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Cataract is a common disease in the aging population. Gap junction has been considered
a central component in maintaining homeostasis for preventing cataract formation. Gap
junction channels consist of connexin proteins with more than 20 members. Three genes
including GJA1, GJA3, and GJA8, that encode protein Cx43 (connexin43), Cx46
(connexin46), and Cx50 (connexin50), respectively, have been identified in human and
rodent lens. Cx46 together with Cx50 have been detected in lens fiber cells with high
expression, whereas Cx43 ismainly expressed in lens epithelial cells. Disrupted expression
of the two connexin proteins Cx46 and Cx50 is directly related to the development of
severe cataract in human andmice. In this review article, we describe the main role of Cx46
and Cx50 connexin proteins in the lens and the relationship between mutations of Cx46 or
Cx50 and hereditary cataracts. Furthermore, the latest progress in the fundamental
research of lens connexin and the mechanism of cataract formation caused by lens
connexin dysfunction are summarized. Overall, targeting connexin could be a novel
approach for the treatment of cataract.
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INTRODUCTION

Cataract is the opacity of lens and the most important cause of low vision and blindness
worldwide. Cataract can be divided into metabolic cataract, age-related cataract, congenital
cataract and others. With the increase of the elderly population, there are more and more aged-
related cataract. Congenital cataract is the main cause of blindness in children, exerting a
dramatic impact on their quality of life. Therefore, the prevention and treatment of cataract is
particularly important. Lens homeostasis is critical to its transparency, and its imbalance can
lead to cataract.

The lens is a biconvex transparent tissue situated between the iris and the vitreous, composed of a
single layer of epithelial cells under the anterior capsule and the enormous lens fibers differentiated
from epithelial cells (Ruan et al., 2020). Epithelial cells at the lens equator region migrate laterally
toward the equator, where they transform into differentiating fiber cells and finally turn into mature
fiber cells through extensive cell elongation. The lens is able to transmit light via the contraction or
relaxation of the ciliary muscle and focus light onto the retina (Summers et al., 2021). In order to
increase light transmission and minimize light scattering, various organelles including the Golgi
apparatus, endoplasmic reticulum, and nucleus are degraded in the differentiating lens fibroblasts
(Brennan et al., 2018; Brennan et al., 2021). In addition, lens crystallins are at high concentration in
the lens to enable appropriate refractive ability that aids in light transmission and focusing (Cvekl
and Eliscovich, 2021).
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Gap junction channels are critical in regulating the lens
microcirculation system, which is crucial for the motion of the
ions and other medium to maintain lens homeostasis (Brink
et al., 2020; Valiunas et al., 2019; Valiunas and White, 2020).
Moreover, gap junctional communication is a way to maintain
normal lens fiber cells physiology and tissue functions (Van
Campenhout et al., 2021). Gap junction channels facilitate
these processes by permitting the selective passage of ions and
other molecules, forming both electrical and biochemical
coupling between cells. Gap junction channels are
assembled by the coaxial alignment of two hemichannels.
Six connexin molecules oligomerize into a hemichannel
(also called connexon) (Beyer and Berthoud, 2014).
Connexins are a family of structurally related
transmembrane proteins in humans with approximately 20
members. Every single connexin protein consists of four
transmembrane domains (T1-T4), two extracellular loops
(EL1, EL2) with a cytoplasmic loop (IL), and cytoplasmic
N-terminal and C-terminal components (Figueroa et al.,
2019; Mese et al., 2007; Sánchez et al., 2019). Three
connexins presented in the lens are α1 (Cx43), α3 (Cx46),
and α8 (Cx50), which are encoded by three genes: Gja1, Gja3,
and Gja8, respectively (Yue et al., 2021; Ping et al., 2021). In the
layer of lens epithelial cells, abundant expression of Cx43 could
be detected, whereas Cx46 is exclusively present in the lens
fiber cell, where its expression corresponds with fiber cell
differentiation, and Cx50 is widely expressed in both lens
epithelial and fiber cells (Figure 1) (Paul et al., 1991;
Delvaeye et al., 2018; Ceroni et al., 2019; Tong et al., 2021).
Although the pathogenesis of cataracts is not yet fully clear
(Davison, 2020; Hashemi et al., 2020; Shiels and Hejtmancik,
2021; Taylan Sekeroglu and Utine, 2021), a number of studies
have shown that disruption of lens connexin hemichannels
proteins Cx46 and Cx50 expression are associated with
cataract formation (White et al., 1998; Chang et al., 2002;
Addison et al., 2006; Xia et al., 2006a).

CX46 AND CX50 IN CATARACT
FORMATION
Mutations of Cx46 and Cx50 Identified in
Human and Rodents With Cataracts
More than 40 different mutations associated with
cataractogenesis have been identified in the gene region of
GJA3 and GJA8 in human pedigrees (Table 1). The first
variant P-to-S transition at site 88 in Cx50 was identified in a
British family with zonular pulverulent or “dust-like” cataracts
(Mese et al., 2007). Subsequently, twomutations in the GJA3 gene
have also been reported in different families with inherited
congenital cataracts (Mackay et al., 1999).

More variants of these two connexin hemichannels have been
reported in families in recent years. A heterozygous G-to-A
substitution in the exon region of GJA3 gene was detected and
resulted in the replacement of Asp with Gly at the N-terminus of
Cx46 protein in a Chinese family with congenital nuclear
pulverulent and posterior polar cataract (Rees et al., 2000).
Another Cx46 variant, R76H, was identified in a large
Australian cataract pedigree with zonular pulverulent cataract
by using linkage analysis (Ping et al., 2021). Most of these
mutations in the Cx46 protein are present in the N-terminal,
the first transmembrane, and extracellular domains. One
missense mutation N188T and another frameshift mutation at
the position S380Qfs of Cx46 gene were found to be related to
hereditary autosomal dominant cataract in two different Chinese
families (Paul et al., 1991; Li et al., 2004). In addition, a missense
mutation in the Cx46 coding region occurred in a Chinese
cataract pedigree, giving rise to the dysfunction of the Cx46
protein, which might be potentially linked to the development of
congenital nuclear cataract. Methionine substituted for valine at
site 44 (V44M) in the Cx46 gene is responsible for that mutation
(Chen et al., 2017).

Similar to Cx46, numerous mutations of the Cx50 gene
have been identified. The first Cx50 mutation from a British
family with zonular pulverulent cataract was identified at the
second transmembrane domain of the encoded gene (Mese
et al., 2007). Subsequently, Glu48Lys was the second
recognized mutation reported in a three-generation
Pakistani family (Berry et al., 1999). A missense variation
V64G of Cx50 conserved residues in a Chinese family
occurred at the phylogenetically conserved extracellular
loop1 (Sharan et al., 2005). The autosomal dominant
lamellar pulverulent cataract from a four-generation British
family is associated with two mutations located at P88S and
P88Q of GJA8, resulting from a 262C > A transition (Arora
et al., 2006). In addition, an insertion mutation at codon 203
of GJA8 was mapped in a southern Indian family with
autosomal recessive cataract, producing a functionally null
allele and the subsequent reduction of transmembrane
domain, cytoplasmic domain, and the second extracellular
domain, and was different from the vast majority of mutations
recognized with dominant features (Ponnam et al., 2007).
Recently, a new variation at site 166 (c.166A > C) in Cx50
coding region was confirmed by the comprehensive screening
by next-generation sequencing in a Mauritanian family with

FIGURE 1 | Diagram showing the distribution of connexin hemichannels
in the lens. Connexin isoform Cx43 is mainly expressed in the anterior epithelial
layer. Cx46 can be found in the differentiating lens fibroblasts and mature lens
fibroblasts. The expression of Cx50 stays the course of entire lens
development.
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congenital nuclear cataracts (Hadrami et al., 2019). Moreover,
a novel missense mutation of c.217T > C in a four-generation
Chinese family with autosomal dominant congenital cataract
(ADCC) was identified, resulting from a serine-to-proline
interchange at residue 73 of the Cx50 gene (Li et al., 2019).

In addition to humans, mutations of Cx46 and Cx50 in
homozygous mice can cause cataracts. Targeted deletion of
GJA3 and GJA8 genes in mice can develop into a dominant
or semi-dominant cataract pattern. Abundant mutations have
been reported in mice. A single A-to-C transversion within codon
47 was amplified and sequenced in the Cx50 protein-coding
regions in No2 cataractous mouse, resulting in congenital
hereditary cataracts (Steele et al., 1998). Furthermore, an
ethylnitrosourea mutagenesis screen analysis revealed a new
cataract mutation, Val-to-Ala interchange at codon 64 of
Cx50, in mice with phenotypically hereditary congenital
cataracts (Graw et al., 2001). Lens opacity 10 (Lop10)
mutation at chromosome 3 and a missense single transversion
(G-to-C) in the Cx50 coding region was identified in a mouse that
developed microphthalmia with dense cataracts, resulting in Gly-
to-Arg substitution at codon 22 (Chang et al., 2002). Moreover,
another variant S50P in the Cx50 protein was reported to be
associated with smaller lens (Xia et al., 2006b). Apart from mice,
connexin mutations have also been detected in rats with cataracts.
A C-to-T transversion located at codon 340 in the Cx50 genes was
strongly associated with the development of cataracts in the
Upjohn Pharmaceuticals Limited (UPL) rat model (Yamashita
et al., 2002). A missense mutation at site E42K in the coding
region of Cx46 from rats with congenital nuclear cataracts was
reported (Yoshida et al., 2005). Only a few mutations in rodents
have been utilized for the investigation of gap junction channel,
and therefore it is necessary for us to broaden the related studies.

The Relationship Between Connexin
Hemichannels and Cataract Formation
Mathia et al. pointed out that the lens develops an internal
circulation system that deliver water, ions, and solute for lens
cells to replenish its lack of blood supply (Mathias et al., 2007). It
allows nutrients and ions to enter the lens from both the anterior
and posterior and to migrate to the center across the extracellular
spaces, and unwanted metabolites to exit at the lens equator. The
lens is full of plentiful and functional ion channels and
transporters that support the internal circulation system.
Dysfunction of the lens circulation system has been postulated
to linked to cataract formation (Berthoud et al., 2020). Lens gap
junctions formed by two oligomeric subunits referred to as
hemichannels (also called connexons) display a critical effect
on the lens internal circulation system. Both Cx46 and Cx50 form
functional homomeric/homotypic gap junction channels and
hemichannels. In vitro studies demonstrate that majority of
lens connexin mutations linked to congenital cataracts will
decrease coupling conductance and influence lens circulation
(Gong et al., 2007; Berthoud and Ngezahayo, 2017). Most
mutations of the Cx46 and Cx50 gene leading to cataracts are
recognized as autosomal dominant, but several mutations that
have been investigated are non-functional in terms of expression
systems (Gerido et al., 2003). Apart from that, connexin variants
with increased hemichannel activity could affect lens circulation
through cell depolarization, which would reduce the ability of
ions and other signals to migrate throughout the organ.

As previously reported, Cx50 knockout mice developed
smaller eyes and lens—32 and 46% size reduction in the mass
of control littermates, respectively (Gerido et al., 2003). Several
studies observed that targeted deletion of GJA8 in mice led to
delay in cell denucleation, indicating an important part of Cx50 in

TABLE 1 | Summary of Cx46 and Cx50 mutants associated with cataract formation.

Mutation Cataract type Family origin References

Human Cx46
N63S zonular pulverulent British Mackay et al. (1999)
P187L nuclear pulverulent Chinese Rees et al. (2000)
R76H zonular pulverulent Australian Ping et al. (2021)
N188T nuclear pulverulent Chinese Li et al. (2004)
V44M nuclear Chinese Chen et al. (2017)

Human Cx50
P88S zonular pulverulent British Mese et al. (2007)
E48K zonular nuclear pulverulent Pakistani Berry et al. (1999)
V64G nuclear Chinese Sharan et al. (2005)
P88S, P88Q lamellar pulverulent British Arora et al. (2006)
T56P nuclear Mauritanian Hadrami et al. (2019)
S217P perinuclear Chinese Li et al. (2019)

Rat Cx46
E42K nuclear Cataract rat strain Yoshida et al. (2005)

Mouse Cx50
A47A nuclear No2 cataract mouse Steele et al. (1998)
V64A nuclear and zonular cataract and microphthalmia Mouse Aey5 generated by ENU Graw et al. (2001)
G22R microphthalmia and dense cataract Lop10 mutation cataract mice Chang et al. (2002)
S50P whole cataract and small eye ENU mutagenesis Xia et al. (2006b)

Rat Cx50
R340W cataract UPL rat strain Yamashita et al. (2002)
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lens fibroblast maturation and epithelial cell proliferation (Graw
et al., 2001; Sellitto et al., 2004). The expression of Cx50 in place of
Cx46 by gene knock-in did not rescue epithelial proliferation,
implying that Cx50, but not Cx46, facilitates normal lens growth
and development after growth factor stimulation (Yamashita
et al., 2002; White et al., 2007; Minogue et al., 2017).

Substantial studies have revealed that knockout of Cx46 gene
in mice leads to the impairment of lens transparency and the
development of nuclear cataracts, probably caused by
accumulation of crystallin cleavage products and production of
an insoluble complex of disulfide-associated polypeptides (Gong
et al., 1997). In addition, the coupling conductance was
completely eliminated when the lens fiber matured, while the
conductance in differentiated fibers was greatly reduced.
Cx46 deletion-induced nuclear cataracts are also strongly
correlated with the elevation of intracellular Ca2+ and
corresponding change of increased protein degradation in lens
fiber cells (Baruch et al., 2001). Change in gap junction
communication due to mutations in the lens may be one of
the important reasons for the formation of cataracts (Sharan
et al., 2005; Schadzek et al., 2019).

Recent studies demonstrated that mutations in connexin
hemichannels have a great impact on the function of gap
junction channels. A missense mutation with an Asp-to-Ala
substitution at site 47 in the first extracellular domain of Cx50
protein in No2 mice resulted in the loss of ability to produce
functional gap junction channels, leading to cataractogenesis
(Katai et al., 1999). A G-to-A transition mutation at position
139 was identified in the coding region of Cx50 from a family with
autosomal dominant nuclear pulverulent cataracts, and also
resulted in the loss of ability to generate functional gap
junction channels in paired oocytes (Schadzek et al., 2019).
Mixed hemichannels consisting of normal and abnormal Cx50
or Cx46 proteins in the lens displayed remarkably altered gating
properties and coupling conductance, which may give rise to
cataract formation. It is still unknown what the specific role of
connexin hemichannels in the lens is.

POSSIBLE MECHANISMS OF CATARACTS
RELATED TO LENS CONNEXIN
Lens Microcirculation and
Biomineralization
It is generally known that gap junction channels could maintain
the homeostasis of ocular lens by propagating lens
microcirculation. Under normal conditions, the circuit of the
lens microcirculation is completed when Na+/K+-ATPase or Na+/
Ca2+ exchanger and Ca2+-ATPase on epithelial cells transport
Na+ and Ca2+ ions out of the lens when these intracellular ions are
located at the surface of cell (Delamere and Tamiya, 2004; De
Maria et al., 2018). Such pumps can produce low intracellular
sodium and calcium concentration and form an electrochemical
environment (Alvarez et al., 2001; Alvarez et al., 2003; Okafor
et al., 2003). To maintain the Na+/Ca2+ gradient, gap junction
channels of the lens regulate circulation system through passive
diffusion. Disruption of the lens microcirculation has been

implicated in cataract pathogenesis. In the normal mouse lens,
differentiating fiber gap junctions facilitate sodium ion flow to the
equator once it enters the intercellular compartment. However, it
has been found that the intercellular concentration of Na+

becomes promoted in lenses isolated from mice expressing
Cx46-and Cx50-dominant mutants (Gao et al., 2018).
Moreover, loss of Cx46 causes calcium accumulation and
subsequent elevation in the activity of Lp82, which is a type of
Ca2+-dependent protease that generate γ-crystallin cleavage
products (Baruch et al., 2001; Ebihara et al., 2003).
Measurement of calcium in Cx46 knockout has demonstrated
that loss of intracellular coupling leads to the blockage of the
efflux path to accumulate Ca2+ (Gao et al., 2004). There is also a
hypothesis that reduction of Cx46 and Cx50 levels alter the
function of gap junction channels in regulating the circulation
of lens internal mediums, bringing about further changes to other
major components in the lens microcirculation. These
experimental evidences offer additional support that calcium
displays different distribution patterns in wild-type, knockout
and knock-in lens in microcirculation models.

Calcium has also been reported to be tightly related to the
development of cataracts (Gerido et al., 2003). Different etiologies
of cataract lenses in humans and mice contained increased Ca2+

(Vanden Abeele et al., 2006). Elevation of intracellular calcium
concentration and corresponding elevated protein degradation in
lens fibroblasts due to loss of Cx46 gene are associated with
nuclear cataract formation (Liu et al., 2015). Calpain II, a kind of
Ca2+-dependent protease, induces the development of nuclear
cataracts in Cx46 knockout lenses by cleaving crystallin proteins
(Baruch et al., 2001). Proteolysis caused by calpain has also been
shown to play a role in the truncation of Cx50 (Xia et al., 2006a).
Gap junction coupling is also impaired due to sharply declined
levels of Cx46 and Cx50 proteins and elevated total calcium
concentration in cataract lens from homozygous β-crystallin
S11R-mutant mice (Li et al., 2010). Abundant investigations
demonstrate an important role of calmodulin (CaM) in
maintaining functional gap junction channels. Increased Cx
hemichannel activity is mediated by increased intercellular
Ca2+ concentration and the activation of CaM. The voltage
from oocytes expressing Cx46 G143R loses control of
hemichannels, which forms a leaky gate, leading to diminish
voltage-dependent ionic conductance (Li et al., 2008). A sequence
of results showed that loss of cell-cell communication impairs the
movement of ions such as Na+ and Ca+ towards the epithelium,
inducing an alteration of [Na+]i and [Ca

+]i gradient in Cx46fs380
mice lenses (Berthoud et al., 2014). These alterations lead to a
vicious spiral that could ultimately exacerbate the occurrence of
cataracts. Thus, extrapolation to humans shows that people
suffering from severely declined levels of connexin or damaged
gap junction function may develop cataracts on account of lens
microcirculation disorders.

Numerous observations suggest that accumulation of
insoluble calcium salts results in the development of cataracts.
It probably likely that Ca+ would precipitate due to the high
concentration of more than 1 μM in the center of the lens,
forming insoluble calcium salts (Berthoud et al., 2019).
Moreover, using Alizarin acid staining identified immobile and
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insoluble Ca+ in cataractous lenses from Cx46 and Cx50
knockout mice (Gao et al., 2018). These finding may be
consistent with calcium oxalate or calcium carbonate crystals
found in cataracts patients.

Biomineralization occurs when insoluble precipitates
comprising inorganic ions deposit and form mixed particles.
Impaired lens circulation in Cx46 and Cx50 knockout mice
caused cataracts though Ca+ accumulation, precipitation, and
biomineralization (Gao et al., 2013). Moreover, modification of
the connexins, including via proteolysis, ubiquitination, and
phosphorylation, may alter lens microcirculation and affect
subsequent biomineralization in the lens (Retamal et al., 2019).
The mixed deposits in cataractous lenses might comprise of
aggregated non-functional proteins and precipitated Ca+.
Detection of the Ca+ values in cataractous human lenses
revealed that the insoluble lens fraction contained a higher
proportion of Ca+ than the soluble part. Lens
biomineralization is probably the main reason for the
development of cataracts of additional pathogenesis.

Age-dependent Truncations
It is universally acknowledged that age-related connexin
modification could deteriorate the intercellular
communications between lens cells. Over 90% of
downregulated expression of Cx46 and Cx50 proteins has been
detected in normal lens fiber cells isolated from a group of
cataracts patients aged more than 50 years old (Gong et al.,
2021). The expression of Cx46 and Cx50 proteins displayed
age-dependent reduction, whereas Cx43 remained relatively
stable in aging mice. Two mutations in the Cx46 and Cx50
code region, Cx46V139M and Cx50V275I, respectively, were
identified with mild association with the development of age-
related cataracts in a Chinese population (Zhou et al., 2011).
These mutants show the impact on alterations in post-
translational modifications (PTMs) of connexin proteins
because of age of appearance of cataracts. Polymorphisms in
the intronic region of the Cx50 gene and a C-to-G substitution in
the code region of Cx46 gene might be linked to the formation of
age-related cataracts (Liu et al., 2011; Zhou et al., 2011). Previous
studies indicate that an age-dependent decrease of gap junction
conductance induces alterations in the ability of ion channels and
related transporters in the lens. There is a hypothesis that
elimination of over 65% of connexin proteins caused by age-
related modifications is responsible for the declined coupling
levels in the lens.

With increasing age, truncations in the cytoplasmic loop
region and N-terminal domain of Cx46 and Cx50 accumulate
in the core, resulting in decreased coupling conductance
(White et al., 2007). In addition, the corresponding
abundance of these truncations was remarkably altered with
aging of lens fiber cells, showing the highest level of truncation
products in the nucleus of the oldest fiber cells and the lowest
level in the outer cortex of younger, differentiating fiber cells.
Previous studies in rodent lens indicated that the levels of age-
related connexin hemichannel truncations in younger lenses
were lower than those found in older lenses. It is likely that the
PTMs of these connexins are dependent on the age of the lens

(Rozema and Ní Dhubhghaill, 2020; Fan and Monnier, 2021).
The epithelial cells of lens differentiate into fiber cells and the
C-terminal of Cx46 and Cx50 proteins are cleaved during this
process. The endogenous Cx50 truncations resulted from the
enzymolysis of calpain or other proteases. Mass spectrometry
analysis identified several truncation sites of Cx46 and Cx50
proteins in bovine lens. C-terminal truncation at site V284 of
Cx50 induced nonfunctional hemichannels; in contrast,
truncation at position TM4 had no influence on its
properties (Slavi et al., 2016). Therefore, cleavage of Cx50
by calpain is able to decrease the proportion of functional
connexin hemichannels, and give rise to reduced level of gap
junction coupling during lens development. The calpain
activity decreases with age in the Cx46 knockout lenses.
C-terminal cleavage of Cx46 has no impact on coupling
conductance, and ionic permeability of connexin
hemichannels composed of truncated Cx46 possessed
almost the same function as the full-length isoform (Fan
and Monnier, 2021). However, the mechanism attributed to
truncations in Cx46 and Cx50 with differentiation and aging
remains to be determined.

Other factors: Oxidative Stress and Hypoxia
Oxidative stress is responsible for the production of highly
reactive oxygen species (ROS) and subsequent cellular
damage at protein and DNA level has been observed in
cataractous lens (Babizhayev and Bozzocosta, 1994; Lin and
Takemoto, 2005). To combat constant oxidative stress from
the environment, ocular tissue normally produces high
concentrations of reduced glutathione (GSH) and utilizes a
complicated antioxidant defense system composed of
superoxide dismutase (SOD) and glutathione peroxidase
(GPX). It is widely recognized that GSH plays an
important role in maintaining redox homeostasis and lens
transparency (Ho et al., 1997; Delamere and Tamiya, 2004).
Depletion of GSH in newborn mice compromise lens
transparency and eventually leads to the development of
cataract (Laver et al., 1993). Plentiful evidence has been
gathered to inform that cataract formation can result from
oxidative stress, decreased level of GSH, and the mixed
protein-thiol and protein-protein disulfide bonds. Increased
levels of GSH and oxidized glutathione (GSSG) have been
measured in the core of lens as it ages (Lim et al., 2020).
Misfold proteins caused by mutations in some of the
connexins presumably deposit in the Golgi bodies or
endoplasmic reticulum (ER) to trigger stress responses and
ultimately damage crystalline proteins. The Cx46fs380-
mutant mice exhibited reduced total levels of β-crystallins
consistent with degradation, modification, and truncation of
the proteins (Minogue et al., 2005). A decreased GSH level was
only observed in the nucleus of homozygous Cx46fs380 lens
(Jara et al., 2020). However, a single mutation of P-to-S
transversion at amino acid residue 88 of human Cx50
protein resulted in cytosolic aggregates and led to
decreased degradation. In addition, a higher level of GSH
was observed in homozygous Cx50D47A lens about 2 months
old (Jara et al., 2020). Detection of the level of GSH in the lens
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from connexin-knockout mice suggested that Cx46 (not
Cx50) is essential for the movement of GSH from lens
cortical cell to lens nuclear cell, under the condition that
both Cx46 and Cx50 hemichannels assist in the transport of
GSH (Serebryany et al., 2021). Mutation in the Cx46 gene
region in mice led to the development of lens opacity and
cataracts due to deposit of insoluble polypeptides caused by
aggregation of crystallin cleavage products (Gong et al., 1997;
King and Lampe, 2005; Kelly et al., 2007).

It has been suggested that targeted deletion of GPX-1 in mice
can cause declined expression level of Cx46 and Cx50 together
with extremely low level of coupling conductance (Wang et al.,
2009). Apart from that, hydrogen peroxide was reported to keep
Cx50 hemichannels open, and can assist in the movement of
reductant glutathione into lens fiber cells. Both Cx50P88S and
Cx50H156N mutations suppress permeability activity of Cx50
hemichannels (Shi et al., 2018). In addition, oxidative stress cause
by 4-hydroxynonenal (4-HNE) can deprive the natural properties
of Cx46 protein through its carbonylation (Retamal et al., 2020).
These mutants ultimately induce apoptosis of lens epithelial cells
and fiber cells.

A hypoxic condition is necessary for normal growth and
development of the lens. Increased exposure to oxygen has
been proven to be a threatening cause for the occurrence of
age-related cataracts and nuclear cataracts (Brennan et al., 2020).
In vivo studies showed that physiological hypoxia is indispensable
for inhibiting cell proliferation and preserving smaller lens size
(Zhao et al., 2020). Hypoxia might be a critical factor that regulate
the expression and function of Cx46 in natural lens. The Cx46
promoter showed tight transcriptional responses when cultured
with 1% oxygen in human lens cells (Molina and Takemoto,
2012). Further studies will be needed to elucidate the change of
oxygen concentration in responding to the expression of
connexin proteins in the lens.

CONCLUSION AND FUTURE DIRECTIONS

Remarkable progress and achievement have been obtained in
the last few decades in our basic knowledge of the role of lens
connexin hemichannels Cx46 and Cx50 in cataract formation.
Connexin variants related to congenital cataracts are being
identified in many regions around the world. Adequate and
useful animal models have been generated for the investigation
of the role of mutant connexin in lens abnormalities during
cataractogenesis. The factors that mutate lens connexin in
human and rodents and the mechanisms of cataract
formation caused by lens connexin mutation and
dysfunction could be explored in the future (Figure 2).
Despite all the great achievements, much remains to be seen
how Cx46 and Cx50 proteins are regulated in the lens under
both normal and abnormal conditions. Furthermore, the
clinical diagnosis, treatment and prevention based on
connexin biology in cataracts are limited. Future
investigations should also be arranged to develop effective
therapeutic interventions against cataracts.

Mutations of Cx46 and Cx50 in human and rodents can be
caused by age, oxidative stress, and hypoxia. Reduced levels of
Cx46 and Cx50 proteins or these nonfunctional connexin
proteins in lens fiber cells would cause disrupted lens
microcirculation, and ultimately, development of cataracts.
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