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Purpose. Patients with high-grade osteosarcoma undergo several chemotherapy cycles before surgical intervention. Response to
chemotherapy, however, is affected by intratumor heterogeneity. In this study, we assessed the ability of a machine learning
approach using baseline 18F-fluorodeoxyglucose (18F-FDG) positron emitted tomography (PET) textural features to predict
response to chemotherapy in osteosarcoma patients. Materials and Methods. ,is study included 70 osteosarcoma patients who
received neoadjuvant chemotherapy. Quantitative characteristics of the tumors were evaluated by standard uptake value (SUV),
total lesion glycolysis (TLG), and metabolic tumor volume (MTV). Tumor heterogeneity was evaluated using textural analysis of
18F-FDG PET scan images. Assessments were performed at baseline and after chemotherapy using 18F-FDG PET; 18F-FDG
textural features were evaluated using the Chang-Gung Image Texture Analysis toolbox. To predict the chemotherapy response,
several features were chosen using the principal component analysis (PCA) feature selection method. Machine learning was
performed using linear support vector machine (SVM), random forest, and gradient boost methods. ,e ability to predict
chemotherapy response was evaluated using the area under the receiver operating characteristic curve (AUC). Results. AUCs of
the baseline 18F-FDG features SUVmax, TLG, MTV, 1st entropy, and gray level co-occurrence matrix entropy were 0.553, 0538,
0.536, 0.538, and 0.543, respectively. However, AUCs of the machine learning features linear SVM, random forest, and gradient
boost were 0.72, 0.78, and 0.82, respectively. Conclusion. We found that a machine learning approach based on 18F-FDG textural
features could predict the chemotherapy response using baseline PET images. ,is early prediction of the chemotherapy response
may aid in determining treatment plans for osteosarcoma patients.

1. Introduction

Osteosarcoma is a malignant tumor that primarily develops in
bones of patients between 5 and 25 years of age. Osteosarcoma
is a type of mesenchymal tumor that frequently metastasizes to
the lungs and peripheral bone.,erefore,metastatic potential is
a key factor in determining the diagnosis and prognosis of
osteosarcoma [1, 2]. ,e introduction of neoadjuvant che-
motherapy (NAC) in the treatment of osteosarcoma has led to

improved prognosis and enhanced patient survival. Patient
prognosis after combined NAC and surgery is better than after
either treatment as monotherapy [3, 4]. In general, patients
with high-grade osteosarcoma have numerous cycles of NAC
before surgery. However, ineffective NAC can be toxic andmay
increase resistance to anticancer drugs [5]. Histological as-
sessment of response to NAC can only be performed using
resected specimens; therefore, response cannot be monitored
during the course of NAC.
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18F-fluorodeoxyglucose (18F-FDG) positron emitted
tomography (PET) scanning is used as a tool to predict
prognosis and select cancer treatment, as it allows the re-
sponse to be measured before anatomical changes occur
during treatment [6]. Maximum standardized uptake value
(SUVmax), total lesion glycolysis (TLG), and metabolic
tumor volume (MTV) are analyzed by 18F-FDG PET
scanning; these factors are typical indicators used to predict
prognosis and survival in cancer patients [7]. 18F-FDG
uptake provides quantitative information regarding meta-
bolism and heterogeneity of the tumors [8, 9].

Characteristics of tumors include abnormal cell growth,
metabolism, immunity, and metastasis due to genetic het-
erogeneity, which enables cells to exhibit different properties
in tumormicroenvironments [10]. Intratumor heterogeneity
has been associated with decreased long-term survival and
has been used in assessment of prognosis. Heterogeneity in
medical imaging can be evaluated using quantitative ana-
lyses of global, local, and regional areas.,e textural features
of global areas are calculated based on the distributions of
each pixel: these include the maximum, mean, and standard
deviation of the SUV, as well as the skewness, kurtosis, and
1st entropy, based on histograms. Analysis of textural fea-
tures in local areas is considered to reflect differences in gray
levels among pixels in those areas, such as the gray level co-
occurrence matrix (GLCM) [11].

In recent years, studies have been performed using
textural features for evaluation of intratumor heterogeneity,
as well as prediction of survival rates in pancreatic carci-
noma [12], lung cancer [13], and breast cancer [14]. Notably,
several researchers have reported that SUVmax, TLG, and
MTV are not significantly associated with response to NAC.
Similarly, the correlations between textural features and
MTV are irrelevant due to increased tumor volume [15].
Quantitative analysis has advantages in the analysis of tu-
mors of various locations and sizes; thus, it is useful for
evaluation of irregular and unstructured images [16]. Studies
regarding textural features have demonstrated an associa-
tion between cellular proliferation, necrosis, glucose meta-
bolism, and intratumor heterogeneity [17]. Tumor
heterogeneity, proliferation, metabolism, and angiogenesis
reportedly can be predicted with quantitative analysis [18].

In this study, we acquired 18F-FDG PET images of pa-
tients with high-grade osteosarcoma before and after NAC.
We then assessed 18F-FDG textural features and used ma-
chine learning to predict responses to NAC.

2. Materials and Methods

2.1. Patients. ,is retrospective study was conducted in a
cohort of 70 patients who were diagnosed with osteosarcoma
based on 18F-FDG PET/CT scans during the period from
June 2006 to May 2017. All patients had newly diagnosed
histologically proven high-grade primary osteosarcoma and
received NAC with a combination of methotrexate, adria-
mycin, and cisplatin. Clinical characteristics, including age,
were obtained from medical records and the institutional
tumor registry. An experienced pathologist evaluated his-
tological responses to NAC in the resected primary tumor,

using specimens obtained during surgical treatment, based
on tumor necrosis (<90%, nonresponders; ≥90%, re-
sponders) [19]. Seventy osteosarcoma patients underwent
binary classification based on tumor necrosis results: thirty-
seven were responders (53%) and thirty-three were non-
responders (47%). ,is study was approved by the In-
stitutional Review Board and performed in accordance with
the ethical guidelines of our institutional clinical research
committee.

2.2. PET/CT Imaging. PET/CT images were acquired at
baseline, as well as after the first and second cycles of NAC,
using a PET/CT scanner (Biograph 6 PET/CT scanner,
Siemens, Malvern, PA, USA). CT imaging was performed
using a 6-slice helical CT scanner with 30mAs at 130 kVp.
After the CT scan, PET scanning was performed from the
base of the skull to the thigh using 3.5min per frame in
three-dimensional (3D) mode, 60min after intravenous
injection of 18F-FDG (7.4MBq/kg). PET images were
reconstructed using CT for attenuation correction (field of
view, 680× 680mm2; voxel size, 4× 4× 3mm3) and 3D
ordered subsets expectation maximization algorithms.

2.3. Quantitative Analysis. Textural features were extracted
from the 18F-FDG PET images at baseline and after NAC
(Table 1). Intratumor heterogeneity was evaluated using
quantitative analysis in global, local, and regional areas.
Outlines of the 3D region of interest (ROI) were identified in
18F-FDGPETimages using the region-growing algorithm.,e
tumor ROI was confirmed by an experienced nuclear medi-
cine physician. Sampling for the ROI was divided into 64 gray
levels, which were verified in previous studies [15]. Quanti-
tative analysis was assessed using the Chang-Gung Image
Texture Analysis toolbox (http://code.google.com/p/cgita), an
open-source software package implemented inMATLAB (ver.
2012a; MathWorks Inc., Natick, MA, USA) [20]. All calcu-
lations regarding the quantitative features workflow were
performed in accordance with the Image Biomarker Stan-
dardization Initiative (IBIS), and we confirm that the features
comply with this guideline [21].

2.4. Machine Learning Approach. Machine learning and
principal component analysis (PCA) were performed using
the scikit-learn package. Machine learning algorithms in this
study included linear support vector machine (SVM),
random forest, and gradient boosting. All machine learning
approaches were trained using 80% of the osteosarcoma
patients’ calculated textural features; the remaining 20% of
the patients’ textural features were used for the test dataset.
We used k-fold cross-validation (k� 10) to overcome in-
sufficient data and resolve overfitting of the data.

Linear SVM used the L2 penalty, which is standard in
support vector classification. Random forest used 100 esti-
mators and a select entropy criterion. ,e gradient boosting
method used 100 estimators and a Friedman MSE criterion.
We also performed the PCA method with machine learning.
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In this study, we applied the kernel PCA method, using the
RBF kernel with 44 components.

Machine learning was performed with or without PCA
to compare the receiver operating characteristic (ROC) area
under the curve (AUC) for prediction of the response to
NAC using baseline 18F-FDG textural features.

2.5. Statistical Analysis. Significant factors in evaluation of
the response to NAC were assessed using the Mann–
Whitney U test, ROC analysis, and logistic analysis. ,e
capacities of the features for classifying responses to NAC
were investigated using theMann–WhitneyU test.,e AUC
and sensitivity of response to NAC were evaluated using
ROC curve analysis. ,e predicted accuracies of machine
learning approaches with and without PCA were assessed
using independent t-tests. Differences with p-values< 0.05
were considered statistically significant. All statistical ana-
lyses were performed using MedCalc software (version 18.6,
MedCalc Software bvba, Ostend, Belgium).

3. Results

3.1. 18F-FDG PET Image of Osteosarcoma Patients. PET
images in Figure 1 represent patients classified as responders or
nonresponders, based on histological findings. Figure 1 depicts
a responder: a 15-year-old male patient with osteosarcoma of
the right femur; the SUVmax values at baseline and after NAC
were 11.33 and 4.43. Figure 1 also depicts a nonresponder: an

11-year-old female patient with osteosarcoma; the SUVmax
values at baseline and after NAC were 5.62 and 3.21.

3.2. Comparison of NAC Responder and Nonresponders.
,e Mann–Whitney U test was used to compare each of the
PET quantitative factors between responders and non-
responders at each time point (Figure 2). SUVmax decreased
by 53.3% in responders, whereas it decreased by 14.5% in
nonresponders. In addition, TLG and MTV both decreased
in responders and nonresponders (73.6% and 25.5%, re-
spectively; 65.1% and 22.5%, respectively). Statistical analysis
of baseline values showed that SUVmax (p � 0.485), TLG
(p � 0.616), and MTV (p � 0.638) did not significantly
differ between responders and nonresponders. In addition,
1st entropy change decreased by 9.4% in responders and by
2.6% in nonresponders; GLCM entropy decreased by 9.1% in
responders and by 2.0% in nonresponders. ,ese differences
were not statistically significant (p � 0.616 and p � 0.574,
respectively, between responders and nonresponders).
However, after NAC, all features significantly differed be-
tween responder and nonresponder groups.

3.3. Prediction of Response to NAC Using Textural Features
AUC. ROC analysis showed that baseline 18F-FDG PET
textural features had lower AUC (SUVmax: 0.553, TLG:
0.538, MTV: 0.536, 1st entropy: 0.538, and GLCM entropy:
0.543). ROC analyses of the percent changes in textural
features showed that AUCs of SUVmax, TLG, MTV, 1st

Table 1: Index of textural features in global, local, and regional areas.

Feature family Features

Intensity histogram

SUVmax
SUVmean

Standard deviation
Total lesion glycolysis (TLG)

Metabolic tumor volume (MTV)
1st entropy

Gray level co-occurrence matrix (GLCM)

Energy
Contrast
Entropy

Homogeneity
Dissimilarity

Neighboring gray level dependence matrix
(NGLDM)

Small number emphasis
Large number emphasis

Coarseness
Busyness

Gray level run length matrix (GLRLM)

Short run emphasis
Long run emphasis

Gray level nonuniformity
Run length nonuniformity
Low gray level run emphasis
High gray level run emphasis

Gray level size zone matrix (GLSZM)

Small zone emphasis
Large zone emphasis

Gray level nonuniformity
Zone size nonuniformity

Low gray level zone emphasis
High gray level zone emphasis
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Figure 1: Representative 18F-FDG PET images of a responder and a nonresponder with osteosarcoma. Responder SUVmax values were
11.33 and 4.43 at baseline and after neoadjuvant chemotherapy (NAC), respectively. Nonresponders had SUVmax values of 5.62 and 3.21 at
baseline and after NAC, respectively.
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Figure 2: Continued.
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entropy, and GLCM entropy were 0.863, 0.816, 0.764, 0.767,
and 0.775, respectively. Notably, the AUCs of percent
changes between baseline and after NAC were significantly
higher than the AUCs of textural features at baseline and
after NAC (Table 2). Figure 3 shows that the ROC after NAC
and all features can predict the chemotherapy response.

ROC analysis of sensitivity and specificity indicated the
acceptability of the predictive model. SUVmax showed the
highest sensitivity (51.61%) and 1st entropy showed the
highest specificity (92.86%) in baseline 18F-FDG PET.

3.4. Prediction of Response to NAC Using Machine Learning
with PCA. ROC analysis of machine learning methods

without PCA showed that AUCs of linear SVM, random
forest, and gradient boost were 0.54± 0.05, 0.58± 0.17, and
0.59± 0.12, respectively; AUCs of these methods with PCA
were 0.72± 0.22, 0.78± 0.24, and 0.82± 0.12, respectively.
,e findings indicated that machine learning with PCA was
superior for prediction of the response to NAC using
baseline 18F-FDG PET data (Table 3).

4. Discussion

In this study, we performed quantitative analysis using
18F-FDG PET images of patients with high-grade osteo-
sarcoma who underwent NAC. We used conventional
factors (e.g., SUVmax, MTV, and TLG) and new quan-
titative factors, 1st entropy and GLCM entropy.

With the increased need for prediction of the effect of
NAC cancer treatment and the corresponding survival rate,
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Figure 2: Comparison of SUVmax, TLG, MTV, 1st entropy, and GLCM entropy features value for responders and nonresponders at
baseline and after neoadjuvant chemotherapy (NAC).

Table 2: Receiver operating characteristic curve analysis and
univariate logistic regression analysis for evaluation of response to
chemotherapy.

Variable AUC Sen (%) Spe (%) P-value
SUVmax
Baseline 0.553 51.61 67.86 0.488
After NAC 0.839 61.29 92.86 <0.001∗
% change 0.863 93.55 71.43 <0.001∗

TLG
Baseline 0.538 45.16 82.14 0.626
After NAC 0.816 77.42 71.43 <0.001∗
% change 0.838 80.65 82.14 <0.001∗

MTV
Baseline 0.536 45.16 78.57 0.645
After NAC 0.764 96.77 46.43 <0.001∗
% change 0.838 80.65 82.14 <0.001∗

1st entropy
Baseline 0.538 22.58 92.86 0.616
After NAC 0.767 70.97 82.14 <0.001∗
% change 0.713 70.97 71.43 0.0018∗

GLCM entropy
Baseline 0.543 41.94 75 0.575
After NAC 0.775 70.97 82.14 <0.001∗
% change 0.71 67.74 75 0.0022∗

AUC, area under the curve; Sen, sensitivity; Spe, specificity; SUV, stan-
dardized uptake value; NAC, neoadjuvant chemotherapy; TLG, total lesion
glycolysis; MTV, metabolic tumor volume.
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Figure 3: Receiver operating characteristic curves for SUVmax,
TLG, MTV, 1st entropy, and GLCM entropy after neoadjuvant
chemotherapy (NAC).
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prognostic factors such as imaging histograms or textural
features have gained considerable interest. In particular,
textural analysis of tumor heterogeneity using local and
regional characteristics has been used to predict survival in
patients with pancreatic [12], lung [13], and breast cancer
[14]. In a study of osteosarcoma patients, Byun et al. re-
ported prediction of the response to NAC using global
textural analysis, especially SUVmax, based on changes in
PET images over 1–2.5 hours. Evaluation of the response to
NAC using textural analysis has been reported in patients
with esophageal cancer [18] and non-small-cell lung cancer
[13]. In esophageal cancer patients, response to NAC was
more accurately predicted using local features, rather than
global features. Similarly, in non-small-cell lung cancer
patients, local textural features (e.g., contrast, coarseness,
and busyness) were superior for prediction of response to
NAC [18].

Tumor heterogeneity depends on a variety of tissue
components, which affect the heterogeneity of glucose
metabolism [11, 16]. Moreover, increased tumor heteroge-
neity causes poor response to NAC [22]. In the current
study, assessment of tumor heterogeneity was performed
using 18F-FDG PET images [12, 14]. Entropy (randomness
and degree of disorder was used as a representative indicator
of tumor heterogeneity. Figure 2 shows that quantitative
factors decreased in responder and nonresponder groups.
However, none of the assessed features were significantly
different in baseline 18F-FDG PET images. In the responder
group, 1st entropy and GLCM entropy were significantly
different after NAC. ,is result indicates that change in 18F-
FDG uptake heterogeneity can predict the response to NAC
and that 1st entropy and GLCM entropy after 18F-FDG PET
can predict the response to NAC. ,e percent changes
between baseline and after NAC are shown in Table 2.

,e percent change of SUVmax was significantly dif-
ferent between responder and nonresponder groups.
Furthermore, SUVmax, TLG, and MTV showed increased
predictability in percent change (Table 2). ROC analysis
showed that AUCs of 1st entropy and GLCM entropy were
not superior to those of SUVmax, TLG, andMTV (Table 2).
However, combinations of these features could predict the
response to NAC using machine learning methods for
analysis of baseline 18F-FDG PET images. Statistical result
of all quantitative factors at each time point showed that at
individual time points after NAC, 1st entropy and GLCM
entropy were significantly different. After NAC, changes in
18F-FDG features SUVmax and MTV were significantly
different, based on ROC analysis (p> 0.05). ,erefore, we
recommend that 18F-FDG PET is used to more accurately
evaluate changes in 18F-FDG heterogeneity and predict the
response to NAC in osteosarcoma patients.

ROC analysis showed that the percent changes of 18F-FDG
textural features had higher AUC values than machine
learning without PCA. ,ese results are important for pre-
dictions in osteosarcoma patients. However, there is a dis-
advantage in that early treatment outcomes cannot be
estimated because the percent changes of textural features
require acquisition of 18F-FDG at baseline and after NAC.
,us, the prediction of prognosis in osteosarcoma patients
using percent change of textural features is not useful, even if
the prediction exhibits high accuracy. Consequently, machine
learning with PCAmay be more useful to predict the response
to NAC in osteosarcoma patients.

Osteosarcoma is not a common cancer: fewer than 1% of
all cancer diagnoses are osteosarcoma [23] and approxi-
mately 2% of childhood cancers are osteosarcoma. ,ere-
fore, it is difficult to obtain osteosarcoma 18F-FDG PET
images and the resulting 18F-FDG PET data are often in-
sufficient for robust analysis.

In this study, machine learning approaches could predict
the chemotherapy response before NAC in osteosarcoma
patients. However, a major limitation of this study was the
insufficient size of the cohort dataset. Because osteosarcoma
is an uncommon cancer, there was a restricted amount of
18F-FDG PETdata available for our analysis. ,erefore, data
from a large patient cohort are needed to confirm our
findings and provide a more powerful predictive model.

5. Conclusion

,ere were no significant differences between responders and
nonresponders, as measured by 18F-FDG PET at baseline and
after NAC. However, the percent change in 18F-FDG het-
erogeneity of textural features could predict the response to
NAC. ROC analysis showed that the AUC ofmachine learning
(linear SVM, random forest, and gradient boost) could predict
the response to NAC using textural features in baseline 18F-
FDG.We hope that these results help osteosarcoma patients to
avoid unnecessary NAC and that they aid in selection of the
appropriate treatment method for patients with osteosarcoma
by predicting treatment outcomes before the initiation of
NAC.
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