ing rCALM. Moreover, rCALM without these biomarkers was still
correlated with MGV (R ¼ �0.490, R2 ¼ 0.2401, P < 0.05).
However, the significance factor was stronger when creatine
and lactate were included in the index.

Similarly, to determine if a subgroup of biomarkers would be
better correlated with MGV, a smaller group of biomarkers was
created by pooling those individual biomarkers that were most
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Table 1: summary of descriptive statistics

Biomarker C C-EE TPS TPS-EE MPS MPS-EE

Mean 6 Mean 6 Mean 6 Mean 6 Mean 6 Mean 6

OF 552.3 29.25 560.52 15.00 551.32 45.82 525.73 54.99 557.00 27.03 523.17 42.35
EPM 93.87 31.12 106.50 24.51 101.62 28.47 79.75# 33.01 89.87 19.43 86.00# 35.20
MWT 0.213 0.018 0.202 0.033 0.231* 0.023 0.194# 0.016 0.245* 0.020 0.225# 0.027
CORT 387.68 106.99 61.43# 56.96 501.05 287.47 58.68# 68.16 514.22 295.83 111.38# 174.65
Blood glucose 6.33 0.52 6.00# 0.78 5.34* 0.32 5.48 0.59 6.58* 0.34 6.35 0.65
Body weight 574.75 56.12 556.87 59.80 591.12 27.32 586.75 50.94 598.75 47.88 579.25 90.42
IL-1b 339.51 197.25 392.19 285.55 346.60 202.40 276.33 231.24 370.45 302.67 320.85 291.25
IL-2 106.01 104.04 82.23 73.03 128.92 157.93 81.68 46.99 114.93 85.04 64.14 39.38
IL-6 15.50 6.46 14.25 4.70 14.25 4.07 11.87 4.78 11.00 3.13 13.25 3.50
Leptin 3.15E4 2.57E3 1.82E4 1.37E3 2.10E4 3.28E3 1.57E4 1.78E3 1.17E4 4.78E3 9.84E3 2.50E3
Lactate 1.61 0.21 1.49 0.16 1.89 0.36 1.83 0.28 2.08* 0.11 1.97 0.68
Creatine 0.27 0.04 0.25 0.02 0.31 0.05 0.31 0.03 0.34* 0.02 0.33 0.11

EPM, elevated plus maze; MWT, Morris water task; CORT, corticosterone; IL, interleukin.

*Denotes significant effect of stress (P < 0.05).

#Denotes significant effect of EE (P < 0.05).

Table 2: summary of biomarker categories

Category Marker category Biomarker Percentile

10th 25th 50th 75th 90th

Primary Neuroendocrine Corticosterone (mg/ml) 19.00 86.11 182.89 498.75 639.45
Primary Immune IL-6 (mg/ml) 8.30 9.50 11.50 15.00 20.50
Secondary Immune IL-1b (mg/ml) 171.31 222.65 363.13 585.84 779.32
Secondary Immune IL-2 (mg/ml) 21.19 40.59 81.24 120.54 156.89
Secondary Behavioural OF (margin time) 497.90 539.00 552.20 574.55 589.86
Secondary Behavioural EPM (risk assessment) 65.00 79.00 91.00 120.50 126.40
Secondary Behavioural MWT (swim speed) 0.18 0.20 0.22 0.24 0.26
Secondary Metabolic Blood glucose (mmol/l) 5.80 6.20 6.90 8.35 9.54
Secondary Metabolic Body weight (g) 523.70 558.00 597.00 624.00 653.60
Secondary Metabolic Leptin (mg/ml) 5387.03 8008.26 10 382.54 14 871.96 26 872.85
Secondary Metabolic Lactate (mmol) 1.34 1.58 1.87 2.15 2.35
Secondary Metabolic Creatine (mmol) 0.23 0.27 0.32 0.35 0.38

Values indicate the 10th, 25th, 50th, 75th and 90th percentile along with the high-risk cut-off level (highlighted in pink).

OF, open field; EPM, elevated plus maze; MWT, Morris water task; CORT, corticosterone; IL, interleukin.

Figure 1: validity of the rCALM score as an indicator of AL. (A) The average rCALM scores across experimental groups in standard and enrichment housing conditions.

(B) rCALM score and MGV associations. rCALM was significantly correlated with MGV. Values represent mean 6 SD.

***Denotes significant effect of stress (P < 0.001), #denotes significant effect of enriched environment (P < 0.05)
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highly correlated with both rCALM and neural density [open
field (OF), corticosterone, IL-1b, IL-2, lactate, creatine]. Results
revealed that, although these six biomarkers when pooled were
moderately correlated with MGV (R ¼ �0.421, R2 ¼ 0.203, P <

0.05), the rCALM index as whole had a larger r-value. Both of
these representations indicate that overall, using an array of
biomarkers and a multisystem approach provides the highest
predictive value.

Discussion

The goal of this study was to create a proof-of-principle for a
comprehensive and cumulative index that measures nonlinear
effects of stress [10] and assesses the risk of chronic health
impacts generated by stress in rodents. Recent evidence sug-
gests that trans- and multigenerational stress represents a criti-
cal risk factor in complex disease etiology [16–18]. The burden of
chronic stress induced by ancestral experience, however, had
not been systematically quantified. While indices for AL have
become a valuable tool for predicting stress-related diseases [5],
the lack of prospective human cohort data spanning at least
three generations emphasizes the need for modelling ancestral
stress in laboratory animals. Here, we developed a novel AI for
use in laboratory rodents based on guidelines by Seeman et al.
[8]. The new rCALM index was developed using 12 biomarkers
commonly measured in relation to stress physiology and be-
haviour in rat and mouse studies. The findings show that most

Table 3: correlation coefficients and significances

R P-value

OF, EPM 2.84E-04 0.9989
OF, corticosterone 0.08 0.7051
OF, blood glucose 0.13 0.5237
OF, IL-1b 0.18 0.3652
OF, IL-2 0.03 0.892
OF, leptin 0.12 0.5456
OF, IL-6 0.37 0.0542
OF, weight 0.19 0.3253
OF, lactate 0.09 0.6412
OF, creatine 0.12 0.5379
OF, MWT 0.42 0.0265*
OF, neural density 0.36 0.0613
OF, rCALM �0.51 0.0047*
EPM, CORT �2.57E-03 0.9897
EPM, blood glucose �0.03 0.8766
EPM, IL-1b 0.01 0.9527
EPM, IL-2 0.01 0.9439
EPM, Leptin 0.09 0.6596
EPM, IL-6 �4.40E-03 0.9824
EPM, weight 0.09 0.636
EPM, lactate �0.15 0.4571
EPM, creatine �0.14 0.4887
EPM, MWT 0.14 0.4829
EPM, neural density 0.23 0.2365
EPM, rCALM �0.33 0.0818
Corticosterone, blood glucose 0.2 0.3063
Corticosterone, IL-1b �0.08 0.7017
Corticosterone, IL-2 0.2 0.3155
Corticosterone, leptin 0.05 0.7871
Corticosterone, IL-6 0.16 0.4238
Corticosterone weight 0.14 0.4695
Corticosterone, lactate �0.06 0.7809
Corticosterone, creatine �0.08 0.6819
Corticosterone, MWT �0.08 0.6709
Corticosterone, neural density �0.19 0.3403
Corticosterone, rCALM �0.13 0.5063
Blood glucose, IL-1b 0.11 0.5856
Blood glucose, IL-2 �0.12 0.5535
Blood glucose, leptin 0.22 0.2702
Blood glucose, IL-6 0.1 0.6205
Blood glucose, weight 0.03 0.8831
Blood glucose, lactate 0.02 0.9179
Blood glucose, creatine 0.02 0.9029
Blood glucose, MWT �0.05 0.8042
Blood glucose, neural density �0.17 0.3932
Blood glucose, rCALM 0.22 0.2662
IL-1b, IL-2 0.18 0.2155
IL-1b, leptin �0.17 0.2582
IL-1b, IL-6 0.19 0.1901
IL-1b, weight 0.18 0.2186
IL-1b, lactate 0.27 0.0684
IL-1b, creatine 0.27 0.0684
IL-1b, MWT �0.21 0.2911
IL-1b, neural density �0.32 0.0903
IL-1b, rCALM 0.46 0.0143*
IL-2, leptin �0.11 0.4725
IL-2, IL-6 �0.09 0.5537
IL-2, weight 0.08 0.5932
IL-2, lactate 0.23 0.1162
IL-2, creatine 0.23 0.1162
IL-2, MWT 0.2 0.1799
IL-2, neural density �0.29 0.0879

continued

Table 3: (continued)

R P-value

IL-2, rCALM 0.35 0.0147*
Leptin, IL-6 0.47 0.0108*
Leptin, weight 0.15 0.4644
Leptin, lactate �0.31 0.1115
Leptin, creatine �0.31 0.1041
Leptin, MWT 0.06 0.7675
Leptin, neural density 0.14 0.4844
Leptin, rCALM �0.12 0.5434
IL-6, weight �0.23 0.2358
IL-6, lactate �0.22 0.2701
IL-6, creatine �0.23 0.2424
IL-6, MWT 0.28 0.1515
IL-6, neural density 0.18 0.3533
IL-6, rCALM �0.12 0.5532
Weight, lactate 0.17 0.3914
Weight, creatine 0.18 0.3538
Weight, MWT 0.01 0.9568
Weight, neural density �0.25 0.2025
Weight, rCALM �0.15 0.4611
Lactate, creatine 0.98 <0.0001*
Lactate, MWT 0.27 0.1728
Lactate, neural density �0.26 0.0249*
Lactate, rCALM �0.02 0.9171
Creatine, MWT 0.27 0.1702
Creatine, neural density �0.25 0.0329*
Creatine, rCALM �0.05 0.8054
MWT, neural density �0.09 0.6548
MWT, rCALM �0.34 0.0769
Neural density, rCALM �0.56 0.0016*

Highlighted in pink are markers that are significantly correlated with the rCALM

index, in grey are markers that are significantly correlated with neural density

and in blue is the correlation between the rCALM and neural density.

*Denotes significance (P < 0.05).
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biomarkers when analysed individually, did not predict high
risk for neuronal deficits. In contrast, when all biomarkers were
standardized and dichotomized to dictate high risk, rCALM was
able to predict neurologic deficits. Moreover, we demonstrate
that the rCALM is also an effective indicator of therapeutic ben-
efit of life style interventions that aim to moderate AL.

Validity of this new tool was confirmed by rCALM predicting
elevated AL in ancestrally stressed rats, showing that remote
ancestral stress raises the risk of low neuronal density. This
finding indicates a heightened cumulative burden in ancestrally
stressed animals, due to increased AL and greater vulnerability
to stress-induced disease [19]. In contrast, treatment with
enriched environment, a powerful therapy that improves recov-
ery in animal models of neurological disease [20, 21], reduces
the cumulative burden by AL and improves neuronal density in
ancestrally stressed rats particularly in the MPS group.

The rCALM index was developed to quantify the effect of cu-
mulative stress based on the notion of primary mediators lead-
ing to secondary outcomes which culminate in tertiary
outcomes that characterize tangible diseases [22]. In this study,
the tertiary outcome measured was neuronal density as mea-
sured by MGV in the prefrontal cortex. The prefrontal cortex is
particularly vital to higher-order executive functions, sensory
perception and social reasoning [23]. Behavioural impairments
characterized by alterations in neuronal density in the prefron-
tal cortex include anxiety, attention deficit hyperactivity disor-
der [24] and depression [25]. Moreover, studies investigating the
relationship between prefrontal cortex function and HPA axis
activation had concluded that the prefrontal cortex is a part of
the regulatory circuitry involved in the stress response [26]. The
present decrease in MGV may therefore contribute to HPA axis
dysregulation. Notably, reduced neural density occurred in ani-
mals with greater AL.

The MPS group, with the highest AL score, seemed to benefit
most from enrichment. This group is subjected to a larger cu-
mulative burden by stress, as direct stress recurs in each gener-
ation in addition to their ancestral exposure [27]. The benefit of
enrichment may therefore reach multiple physiological sys-
tems. Many studies have investigated the effect of enrichment
on AL and measurement by the AI in the human population. An
“enriched” environment in the human population could be
interpreted as those with higher socioeconomic status and
higher education, which have both been correlated with a lower
AI score [28]. This study, however, more closely relates to social
enrichment, which has shown specific protection against AL,
thus ultimately decreasing the AI score [9, 29]. Findings of this
study demonstrate that enrichment has the capacity to pro-
mote resilience against the cumulative effects of AL at both the
endocrine and the neurological level.

Advantages of rCALM Over Individual Biomarkers of
Ancestral Stress

Biomarkers that exhibited a significant effect of stress when
comparing raw mean values include risk assessment behaviour,
swim speed, blood glucose, lactate and creatine. Biomarkers
that responded to enrichment include risk assessment, swim
speed, CORT, blood glucose, lactate and creatine. This indicates
that ancestral stress does affect behaviour, specifically hyperac-
tivity and anxiety as measured by MWT and EPM, as well as
metabolic functions, as measured by blood glucose, lactate and
creatine. Moreover, enrichment can mitigate or reverse some of
these adverse outcomes. The majority of these individual

biomarkers, however, were not able to predict changes in neu-
ronal density, the tertiary outcome.

Individual biomarkers that were significant at high risk
while acting as predictive indicators for low neural density in-
cluded lactate and creatine. Changes in metabolism, as mea-
sured by lactate and creatine, assist in illustrating the large and
pertinent effects of cumulative stress on metabolism. Impaired
cerebral energy metabolism, which is linked to altered neuronal
plasticity, is among the leading hypotheses that explain the
pathogenesis and etiology of psychiatric illness, such as major
depression and bipolar disorder [30–35].

Other individual biomarkers that did not predict changes in
neural density, but significantly contributed to the overall
rCALM score included IL-1b, and swim speed in MWT. Notably,
animals with ancestral stress had higher risk for elevated IL-1b

and all animals with an rCALM score greater than 5 received an
IL-1b score of 1. This score may indicate upregulated inflamma-
tion and immune responses linked to an insufficient stress re-
sponse by glucocorticoids, or a response to higher metabolic
rates [36]. Understanding interactions between the stress re-
sponse and the immune system will shed light on the associa-
tion between HPA axis dysfunction and psychopathologies such
as depression and schizophrenia that are associated with al-
tered immune status. Moreover, high risk for immune dysregu-
lation due to stress may also shed light on vulnerability to
autoimmune and inflammatory diseases [37].

A recent proposition by Juster et al. [5] and Seeman et al. [7]
concerns the masking of the predictive value of individual AL
components. By breaking the AI into neuroendocrine and meta-
bolic biomarkers, previous studies found that the individual
clusters did not overlap and may therefore individually contrib-
ute to health risks [5, 7]. Clustering biomarkers provide biologi-
cal signatures that are vital in predicting morbidity and
mortality [38]. Previous results show mixed support for the in-
clusion of a comprehensive AI instead of subgroups of fewer
biomarkers [5]. This study addressed this issue in two ways. It
was determined that rCALM was better correlated with MGV
than individual biomarkers as well as a permutation of the
rCALM which included a subgroup of six biomarkers. When bio-
markers, which correlated highly with MGV (i.e. lactate and cre-
atine), were removed from rCALM, the index was still
significantly correlated with MGV. The overall focus of an AI
should be on identifying levels of biomarkers that identify high
risk which are superior to quantifying single biomarkers, for
better prediction and prevention of tertiary outcomes.

Effectiveness of the rCALM Index

Stratification tools, such as the rCALM, are effective discrimi-
nating tools to dissociate stress resilience versus stress vulnera-
bility. For example, a composite index of behavioural traits may
provide a better characterization of an individual’s vulnerability
to prolonged stress and stress-induced depression than a single
measure [39]. Accordingly, our data show that higher multivari-
able rCALM scores are associated with increased risk to lower
neuronal density. Interestingly, some measurements of stress
such as corticosterone, did not vary much between transgenera-
tional and multigenerational stress experiences, yet the respec-
tive overall rCALM scores were higher in the multigenerational
group. This observation indicates that ancestral stress, possibly
through epigenetic regulation [40], promotes adaptation to
stress in some functions, while creating vulnerabilities in
others.
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The rCALM generates a fingerprint of a multi-level signature
of the chronic burden of stress. The physiological mediators of
the stress burden are interconnected, reciprocal and nonlinear
in their effects [5, 41]. To better assess the cumulative effects of
chronic or recurrent stress and to detect potentially sub-clinical
symptoms of stress, a panel of biomarkers is more sensitive
than a single marker. The value of assessing multiple bio-
markers, including primary and secondary mediators, may im-
prove high-risk detection as well as intervention strategies to
promote health and well-being in humans [42] and enhance re-
silience to chronic stresses in wildlife [43]. Multivariable tools,
such as the rCALM increase the ability to identify individuals at
risk for developing complex diseases that influenced by stress.
As a result, targeted prevention strategies and personalized
medicine approaches that focus on high-risk individuals

may be more effective than population-based strategies [44]. By
determining high-risk groups, individuals may be stratified
for most effective treatment strategies in precision medicine
approaches.

Directions for the Future Use of rCALM

This study presents the first account of the impact of cumula-
tive stress and AL in rats. The rCALM may be regarded as a dy-
namic tool in which the number and nature of variables
included may vary. The individual composite variables will sig-
nificantly affect the validity and reliability of rCALM to predict
stress vulnerability. Present biomarkers were selected based on
clinical approaches and previous literature to provide a multi-
level systems approach. In general, a larger number of variables
will yield more accurate results and better clinical translation.
Clinical comparisons with the human AI should involve meas-
urements such as body mass index, lipoproteins and blood
pressure. Further additions to rCALM, especially when investi-
gating experiential and environmental origins of disease, would
include epigenetic signatures, such as miRNA and DNA methyl-
ation marks. Lastly, the collection of longitudinal data, sampled
at multiple time points throughout development and/or ageing,
along with its application to other experimental models in rats
and mice, would validate the predictive power and capabilities
of the rCALM index.

Conclusions

The present proof-of-principle study provides a conceptual
framework for the development of a clinically relevant, translat-
able and comprehensive assessment of physiological burden
and disease risk in preclinical animal models. For the first time
we introduce an index for research in laboratory animals, the
rCALM, as a valid method to estimate the physiological burden
induced by chronic stress. We show that the rCALM effectively
indicates stress resilience and vulnerability in terms of neuro-
logical and behavioural function. As chronic stress and inter-
generational stress programming and associated diseases
create a rapidly growing economic burden to our society [45], re-
fined detection strategies such as the rCALM are of utmost im-
portance for prediction, treatment and prevention. The present
findings suggest that the rCALM provides a suitable role model
for the development of test strategies that facilitate knowledge
translation in preclinical precision medicine approaches.

Methods
Animals

Data used for the (rCALM) index were collected from F3 male
offspring rats born to one of the following three maternal line-
ages: non-stress controls (n ¼ 16), TPS (n ¼ 16) and MPS ( n ¼ 16).
TPS rats were the F3 generation of a filial line in which only the
F0 dams were stressed during gestation [46]. MPS rats were the
F3 generation of a filial line in which dams from each consecu-
tive generation (F0, F1, F2) were gestationally stressed. Maternal
stress involved daily exposure of pregnant dams to restraint in
a Plexiglas cylinder for 20 min and forced swimming in warm
water (22�C) for 5 min from gestational days 12–18 [46, 47]. The
animals received the two stress procedures each day in a semi-
random order either in the morning or afternoon hours. At
weaning, rats derived from the three lineages were assigned to
either housing in standard cages, or housing in an enriched en-
vironment (EE). Animals assigned to EE lived in social housing,
with novel objects added for additional enrichment. Thus, the
following groups were tested: non-stress controls in standard
(Control; n ¼ 8) and EE (Control-EE; n ¼ 8) housing conditions, TPS
in standard (TPS; n ¼ 8) and EE (TPS-EE; n ¼ 8) housing and MPS
in standard (MPS; n ¼ 8) and EE (MPS-EE; n ¼ 8) housing. The rats
were housed under a 12 h light/dark cycle with lights on at 7:30
AM, room temperature set at 20�C and relative humidity of 30%,
with food and water available ad libitum. All procedures were
performed in accordance with the guidelines of the Canadian
Council on Animal Care and approved by the University of
Lethbridge Animal Welfare Committee.

Development of the rCALM

The rCALM AI was developed based on guidelines proposed by
the first operationalized study of AI [8]. The index was devel-
oped using the 12 biomarkers most commonly measured in re-
lation to stress physiology and behaviour in laboratory rodents.
The rCALM was compiled of markers representing the acute
(primary mediators: corticosterone, IL-6) and chronic (second-
ary outcomes: behavioural assessments, blood glucose, IL-1b,
IL-2, leptin, weight, lactate and creatine) manifestations of
stress involving multiple system levels (e.g. immune system,
neuroendocrine, metabolic). The marker combination was cho-
sen to enhance predictive capacity of the composite measure
[48]. The following presents the individual biomarkers selected
for rCALM.

Neuroendocrine Markers. The glucocorticoid CORT is the pri-
mary hormonal mediator of the stress response in rodents. In
response to acute and chronic stress, activation of the HPA axis
results in the release of CORT from the adrenal gland cortex,
which through a negative feedback mechanism via glucocorti-
coid receptors in the brain can downregulate the stress re-
sponse. This response has been shown to be programmed by
prenatal stress [49, 50]. Moreover, CORT also binds to the miner-
alocorticoid receptor, which in the brain regulates basal and
stress-induced HPA-axis activity [49]. Both receptor types and
their interaction are critical for stress vulnerability and resil-
ience [51]. Generally, CORT regulates functions such as behav-
iour, metabolism, immune response and plays a major role in
mental health and complex diseases.

To measure CORT, blood samples (0.6 ml) were collected
from the lateral tail vein under 4% isoflurane anaesthesia using
a 23 gauge butterfly needle coated in heparin, between 8:00 AM
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and 9:00 AM on the day of collection. Blood was transferred to
centrifuge tubes and plasma was obtained by centrifugation at
5000 rpm for 10 min at 4�C. The samples were stored at �80�C.
Plasma CORT concentrations were determined by radioimmu-
noassay, run in duplicates, using commercial kits (ELISA,
Abcam, Inc., ON, Canada).

Markers of Affective State. (i) Open field exploration. The OF
task allows the quantification of locomotor activity, exploratory
behaviour and anxiety-like behaviours [52, 53]. The OF task was
conducted using the VersaMax Legacy Open Field system
(Omnitech Electronics, Inc., Dartmouth, NS, Canada), which
measured an animal’s activity for a period of 10 min using an
array of infrared sensors connected to a computer. The time
spent in the margins of the OF is considered an indicator of
anxiety-like behaviour [54] and was included in the rCALM. (ii)
Elevated plus maze. The EPM allows the quantification of motor
activity and anxiety-like behaviours [55]. A particularly robust
measurement of anxiety-like behaviours in response to stress is
risk assessment (i.e. stretch extend postures), which was cho-
sen for the rCALM [56]. (iii) Morris water task. The MWT com-
monly assesses spatial navigation, learning and memory [57],
but can also be used to assess hyperactivity by measuring swim
speed [58]. The MWT was conducted over the course of 9 days
using a pool filled with room temperature water. The water was
made opaque by adding non-toxic white tempura paint and vi-
sual cues were placed on the walls for spatial orientation [57]. A
computer-assisted tracking system (HVS Image Water 2020TM,
Middlesex, UK) was used to track rat position and collect data
obtained from an overhead video camera. Swim speed was used
as a marker for hyperactivity [58]. Behavioural tasks that re-
quired manual scoring (EPM—stretch extend postures) were
video taped. Video tapes were evaluated by an experimenter
blind to the experimental conditions.

Immune Markers. The major pro-inflammatory interleukins
IL-1b, IL-2 and IL-6 were included as immune markers for the
rCALM index. Cytokines are small glycoproteins that regulate
the physiological functions of immunity and inflammatory
responses [59]. IL-1b and IL-2 are mediators of immune and
neuroendocrine functions during stress at both peripheral and
central nervous system (CNS) levels [60]. IL-1b influences the se-
cretion of pituitary hormones which lead to the secretion of glu-
cocorticoids. IL-2 is present in the hypothalamus, the pituitary
gland and the locus coeruleus, all of which are involved in the
control of neuroendocrine axes [60]. IL-6 is the cytokine most
documented in AL studies and a marker for chronic or systemic
inflammation. It mediates the interaction between the immune
system and CNS inflammation and is differentially affected by
both acute and chronic stress responses [61]. Blood was col-
lected between 8:00 AM and 9:00 AM and plasma was used to
quantify cytokine biomarkers using a rat cytokine/chemokine
array 27-plex Discovery AssayVR using the Bio-PlexTM 200 system
(Bio-Rad Laboratories, Inc., Hercules, CA, USA; analyses by Eve
Technologies Corp, Calgary, AB, Canada), and a Milliplex Rat
Cytokine/Chemokine kit (Millipore, St. Charles, MO, USA)
according to manufacturer’s protocols.

Metabolic Markers. (i) Body weight, blood glucose and leptin.
Changes in body weight are a robust indicator of chronic stress
and AL, and excess cortisol is found to be positively correlated
with body weight [62]. Animals were weighed every other day
between 7:30 AM and 9:30 AM. Body weight for the rCALM index
was collected on postnatal day (P) 120. Blood glucose functions
as a major source of energy and higher plasma values are posi-
tively correlated with elevated cortisol levels and weight gain
[63]. Blood glucose was measured between 8:00 AM and 9:00 AM

using an Ascensia Breeze Blood Glucose Meter (Bayer, Toronto,
ON, Canada). Leptin serves as marker of body weight by being a
fat-derived hormone with pivotal roles in the regulation of body
weight and food intake [64]. Moreover, leptin also regulates neu-
ronal and glial maturation during brain development [65].
Patients suffering from schizophrenia or major depression have
normal body mass indices but reduced leptin levels [62]. Leptin
assessment was performed using the cytokine assay described
above [Discovery AssayVR for the Bio-PlexTM 200 system (Bio-Rad
Laboratories, Inc., Hercules, CA, USA)].

Lactate and Creatine. Lactate serves as a marker of sympa-
thetic nervous system activation [66, 67], muscle activity and
psychosocial stress [68], as well as liver function [69]. Plasma
lactate provides an alternative energy substrate to glucose and
may act as the preferred energy source for activated neurons
within the CNS [70, 71]. Thus, lactate levels may represent an in-
dicator of cerebral activity.

Creatine provides a physiological buffer in tissues with large
and shifting energy demands, such as muscle and brain [72]. In
the brain, creatine serves as energy shuttle and regulator of en-
ergy homeostasis [73, 74]. Deviations in creatine levels may in-
dicate altered metabolic or mitochondrial function and energy
demand [34].

Blood lactate and creatine levels were assessed with 1H
Nuclear Magnetic Resonance spectroscopy. On P100, 6.0 ml of
blood was collected from the lateral tail vein under 4% isoflur-
ane anaesthesia between 8:00 AM and 9:00 AM on the day of col-
lection. Blood was transferred to centrifuge tubes and plasma
was obtained by centrifugation at 5000 rpm for 10 min at 4�C.
The samples were stored at �80�C. NMR spectra were collected
on a 700 MHz Bruker Avance III HD spectrometer (Bruker, UK).
The 1D NOESY gradient water suppression pulse sequence noe-
sygpr1d (Bruker, UK) was used. Each sample was run for 512
scans to a total acquisition size of 256 k. The spectra were zero
filled to 512 k, automatically phased and baseline corrected, and
line-broadened by 0.3 Hz. The processed spectra were then
exported to MATLAB for statistical analysis. All peaks were
referenced to formate (8.22d) and a reference metabolite library
was used. Concentrations of lactate and creatine were mea-
sured using the MestreNova 10.0.1 qNMR plugin, referenced to
an internal standard.

Computing the Composite rCALM Index:
Standardization and Measurement

To determine disease risk, the sum of individual z-scores for
each biomarker was calculated based on the samples distribu-
tion. Calculation of z-scores for standardization allows each bio-
marker weight to differ conditionally on its own deviation from
the samples mean. Once the biomarkers were standardized,
each individual marker was analysed for high risk. The percen-
tiles used for an indicator of high risk for each biomarker are
listed in Table 2.

The AL index underlying rCALM is based on a clinical assess-
ment tool in which biomarkers in the highest or lowest 25%
were deemed high risk [48]. Accordingly, for this study, values
falling within the high risk percentile (above 75th) were dichoto-
mized as “1” and those within the standard ranges as “0.”

The rCALM index was calculated by summing the number of
biomarkers for which the animal fell into the high-risk category,
so that the overall sum value was between 0, indicating low
risk, and 12, indicating the maximum risk (as the summed total
of all component markers is 12). It should be noted that cut-off
points could be set to the 10th percentiles (below 10 and above
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90) as they could produce an even stronger predictor of health
outcome [75]. However, the 75th percentile was chosen for this
study as a proof-of-principle to maximize the predictive power
for early signs of tertiary health outcomes.

Tertiary Outcome: Neural Density—MGV

Neural density was measured using MGV that acted as the ter-
tiary outcome used to determine the predictive value of rCALM
and individual markers. At the age of 180 days rats were eutha-
nized with an overdose of EuthansolVR (Merck, QC, Canada) and
perfused transcardially with phosphate buffer solution (�200
ml) followed by a transcardial injection of �200 ml of 4% para-
formaldehyde (PFA; Sigma-Aldrich, MO, USA). Brains were
extracted, stored in brain bottles containing 4% PFA, refrigerated
for 24 h and then transferred to sucrose solution for at least 3
days.

Every third series of sections was mounted and stained with
cresyl violet to detect Nissl bodies. The slides were captured us-
ing a motorized Zeiss AxioImager M1 microscope (Zeiss, Jena,
Germany) at 1� magnification. The quantitative cytoarchitec-
tonic analyses in cresyl violet-stained sections corresponding to
a region of interest measuring 0.766 mm2 thick sections at
Bregma level 3.70 (caudal prefrontal cortex) was performed as
described by McCreary et al. [27]. The absolute grey level index
was ascertained as the measured parameter [27, 76].

Statistical Analysis

Statistical computations were based on Statview software ver-
sion 5.0 (SAS Institute, NC, USA). Descriptive statistics are
reported where results represent means 6 standard deviations.
Analysis of variance (ANOVA) was used to compare the mean
levels of each biomarker across all groups (C, C-EE, TPS, TPS-EE,
MPS, MPS-EE), followed by Fisher’s post-hoc tests or pairwise
Student t-tests. The alpha level was set to 0.05 and significant P-
values were designated with an asterisk or hashtag in all tables
and figures.

As rCALM is an ordinal scoring system and is not normally
distributed, the non-parametric Kruskal–Wallis test was used to
compare the distributions of rCALM scores across all groups.
Pairwise comparisons were performed by collapsing groups and
applying separate Mann–Whitney U tests. To investigate
whether rCALM levels, along with individual biomarkers, pre-
dict neuronal density we computed Simple regressions (R) to de-
termine the relationship between biomarkers, rCALM and MGV.
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