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Abstract

Background: Cytokines are essential cellular modulators of various physiological and pathological activities,
including peripheral nerve repair and regeneration. However, the molecular changes of these cellular mediators
after peripheral nerve injury are still unclear. This study aimed to identify cytokines critical for the regenerative
process of injured peripheral nerves.

Methods: The sequencing data of the injured nerve stumps and the dorsal root ganglia (DRGs) of Sprague-Dawley
(SD) rats subjected to sciatic nerve (SN) crush injury were analyzed to determine the expression patterns of genes
coding for cytokines. PCR was used to validate the accuracy of the sequencing data.

Results: A total of 46, 52, and 54 upstream cytokines were differentially expressed in the SNs at 1 day, 4 days, and
7 days after nerve injury. A total of 25, 28, and 34 upstream cytokines were differentially expressed in the DRGs at
these time points. The expression patterns of some essential upstream cytokines are displayed in a heatmap and
were validated by PCR. Bioinformatic analysis of these differentially expressed upstream cytokines after nerve injury
demonstrated that inflammatory and immune responses were significantly involved.

Conclusions: In summary, these findings provide an overview of the dynamic changes in cytokines in the SNs and
DRGs at different time points after nerve crush injury in rats, elucidate the biological processes of differentially expressed
cytokines, especially the important roles in inflammatory and immune responses after peripheral nerve injury, and thus
might contribute to the identification of potential treatments for peripheral nerve repair and regeneration.

Keywords: Peripheral nerve injury, Rat sciatic nerve crush injury, Sciatic nerve stumps, Dorsal root ganglia, Upstream
cytokines

Background
Peripheral nerves are vulnerable tissues that are gener-
ally defenseless against traumatic injuries caused by
bumping, stretching, crushing, and penetrating wounds
as well as nontraumatic injuries caused by genetic, meta-
bolic, infectious, and medically induced factors [1, 2].

Fortunately, unlike central nerves, peripheral nerves can
regenerate and achieve certain functional recovery after
injury, although full functional recovery is generally un-
expected [3]. After peripheral nerve injury, distal nerve
stumps undergo Wallerian degeneration. Activated
Schwann cells and macrophages clear debris of axon and
myelin sheaths. Axons of surviving neurons regrow to-
ward target tissues for reinnervation [3, 4].
Cytokines are a broad category of immunomodulatory

proteins or peptides, including chemokines, interferons,
interleukins, lymphokines, and tumor necrosis factors.
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Cytokines play essential roles in inflammation and im-
mune responses and participate in the regulation of the
maturation, growth, and responsiveness of various cell
populations [5, 6]. These molecules have been identified
to be constitutively involved in the nervous system
under various physiological and pathological conditions
[7–10]. Cytokines are also critical for peripheral nerve
injury and repair, as fine-tuned expression of cytokines
modulates the cellular behaviors of Schwann cells, mac-
rophages, and neurons and regulates debris clearance,
axon growth, and peripheral nerve regeneration [11].
Understanding the molecular changes of these cellular

mediators after peripheral nerve injury opens new possi-
bilities to improve the repair of injured nerves and to
minimize the induction of neuropathic pain [11]. To iden-
tify critical molecules that may be beneficial for peripheral
nerve regeneration, we performed high-throughput ana-
lysis methods, such as RNA sequencing and microarray,
to determine the gene changes after peripheral nerve in-
jury [12–15]. These studies showed that many biological
functions, such as cellular behavior, tissue/organ develop-
ment, inflammation and immune responses, were signifi-
cantly activated after nerve injury. Considering that
cytokines are key molecules that regulate inflammation
and immune responses, in the current study, previously
obtained sequencing data of the injured nerve stumps of
Sprague-Dawley (SD) rats subjected to sciatic nerve (SN)
crush injury were analyzed to determine the expression
patterns of genes coding for cytokines [13]. Moreover,
considering that cytokines show retrograde transport to
the neuronal bodies and affect neuronal activities, sequen-
cing data of the dorsal root ganglia (DRGs) after rat SN
crush injury were also jointly investigated [16]. Differen-
tially expressed genes in the SNs and DRGs after nerve
crush injury were identified, and upstream cytokines of
these differentially expressed genes were determined by
the Ingenuity Pathway Analysis (IPA) bioinformatic tool.
Differentially expressed upstream cytokines at 1 day, 4
days, and 7 days after nerve crush injury were subjected to
functional enrichment of Gene Ontology (GO) categories
and Kyoto Enrichment of Genes and Genomes (KEGG)
pathways according to the Database for Annotation,
Visualization, and Integrated Discovery (DAVID).

Materials and methods
Sequencing data
RNA deep sequencing data of rat SNs at 0 h, 1 day, 4 days,
7 days, and 14 days after SN crush injury [13] were stored
in the National Center for Biotechnology Information
(NCBI) database with the accession number PRJNA394957
(SRP113121). Sequencing data of the rat DRGs at 0 h, 3 h,
9 h, 1 day, 4 days, and 7 days after SN crush injury [16] were
stored in the NCBI database with the accession number
PRJNA547681 (SRP200823). Differentially expressed genes

in the SNs and DRGs at certain time points after nerve
crush injury were selected by comparing their expression
levels under the injured status with the expression levels
under the uninjured status (0 h control). Genes with fold
changes < 2 or > − 2 and an experimental false discovery
rate (FDR) < 0.05 were defined as differentially expressed
genes as previously demonstrated [13, 16].

Bioinformatic analysis
Differentially expressed genes in the SNs and the DRGs
were uploaded to the IPA bioinformatic tool (Ingenuity
Systems, Inc., Redwood City, CA, USA) for core analysis.
Upstream regulators of these differentially expressed
genes were identified using Ingenuity Pathway Know-
ledge Base (IPKB)-based upstream regulator analysis.
Upstream cytokines were then screened out. Genes cod-
ing for cytokines with fold changes < 2 or > − 2 at 1 day,
4 days, or 7 days compared with 0 h were defined as dif-
ferentially expressed cytokines and were subjected to
subsequent bioinformatic analyses.
Commonly differentially expressed cytokines in the SNs

and the DRGs at 1 day, 4 days, or 7 days after SN crush in-
jury were identified by the Venny 2.1.0 online bioinformatic
tool (http://bioinfogp.cnb.csic.es/tools/venny/index.html)
[17]. The expression profiles of these commonly differen-
tially expressed cytokines were demonstrated by a heatmap.
Signaling pathways and biological processes involved in dif-
ferentially expressed upstream cytokines were identified by
DAVID bioinformatic enrichment tools [18, 19].

Animal surgery and collection of the DRGs and SN
stumps
The conduction of rat SN crush injury and the col-
lection of the SNs and the DRGs of the uninjured
and injured rats were performed as previously de-
scribed [13, 16]. A total of 24 adult male SD rats
weighing 180–220 g were obtained from the Experi-
mental Animal Center of Nantong University (Ani-
mal licenses no. SCXK [Su] 2014–0001 and SYXK
[Su] 2012–0031) and subjected to animal surgery.
Rats were randomly divided into 4 groups (0 h, 1
day, 4 days, and 7 days), with 6 rats in each group.
Rats were anaesthetized intraperitoneally with a mix-
ture of 85 mg/kg trichloroacetaldehyde monohydrate,
42 mg/kg magnesium sulfate, and 17 mg/kg sodium
pentobarbital. SNs 10 mm above the bifurcation into
the tibial and common fibular nerves were exposed
by a skin incision in the left outer mid-thigh. Ex-
posed SNs were crushed with forceps 3 times (a
period of 10 s each time). At 1 day, 4 days, and 7 days
after SN crush injury, the rats were sacrificed by de-
capitation. The rats in the 0-h group were subjected
to sham surgery. The 6 rats in each group were
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divided into 3 replicates with 2 rats in each replicate
for tissue collection. Rat SN segments of 5 mm in
length at the crush sites as well as L4 to L6 DRGs
were harvested for RNA isolation.

RNA isolation and PCR validation
RNA was isolated from the rat SNs or l L4 to L6
DRG using Trizol reagent (Life Technologies, Carls-
bad, CA, USA). Isolated RNA samples were reverse
transcribed to cDNA using the Prime-Script reagent
kit (TaKaRa, Dalian, Liaoning, China) and subjected
to PCR experiments using an Applied Biosystems
StepOne System (Applied Biosystems, Foster City,
CA, USA) with SYBR Premix Ex Taq (TaKaRa) and
specific primer pairs of target genes chemokine (C-
X-C motif) ligand 10 (CXCL10) and interleukin 1 re-
ceptor antagonist (IL-1RN) and reference gene
glyceraldehyde-3-phosphate dehydrogenase (GAPD

H). The sequences of primer pairs were as follows:
CXCL10, 5′-GAAGCACCATGAACCCAAGT-3′ (for-
ward) and 5′-CAACATGCGGACAGGATAGA-3′
(reverse); IL-1RN, 5′-CTTACCTTCATCCGCT
CCGA-3′ (forward) and 5′-GATCAGGCAGTTGG
TGGTCAT-3′ (reverse); GAPDH 5′-ACAGCAACAG
GGTGGTGGAC-3′ (forward) and 5′-TTTGAGGG
TGCAGCGAACTT-3′ (reverse). The relative mRNA
abundances of CXCL10 and IL-1RN were determined
using the comparative 2−ΔΔCt method, in which
ΔCt = Ct(injured)-Ct(uninjured) and ΔΔCt = Ct(target gene)-
Ct(reference gene) [20].

Statistical analysis
Summarized PCR results are reported as the mean ±
SEM with n = 3. Graphs were generated using GraphPad
Prism 6.0 (GraphPad Software, Inc., San Diego, CA,
USA). Kruskal-Wallis test was applied for statistical ana-
lysis, and P < 0.05 was considered statistically significant.

Fig. 1 Overview of differentially expressed upstream cytokines in the SNs and DRGs after SN crush injury. Venn diagrams of differentially
expressed upstream cytokines in the SNs and DRGs at (a) 1 day, (b) 4 days, and (c) 7 days after nerve injury. Overlapping cytokines in the SNs and
DRGs are listed. Red color indicates upregulated genes at all tested time points. The numbers of differentially expressed upstream cytokines are
listed (d). SN. Sciatic nerve; DRG. Dorsal root ganglia
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Results
Identification of differentially expressed upstream
cytokines in the SNs and the DRGs following peripheral
nerve injury
IPA bioinformatic analysis was applied to screen up-
stream cytokines of the differentially expressed genes in
the SNs and the DRGs after nerve crush injury. The ex-
pression levels of genes coding for these upstream cyto-
kines were further examined, and differentially expressed
upstream cytokines in the SNs and the DRGs at 1 day, 4
days, and 7 days after nerve injury were identified (Sup-
plementary Table 1).
Venn diagrams were generated to compare differentially

expressed upstream cytokines in the SNs and the DRGs at
certain time points after nerve injury and to obtain a com-
prehensive view of altered cytokines after rat SN crush in-
jury (Fig. 1a-c). A total of 46 upstream cytokines were
differentially expressed in the SNs at 1 day after nerve in-
jury. At later time points, a relatively larger number of up-
stream cytokines were differentially expressed in the SNs
(Fig. 1d). In the DRGs, a smaller group of upstream cyto-
kines was differentially expressed compared with those in
the SNs. The numbers of differentially expressed upstream
cytokines also increased at later time points after nerve in-
jury (Fig. 1d). Detailed investigation of these differentially

expressed upstream cytokines showed that the majority of
cytokines were upregulated and only a few cytokines were
downregulated in the SNs. However, in the DRGs, the
percentage of downregulated cytokines was much higher
(Supplementary Table 1). The Venn diagram intersection
identified cytokines that were differentially expressed in
both the SNs and DRGs at the same time point. The ex-
pression changes of these SN and DRG intersecting cyto-
kines are shown in addition to the Venn diagrams (Fig.
1a-c). Some cytokines, such as IL-6 and IL-1α, remained
upregulated in the SNs and DRGs after nerve injury, while
other cytokines, such as CXCL10, were upregulated in the
SNs but downregulated in the DRGs (Fig. 1a-c).

Demonstration of the expression patterns of upstream
cytokines in the SNs and DRGs following peripheral nerve
injury
To identify the dynamic changes in critical cytokines after
peripheral nerve injury, we further studied the SN and
DRG intersecting cytokines. A total of 27 cytokines were
differentially expressed in both the SNs and DRGs at 1
day, 4 days, or 7 days after nerve injury. The expression
levels of these cytokines were investigated and displayed
in heatmaps (Fig. 2). Some cytokines showed similar ex-
pression trends in both the SNs and the DRGs. For

Fig. 2 Heatmaps of the expression levels of commonly differentially expressed upstream cytokines in the SNs and DRGs. The relative expression
levels of cytokines in (a) the SNs and (b) the DRGs at 0 h, 1 day, 4 days, and 7 days are displayed in colors. Green indicates downregulation, while
red indicates upregulation. SN. Sciatic nerve; DRG. Dorsal root ganglia
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example, tumor necrosis factor ligand superfamily mem-
ber 10 (TNFSF10) was downregulated in both the SNs
and the DRGs after nerve injury, CD40 ligand (CD40LG)
was upregulated in both the SNs and the DRGs at 4 days
after nerve injury, and IL-9 was upregulated in both the
SNs and the DRGs at 7 days after nerve injury. Some cyto-
kines, such as IL-1RN and C-C motif chemokine ligand 2
(CCL2), exhibited higher expression changes in the SNs
than in the DRGs.
The expression patterns of representative cytokines

revealed by sequencing assays were further validated
by quantitative PCR experiments. Independent SN
crush injury experiments were performed in rats for
the collection of the SNs and the DRGs and the con-
duction of PCR experiments. CXCL10, a cytokine
whose mRNA expression was upregulated in the SNs
but downregulated in the DRGs, and I11rn according
to sequencing data, as well as IL-1RN, a cytokine
whose mRNA expression was upregulated in both the
SNs and the DRGs according to sequencing data,
were selected for PCR validation. PCR experiments
demonstrated that the mRNA levels of the cytokine
CXCL10 were increased in the SNs (Fig. 3a) but de-
creased in the DRGs (Fig. 3b) following nerve injury.
The relative abundances of genes coding for IL-1RN
were upregulated in both the SNs (Fig. 3c) and the
DRGs (Fig. 3d). These outcomes were consistent with
the expression trends determined by sequencing data

(shown in red lines), indicating that the sequencing
data were highly accurate.

Identification of significant signaling pathways of the
differentially expressed upstream cytokines following
peripheral nerve injury
Bioinformatic analyses were performed to evaluate the sig-
nificant signaling pathways of the differentially expressed
upstream cytokines in the SNs and the DRGs after nerve
injury. Activated signaling pathways that were related to
nerve regeneration in the upregulated cytokines and the
downregulated cytokines in the SNs and the DRGs were
separately explored (Fig. 4). Cytokine-cytokine receptor
interactions and chemokine signaling were the most
strongly enriched signaling pathways. Other significantly
enriched signaling pathways included Toll-like receptor
signaling, TNF signaling, NOD-like receptor signaling,
NF-κB signaling, and JAK-STAT signaling. These signal-
ing pathways were most robustly involved in the upregu-
lated upstream cytokines in the SNs.

Identification of significant GO biological process
categories and gene function regulatory networks of the
differentially expressed upstream cytokines following
peripheral nerve injury
Critical nerve regeneration-related biological processes
that occurred after SN crush injury were further discov-
ered by categorizing differentially expressed upstream

Fig. 3 Validation of the expression levels of representative cytokines in the SNs and DRGs. The relative expression levels of CXCL10 in (a) the SNs
and (b) the DRGs at 0 h, 1 day, 4 days, and 7 days after rat SN crush injury. The relative expression levels of IL-1RN in (c) the SNs and (d) the DRGs
at 0 h, 1 day, 4 days, and 7 days after rat SN crush injury. The expression levels of CXCL10 and IL-1RN were normalized to that of GAPDH. Asterisks
indicate significant differences (P < 0.05). Red lines indicate the expression trends revealed by sequencing. SN. Sciatic nerve; DRG. Dorsal
root ganglia
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cytokines into GO terms. The inflammatory response and
immune response were the most significant biological
processes and were also most strongly involved in the up-
regulated upstream cytokines in the SNs (Fig. 5). Some
other inflammatory response- and immune response-
related biological processes, such as neutrophil chemo-
taxis, monocyte chemotaxis, and cellular response to IL-1,
also exhibited low P-values, indicating the significance of
inflammation and immune responses.
To further reveal the intrinsic links among gene func-

tions, we performed a GO analysis on the differentially
expressed cytokines in both the SNs and the DRGs at
the same time point and constructed gene function
regulatory networks (GO-Tree) for the significant GO
terms (P < 0.05). The analysis showed that inflammation
(Fig. 6a) and immune responses (Fig. 6b) were induced
after peripheral nerve injury. The inflammation-centered
network showed that both acute and chronic inflamma-
tory responses were activated after nerve repair. The
chemotaxis, migration, and extravasation of various
types of cells, including lymphocytes, macrophages, and
monocytes, contributed to activating the inflammatory
response (Fig. 6a). The immune-centered network
showed that many biological processes related to pheno-
type modulation of immune cells, such as the activation

and proliferation of T cells, B cells, and natural killer
cells, significantly participated in the generated network.
This result indicated the critical roles of immune cells in
nerve repair and regeneration (Fig. 6b).

Discussion
Peripheral nerve injury induces the disconnection of
axons from their cell bodies and leads to the disruption
of axons and myelin sheaths in the injured nerve stumps
as well as central chromatolysis and nuclear-associated
changes in somas. With the rapid development of gen-
omics and proteomics, the global genetic and molecular
characteristics of a wide variety of physiological and
pathological conditions, including peripheral nerve in-
jury and regeneration, have been recognized. Moreover,
some molecules that are critical for peripheral nerve re-
pair have been identified by screening differentially
expressed genes and/or proteins after nerve injury.
Differentially expressed cytokines in the injured SNs

might promote the infiltration and polarization of mono-
cytes, macrophages, and Schwann cells, enhance the clear-
ance of axon and myelin debris, and promote axon
regrowth and regeneration. Many cytokines were found to
be upregulated in the injured nerve stumps. These cyto-
kines might be secreted and released by Schwann cells
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and macrophages after peripheral nerve injury [21, 22].
These upregulated cytokines, including CCL2, leukemia
inhibitory factor (LIF), tumor necrosis factor-α (TNF-α),
IL-1α, IL-1β, and pancreatitis-associated protein III (Pap-
III), promote the infiltration of monocytes and macro-
phages into injured nerve sites and contribute to the re-
modeling and reconstruction of the microenvironment
surrounding the injured sites [21, 23–26]. In the current
study, many other cytokines, including chemokine (C-C
motif) ligand 12 (CCL12), C-X-C motif chemokine ligand
2 (CXCL2), and C-X-C motif chemokine ligand 3
(CXCL3), were found to be expressed at high levels in the
injured nerve stumps after peripheral nerve injury,

indicating the potential applications of these cytokines in
treating peripheral nerve injury and promoting axon
regrowth.
Moreover, it is worth noting that many cytokines

might have opposing effects at multiple time points dur-
ing peripheral nerve regeneration and represent a
“double-edged sword” [11]. Our current study suggested
that differentially expressed upstream cytokines in the
injured SNs after peripheral nerve injury were highly re-
lated to inflammation and immune responses. Therefore,
the controversial biological roles of cytokines might be
due to the degree and timing of inflammation and im-
mune responses induced by different expression levels of
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cytokines [11]. These results were consistent with our
previous findings that robust immune and inflammatory
responses were not only activated at the early stage after
nerve injury but also remained activated over 14 days
after nerve injury [27]. These outcomes indicated that to
achieve orchestrated regulation of cytokines, it is import-
ant to obtain an overview of the expression patterns of
cytokines in the injured nerve stumps at different time
points after peripheral nerve injury.
In addition to affecting the injured nerve stumps

and reconstructing the regenerative microenvironment,

cytokines could influence the expression of neurotrophins
and their receptors and thus could affect the neurite out-
growth of neurons [11]. For instance, the addition of IL-4
or interferon-γ (IFN-γ) to neurotrophin-4 (NT-4)-treated
DRG neurons would increase NT-4-induced neurite out-
growth, and the addition of TNF-α to neurotrophin-treated
DRG neurons would decrease neurotrophin-induced neur-
ite outgrowth [28]. In addition, cytokine-induced inflamma-
tion and immune responses activate retrograde signaling
and might induce the death or survival of DRG neurons
[11, 29]. Consequently, in the current study, we also jointly
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determined the dynamic expression levels of cytokines in
the DRGs and discovered some significantly changed cyto-
kines, such as interferon alpha 4 (IFNA4), IL-6, and IL-24.
Interestingly, some cytokines, such as CXCL10, were dis-
covered to be upregulated in the nerve stumps but down-
regulated in the DRGs after nerve injury. CXCL10 could
promote the invasion of lymphocytes and macrophages,
affect myelination in a viral model of multiple sclerosis [30],
and induce neuropathic pain in DRGs after chronic con-
striction injury [31]. Therefore, upregulated CXCL10 in the
SNs after nerve injury may contribute to debris clearance in
the injured nerve stumps, while downregulated CXCL10 in
the DRGs might contribute to the reduction of neuropathic
pain. Further functional studies would reveal the specific
roles of these cytokines during peripheral nerve repair and
regeneration and would provide new targets for the treat-
ment of peripheral nerve injuries.

Conclusions
In summary, the findings provided an overview of the
dynamic changes in cytokines in the SNs and the DRGs
at different time points after rat nerve crush injury, eluci-
dated the biological processes of differentially expressed
cytokines, especially the important roles in inflammatory
and immune responses after peripheral nerve injury, and
thus might contribute to the identification of potential
treatments for peripheral nerve repair and regeneration.
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