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Excitatory neurons and GABAergic interneurons constitute neural circuits and play
important roles in information processing. In certain brain regions, such as the
neocortex and the hippocampus, there are fewer interneurons than excitatory neurons.
Interneurons have been quantified via immunohistochemistry, for example, for GAD67,
an isoform of glutamic acid decarboxylase. Additionally, the expression level of other
proteins varies among cell types. For example, NeuN, a commonly used marker
protein for postmitotic neurons, is expressed differently across brain regions and cell
classes. Thus, we asked whether GAD67-immunopositive neurons can be detected
using the immunofluorescence signals of NeuN and the fluorescence signals of Nissl
substances. To address this question, we stained neurons in layers 2/3 of the primary
somatosensory cortex (S1) and the primary motor cortex (M1) of mice and manually
labeled the neurons as either cell type using GAD67 immunosignals. We then sought to
detect GAD67-positive neurons without GAD67 immunosignals using a custom-made
deep learning-based algorithm. Using this deep learning-based model, we succeeded
in the binary classification of the neurons using Nissl and NeuN signals without
referring to the GAD67 signals. Furthermore, we confirmed that our deep learning-based
method surpassed classic machine-learning methods in terms of binary classification
performance. Combined with the visualization of the hidden layer of our deep learning
algorithm, our model provides a new platform for identifying unbiased criteria for
cell-type classification.

Keywords: fully convolutional network, somatosensory cortex, motor cortex, mouse, GAD67, NeuN, deep
learning, interneuron

Abbreviations: NeuN, neuronal nuclei; GAD67, glutamate decarboxylase 67; GABA, gamma-aminobutyric acid; S1,
primary somatosensory cortex; M1, primary motor cortex; ROI, region of interest; FCN, fully convolutional network; TP,
true positive; FP, false positive; TN, true negative; FN, false negative; PCA, principal component analysis; SVM, support
vector machine.
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INTRODUCTION

Neural circuits consist of glutamatergic excitatory neurons
and GABAergic interneurons (Tremblay et al., 2016). While
excitatory neurons, or principal cells, transmit information to
downstream neurons, interneurons gate signal propagation by
the relevant inhibition and sculpt cortical network dynamics.
Particularly in the neocortex, interneurons constitute a minority
of the neuronal population (Meyer et al., 2011), but they
substantially contribute to information processing in the cortex,
such as gain control of cortical circuits (Isaacson and Scanziani,
2011; Katzner et al., 2011; Bryson et al., 2020; Ferguson
and Cardin, 2020), sensory feature selectivity (Sillito, 1975;
Tsumoto et al., 1979), response reliability (Kara et al., 2000;
Movshon, 2000), and temporally precise regulation of excitatory
neuron firing (Cardin, 2018). Consistent with this notion,
the loss or malfunction of interneurons is associated with
neural and psychiatric diseases, such as epilepsy, bipolar
disorder, and schizophrenia (Benes and Berretta, 2001; Marín,
2012; Goldberg and Coulter, 2013; Lewis, 2014). Moreover,
neuroscientists have characterized neurons from morphological,
electrophysiological, and neurochemical perspectives (Mihaljević
et al., 2019); however, these criteria often vary between
researchers, which prevents unbiased classification and hinders
a better understanding.

To reliably identify interneurons and quantify their loss,
GAD67, an isoform of glutamic acid decarboxylase, has been
widely utilized because it is highly immunoreactive in the cell
bodies of interneurons (Esclapez et al., 1994; Shetty and Turner,
2001; Meyer et al., 2011). While GAD67 is a reliable marker
protein for GABAergic neurons (Ribak et al., 1978; Ribak, 1978;
Staiger et al., 2002; Meyer et al., 2011), the expression levels
of other proteins also vary between excitatory and inhibitory
neurons. For example, NeuN, a neuronal-specific nuclear protein
(Mullen et al., 1992; Kim et al., 2009), is widely used as a marker
protein for postmitotic neurons and is differentially expressed
among cell types in the murine cortex, hippocampus, and
cerebellum (Weyer and Schilling, 2003; Yu et al., 2015). Thus, we
questioned whether the fluorescence patterns of immunostained
NeuN and counterstained Nissl allow for the classification
between GAD67-positive and GAD67-negative cortical neurons.

To address this question, we implemented deep learning-
based methods to analyze fluorescence pattern data. Deep
learning is a subclass of machine learning algorithms based
on a multilayered artificial neural network that extracts
high-dimensional feature patterns (i.e., output) from the given
raw dataset (i.e., input) and has recently benefitted image
processing. For example, the lower (e.g., the first and the
second) layers extract geometric features such as edges and their
arrangement in images, whereas the higher (e.g., the penultimate
and the last) layers identify abstract concepts and complicated
characteristics. Deep learning-based image processing methods
have recently improved and been applied in biological fields (He
et al., 2015; Jiménez and Racoceanu, 2019; Kusumoto and Yuasa,
2019; Liu et al., 2020).

We performed immunohistochemical staining of neurons in
the primary somatosensory cortex (S1) and the primary motor

cortex (M1) of mice and manually annotated these neurons
as GAD67-positive or GAD67-negative. We then attempted to
classify them using any combination of immunofluorescence
signals with the aid of a custom-made deep learning-
based algorithm (Mihaljević et al., 2015; Chen et al., 2016;
Xiao et al., 2018). We further compared the currently
established algorithm against a conventional machine learning-
based algorithm to evaluate the classification performance
(Li et al., 2006; Kang et al., 2017).

MATERIALS AND METHODS

Data Acquisition
Animal Ethics
Animal experiments were performed with the approval of the
animal experiment ethics committee at the University of Tokyo
(approval number: P24–10) and following the University of
Tokyo guidelines for the care and use of laboratory animals. The
experimental protocols were followed as per the Fundamental
Guidelines for the Proper Conduct of Animal Experiments and
Related Activities in Academic Research Institutions (Ministry
of Education, Culture, Sports, Science and Technology, Notice
No. 71 of 2006), the Standards for Breeding and Housing of
and Pain Alleviation for Experimental Animals (Ministry of the
Environment, Notice No. 88 of 2006) and the Guidelines on the
Method of Animal Disposal (Prime Minister’s Office, Notice No.
40 of 1995).

Histology
Three young adults (8-week-old) male ICR mice were
anesthetized with 2–3% isoflurane gas. Anesthesia was confirmed
via the lack of reflex responses to tail and toe pinches. The mice
were transcardially perfused with chilled phosphate-buffered
saline (PBS) followed by 4% paraformaldehyde in PBS, and then
their brains were removed. These brains were postfixed in 4%
paraformaldehyde overnight and washed with PBS three times
for 10 min each, and coronal sections were prepared using a
vibratome at a thickness of 100 µm. The anterior-to-posterior
coordinates of the sectioned slices were estimated based on the
published literature (Franklin and Paxinos, 2019) so that the
sections could include the S1 and the M1. For each mouse, we
collected 12 sectioned slices from 0.7 mm to 1.9 mm anterior to
bregma. The sections were blocked with 10% goat serum (GS)
and 0.3% Triton X-100 in PBS for 60 min at room temperature.
These sections were incubated with rabbit primary antibody
against neuronal nuclei (NeuN; 1:500, ab177487, Abcam,
Cambridge, UK) and mouse primary antibody against glutamate
decarboxylase 67 (GAD67; 1:500, MAB5406, Merck, NJ, USA)
in 10% GS and 0.3% Triton X-100 in PBS for 16 h at room
temperature unless otherwise specified (see also Supplementary
Figure 1). The sections were washed three times for 10 min each
with PBS and incubated with Alexa Fluor 488-conjugated goat
secondary antibody against rabbit IgG (1:500, A11034, Thermo
Fisher Scientific, MA, USA), Alexa Fluor 594-conjugated goat
secondary antibody against mouse IgG (1:500, A11032, Thermo
Fisher Scientific, MA, USA), and NeuroTrace 435/455 blue
fluorescent Nissl stain (1:500, N21479, Thermo Fisher Scientific,
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MA, USA) in 10% GS and 0.3% Triton X-100 in PBS for 6 h at
room temperature.

Confocal Imaging
Before we captured images of each set of slices, we adjusted the
laser power for each fluorescence channel to the maximum just
below the intensity that would cause fluorescence saturation. The
images were captured with the following laser configurations:
channel 1 for Nissl (excitation wavelength, 405 nm; HV (PMT
voltage), 700 V; laser power, 0.7–5.0%; gain, ×1.0; offset, 0%),
channel 2 for NeuN or GABA (excitation wavelength, 488 nm;
HV, 700 V; laser power, 0.6–0.8%; gain, ×1.0; offset, 0%), and
channel 3 for GAD67 (excitation wavelength, 543 nm; HV,
700 V; laser power, 12.0–47.0%; gain, ×1.0; offset, 0%). The
images (1024 × 1024 pixels, 12 bits/pixel, 16-bit intensity) for
each region of interest were acquired at a sampling speed of 2.0
µs/pixel at Z-intervals of 0.5 µm using a laser scanning confocal
microscope (FV1000, Olympus, Tokyo, Japan) equipped with
a 20× or 40× objective lens (20×, UPLSAPO20X (NA, 0.75),
Olympus; 40×, UPLSAPO40X (NA, 0.90), Olympus). We
captured 10 slices (i.e., approximately 5 µm along the Z-axis) for
each region of interest (ROI) primarily in layers 2/3 of S1 and M1.

Data Analysis
The images were processed and analyzed using ImageJ software
(National Institutes of Health, MD, USA) and Python 3. The
summarized data are presented as the mean ± the standard
deviation (SD) unless otherwise specified. P < 0.05 was
considered statistically significant. The original P values were
adjusted with Bonferroni correction and compared with
0.05 when multiple pairwise comparisons were required.

Preprocessing (Erosion-Dilation Algorithm and
Manual Annotation)
In our deep learning scheme, single-cell images in S1 and M1 that
were extracted from the captured images of the sectioned slices
were used as training data. We extracted the first and the last
(10th) in the stacked images, split the color channels into three
separate channels (e.g., GAD67, NeuN, and Nissl), and applied
U-Net, a pre-trained deep neural network (Falk et al., 2019), to
the images of the NeuN channel to specify the cell positions.
We obtained binary images of the cells, created the ROIs, and
excluded particles smaller than 180 pixels2 from the following
analyses (Figure 2A).

When we captured the images, we adjusted the laser power so
that the fluorescence would be barely under the saturation level
for each Z-plane and kept the image acquisition conditions equal
across all the Z-planes. For each channel, we then calculated the
mean and the SD of all (i.e., 1,024 × 1,024) the intensities and
linearly normalized the original pixel intensities in each Z-plane
image between the mean+ the SD and the mean− the SD.

Since the neurons in the neocortex are tightly packed, multiple
cells were considered as a single ROI (Figure 2B, left). For a given
misestimated ROI, we first eroded the contour of the ROI to
separate it into multiple plots, which were subsequently regarded
as new ROIs. We then dilated them back to their original
sizes using custom-written Python scripts, and the separated
ROIs were discarded if they were smaller than 180 pixels2 in

size. Note that this erosion-dilation algorithm affected only
the size of the ROIs and that the pixels of the original image
were never modified. These processes allowed almost every ROI
to contain a single cell (Figure 2B, right). From the original
(1024× 1024 pixels) image, rectangular cell images were cropped
out to tightly enclose the corresponding ROI and manually
annotated by three independent skilled professionals with the
aid of images with three channels (i.e., GAD67, NeuN, and
Nissl). Annotations by any given pair of two professionals were
significantly related for S1 (χ2 = 1211.26, P = 6.54 × 10–265,
df = 1 (experimenter 1 vs. experimenter 2); χ2 = 1385.32,
P = 9.74 × 10–303, df = 1 (experimenter 1 vs. experimenter 3);
χ2 = 641.59, P = 4.52 × 10–141, df = 1 (experimenter 2 vs.
experimenter 3)) and M1 (χ2 = 1211.25, P = 6.54 × 10–265,
df = 1 (experimenter 1 vs. experimenter 2); χ2 = 1218.93,
P = 4.69 × 10–267, df = 1 (experimenter 1 vs. experimenter 3);
χ2 = 560.22, P = 7.54 × 10–124, df = 1 (experimenter 2 vs.
experimenter 3)).

Neural Network Architecture
Neural networks, such as a convolutional neural network and a
recurrent neural network, typically consist of two primary steps:
forward propagation and backpropagation.

Forward Propagation
In forward propagation, the input data are put through and
manipulated by various layers (e.g., convolutional, recurrent,
pooling, and dropout layers). Here, our FCN model contains:
(i) convolutional, (ii) dropout, (iii) batch normalization, and (iv)
pooling layers (Figure 4).

(i) In convolutional layers, the input is transformed into a
feature matrix of reduced size through convolution by
kernel matrices. This processing with kernels enables the
extraction of meaningful features from the input into a
smaller number of parameters (Khan et al., 2018).

(ii) During the learning processes of deep neural networks,
we often observe phenomena called overfitting. Overfitting
occurs when the model learns unnecessary details from
training data to the extent that the model exerts negative
effects on predictions on new data. To prevent this
problem, we implemented dropout layers. During the
learning process, a dropout layer ignores some of the
layer outputs, which break undesirable co-adaptations
among artificial neurons, making the model more robust
(Srivastava et al., 2014).

(iii) The batch normalization layers are applied to standardize
the layer inputs. Without these normalization layers, the
distribution of every input would be different, which
negatively affects the learning process of a machine
learning model. Implementing the batch normalization
layers increases the learning efficiency and the learning
speed of the model (Ioffe and Szegedy, 2015).

(iv) The pooling layer generally scans the output of the network
by calculating a summary statistic of the neighbor outputs.
This step helps decrease the number of computations
by reducing the size of the output features and removes
unnecessary information from the feature matrices. Our
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model implements global max pooling, which extracts the
maximum value of the feature matrices and converts it into a
vector. The output vector is then passed on to the final layer,
where the probability of input classes is calculated using the
Softmax function (Hinton et al., 2015).

Backpropagation
The feedforward operation is performed by manipulating the
weights in various layers in the model. Initially, the weights of
the model are randomly generated. These weights are updated in
every training iteration by a process called backpropagation.

During every training epoch, the training data are separated
into smaller datasets called batches. The output of the batches is
compared with their true labels. The comparison of the output
and the true labels yields a metric called loss, which is used to
calculate an average gradient of the output layers. This gradient
is then backpropagated to update the network weights.

Deep Learning-Based Algorithm
After the preprocessing, we implemented a fully convolutional
network (FCN), a deep learning-based method, to classify the
cell images. First, since our dataset of images of GAD67-positive
and GAD67-negative cells was imbalanced, we downsampled the
GAD67-negative cell images to a ratio of 1:1. The downsampled
class was upweighted by the downsampling factor to calibrate
the model and ensure that the outputs could be interpreted
as probabilities.

Our FCN was implemented using Keras, a Python deep
learning library, and the TensorFlow backend. The network was
optimized by adaptive moment estimation (Adam) or stochastic
gradient descent (SGD) with learning rates of 0.001 or 0.0001,
respectively. The parameters for the optimizer Adam were as
follows: beta1 (i.e., an exponential decay rate for the 1st moment
estimates) = 0.9, beta2 (i.e., an exponential decay rate for the
2nd moment estimates) = 0.999, and epsilon = 1e-7, whereas the
parameter for SGD was as follows: momentum = 0.0. The default
values were used unless otherwise specified.

To evaluate the significance of interchannel information,
we trained the model with seven different combinations of
channels (i.e., GAD67 + NeuN + Nissl, NeuN + Nissl,
GAD67 + Nissl, GAD67 + NeuN, GAD67, NeuN, and Nissl).
For each combination, the training lasted 500 epochs, and
the model checkpoint method was implemented to prevent
the overfitting of the model. When checkpoint methods were
applied, the model in the training epoch with the lowest
validation loss was saved. Note that the loss is a metric to assess
how well the model predicts new data. A batch size of 8 was used
for network training. Since our input images were all different in
size, the images in a batch were zero-padded to match the size
of the largest of the eight images. The model was trained on a
GeforceRTX2080Ti GPU (Nvidia, CA, USA), and approximately
1 h was required to complete the training.

Twenty percent of the entire image dataset for either S1 or
M1 neurons was set aside as a validation dataset to evaluate
the trained models, and the remaining 80% were used as a
training-test dataset to train and test the FCN models. To
assess the model performance multiple times, 5-fold cross-
validations were performed. The training-test data were divided

into five segments, and during each training session, one segment
was used as test data, while the rest were used as training data.

We calculated the metrics (i.e., accuracy, loss, validation
accuracy, and validation loss) and monitored them for each
learning epoch. If the validation loss in an epoch was smaller
than that in the previous epoch, the weight of the model at that
point was saved as a checkpoint. Once the training was finished,
the weight of the checkpoint with the lowest validation loss was
loaded, and the model was evaluated using the validation dataset.

Conventional Machine Learning-Based Algorithm
To assess the performance of our deep learning-based algorithm,
we additionally classified the cell images using conventional
machine learning methods, including principal component
analysis (PCA) and the support vector machine (SVM), the
combination of which is hereafter called the PCA-SVM model.

After preprocessing, PCA and SVM were implemented using
scikit-learn, a Python machine learning library. We used an SVM
classifier with a radial basis function kernel, with regularization
parameter 1 and balanced class weight. The kernel coefficient
(gamma) was calculated as follows.

gamma =
1

# of dimentions× sample variance
.

Similar to the deep learning methods, the PCA-SVM model
was trained with seven different combinations of channels
(i.e., GAD67 + NeuN + Nissl, NeuN + Nissl, GAD67 + Nissl,
GAD67 + NeuN, GAD67, NeuN, and Nissl). The trained
model was evaluated by 5-fold cross-validations using the same
training-test and validation datasets. We first flattened the images
into arrays and zero-padded their size to equalize the array
size of the largest image. To reduce the dimensionality of the
dataset, we applied PCA to the test dataset. Combinations of
the components explaining more than 95% of the variance were
used as output dimensions. We also put the validation dataset
through dimensionality reduction steps by applying the same
PCA fit to the training dataset. We trained the SVM classifier on
the reduced dataset and evaluated it with the validation data.

Evaluation of the Model Performance
The performance of the model was evaluated using a weighted
F1 score, which takes into account metrics of both GAD67-
positive and GAD67-negative neurons. The metrics were defined
as follows.

precision =
TP

TP + FP
,

recall =
TP

TP + FN
,

F1 score =
2× precision× recall
precision+ recall

,

where TP, FP, TN, and FN represent the true positive,
false positive, true negative, and false negative ratios of the
classification, respectively. Precision is the ratio of correct
positive classification to the total predicted positive classification.
The recall is the ratio of correct positive classification to the
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total true positive samples. The F1 score is a weighted average
of precision and recall and can be used as a hybrid metric for
evaluation. Furthermore, we calculated a weighted average of the
F1 scores in the two classes (i.e., GAD67-positive and GAD67-
negative neurons) as follows.

weighted F1 score =

N_cellsGAD67(+) × F1 scoreGAD67(+)

+N_cellsGAD67(−) × F1 scoreGAD67(−)

N_cellsGAD67(+) + N_cellsGAD67(−)
,

where N_cellsGAD67(+) and N_cellsGAD67(−) represent
the number of GAD67-positive and GAD67-negative
neurons, respectively.

RESULTS

Individual Cell Extraction From Brain
Sections
We prepared 100-µm-thick coronal sections from young
adult mice. We picked up the slices every 500 µm and
immunostained them against NeuN and GAD67. The slices were
counterstained with NeuroTrace Nissl stain (hereafter, Nissl)
(Figure 1, Supplementary Figure 1). We detected abundant
NeuN-immunoreactive (i.e., putatively excitatory) neurons in S1
(Figure 1A) and M1 (Figure 1C) for all three mice tested using
a 20× objective lens, thus confirming the presence of GAD67-
immunoreactive fluorescence in both cortices (Figures 1B,D).
We further confirmed that GAD67-immunoreactive neurons
almost overlapped with GABA-immunoreactive neurons
(Supplementary Figure 1).

We applied the captured images of NeuN-immunopositive
neurons to U-Net (Falk et al., 2019) to detect the contours
of single cells (Figure 2). Cell images extracted from 80 and
64 slices from S1 and M1, respectively, were manually labeled
GAD67-immunopositive or GAD67-immunonegative by
multiple skilled experimenters (Figure 2). For each of the three
channels (i.e., GAD67, NeuN, and Nissl), we then calculated the
distribution of the average fluorescence intensity of manually
annotated GAD67-positive and GAD67-negative neurons in
S1 (Figure 3). As expected, GAD67-positive and GAD67-
negative neurons exhibited distinct distribution patterns of
GAD67 fluorescence (Figure 3A). When the average intensity
of GAD67 fluorescence was simply used as a feature for
discrimination, the average intensity alone could not necessarily
distinguish between the two types of neurons (Figure 3A).
However, when using raw images for discrimination, skilled
experimenters would have practically integrated more
information (underlying the images) and extracted higher-
dimensional features to determine the difference between
GAD67-positive and GAD67-negative neurons. Neither Nissl
nor NeuN fluorescence allowed for discrimination between the
two (Figures 3B,C). Moreover, GAD67-positive and GAD67-
negative neurons in S1 displayed almost the same unimodal
distribution patterns for the sectional area and the circularity
of cells (Figures 3D,E). The GAD67-positive and GAD67-
negative neurons in M1 also exhibited the same distribution

FIGURE 1 | Representative photographs of GAD67 and NeuN
immunoreactivity in the S1 and the M1 of mice. (A) Representative image
(1,024 × 1,024 pixels, 16-bit intensity, 20×) of a section of S1
immunostained with GAD67 (red) and NeuN (green) and counterstained with
Nissl (blue). (B) Magnified image of the boxed area (white). High-magnification
images of merged (top, left), anti-GAD67 (top, right), anti-NeuN (bottom, left),
and Nissl (bottom, right). White arrowheads point to GAD67-positive cells. (C)
The same as (A), but for M1. (D) The same as (B), but for M1. Abbreviations:
S1, primary somatosensory cortex; M1, primary motor cortex.

patterns as those in S1 (Figures 3F–J). These results suggest that
human-friendly (i.e., easily calculatable and understandable by
humans) parameters alone were insufficient for discriminating
between GAD67-positive and GAD67-negative cells.

Deep Learning-Based Automatic Cell
Classification
Simple quantitative metrics (i.e., fluorescence intensity, sectional
area, and circularity) did not match the manual annotations
of GAD67-positive and GAD67-negative cells as defined by
skilled experimenters; therefore, we implemented FCN to
automatically classify individual cell images into GAD67-positive
and GAD67-negative neurons (Figure 4). To evaluate the
performance of the deep learning-based method, we introduced
a classification metric called the weighted F1 score and
compared it between the FCN and the PCA-SVM classifiers
(Figures 5–8). The weighted F1 score was calculated for each
combination of channels (e.g., GAD67 + NeuN + Nissl
(Figure 5), NeuN + Nissl (Figure 6), GAD67 + Nissl,
GAD67+NeuN (Figure 7), GAD67, NeuN and Nissl (Figure 8))
for S1 and M1.

First, we applied the images with all three channels
(i.e., GAD67 + NeuN + Nissl) to the FCN-based model
and the PCA-SVM classifier and evaluated their classification
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FIGURE 2 | Flowchart of image acquisition and preprocessing. (A) Workflow of cell extraction using the pre-trained segmentation network. (B) Diagram of the
erosion-dilation algorithm. ROIs that enclosed multiple cells (left; pale gray) were separated into two or more parts (right; blue and red). Top: Segmented images.
Bottom: Raw images. Abbreviation: ROI, region of interest.

performance. The FCN model classified the cortical cells
into GAD67-positive and GAD67-negative cortical cells with
high F1 scores in both brain regions (S1: 0.92 ± 0.02; M1:
0.92 ± 0.01; Supplementary Table). The accuracy of the
PCA-SVM classifier was above the chance level (S1: 0.70 ± 0.02;
M1: 0.63 ± 0.02; Supplementary Table). The weighted F1 score
of the FCN model was significantly higher than that of the
PCA-SVM classifier in S1 (P = 1.26 × 10–4, t(4) = 14.7,
n = 5-fold cross-validations, paired t-test; Figure 5A) and M1
(P = 1.38 × 10–5, t(4) = 25.6, n = 5-fold cross-validations, paired
t-test; Figure 5B).

We trained the FCN model and the PCA-SVM classifier
on images without the GAD67 channel to test whether the
classification of GAD67-positive and GAD67-negative neurons
was achieved by Nissl and NeuN fluorescence. The FCN
model using the two channels still performed well with
slightly decreased accuracy compared to using all the channels
(S1: 0.88 ± 0.02; M1: 0.84 ± 0.05; Supplementary Table).
Moreover, the weighted F1 score with the FCN model was
significantly higher than that with the PCA-SVM classifier (S1:
0.70 ± 0.01; M1: 0.63 ± 0.03; Supplementary Table) in both S1
(P = 3.04 × 10–4, t(4) = 11.7, n = 5-fold cross-validations, paired
t-test; Figure 6A) and M1 (P = 1.91× 10–4, t(4) = 13.2, n = 5-fold
cross-validations, paired t-test; Figure 6B).

To further visualize the performance of the model
trained without the GAD67 immunosignals, we displayed
the distribution of average fluorescence intensities of the
validation dataset for each of the three channels (i.e., GAD67,
NeuN, and Nissl); note that the validation dataset included
manually annotated and deep learning-predicted GAD67-
positive/negative neurons in S1 and M1 (Supplementary
Figures 2, 3). There were no apparent differences in the
distributions of any parameters (i.e., GAD67 fluorescence, NeuN
fluorescence, Nissl fluorescence, ROI area, and ROI circularity)
between manually annotated and deep learning-predicted
GAD67-positive/negative neurons in either brain region.

We calculated the evaluation metrics for the
channel combinations, including the GAD67 channel
(i.e., GAD67 + Nissl, GAD67 + NeuN). As expected, the
FCN models trained on these combinations performed well

on the basis of the weighted F1 score compared to the
PCA-SVM classifier for S1 (GAD67 + Nissl: 0.93 ± 0.01
(FCN) vs. 0.71 ± 0.01 (PCA-SVM), P = 9.87 × 10–7, t(4) = 46.9,
n = 5-fold cross-validations, paired t-test; GAD67 + NeuN:
0.91 ± 0.02 (FCN) vs. 0.70 ± 0.02 (PCA-SVM), P = 4.12 × 10–4,
t(4) = 10.8, n = 5-fold cross-validations, paired t-test; Figure 7A,
Supplementary Table) and M1 (GAD67 + Nissl: 0.93 ± 0.03
(FCN) vs. 0.66 ± 0.03 (PCA-SVM), P = 2.78 × 10–4, t(4) = 12.0,
n = 5-fold cross-validations, paired t-test; GAD67 + NeuN:
0.92 ± 0.03 (FCN) vs. 0.71 ± 0.05 (PCA-SVM), P = 6.83 × 10–3,
t(4) = 5.13, n = 5-fold cross-validations, paired t-test; Figure 7B,
Supplementary Table).

We further trained the FCN model and the SVM classifier on
single channels (i.e., Nissl only, NeuN only, and GAD67 only)
and evaluated their performances using the weighted F1 scores
for S1 and M1 (Figure 8). When the models were trained
using the GAD67 channel alone, the performance of the FCN
model was high (>0.9) for both cortical regions compared
to the conventional PCA-SVM method (S1: 0.93 ± 0.01
(FCN) vs. 0.72 ± 0.02 (PCA-SVM), P = 5.62 × 10–5,
t(4) = 18.0, n = 5-fold cross-validations, paired t-test; Figure 8A,
Supplementary Table; M1: 0.93 ± 0.01 (FCN) vs. 0.77 ± 0.07
(PCA-SVM), P = 1.44 × 10–2, t(4) = 4.13, n = 5-fold cross-
validations, paired t-test; Figure 8B, Supplementary Table).
The weighted F1 scores of the FCN models trained on
other single channels (i.e., NeuN only or Nissl only) did not
significantly differ from those of the PCA-SVM classifiers for
S1 (Nissl: 0.69 ± 0.1 (FCN) vs. 0.68 ± 0.02 (PCA-SVM),
P = 0.09, t(4) = 2.19, n = 5-fold cross-validations, paired
t-test; NeuN: 0.76 ± 0.02 (FCN) vs. 0.71 ± 0.02 (PCA-
SVM), P = 0.86, t(4) = 0.18, n = 5-fold cross-validations,
paired t-test; Figure 8A, Supplementary Table) or M1 (Nissl:
0.73 ± 0.06 (FCN) vs. 0.63 ± 0.04 (PCA-SVM), P = 0.44,
t(4) = 0.85, n = 5-fold cross-validations, paired t-test; NeuN:
0.70 ± 0.13 (FCN) vs. 0.62 ± 0.03 (PCA-SVM), P = 0.06,
t(4) = 2.58, n = 5-fold cross-validations, paired t-test; Figure 8B,
Supplementary Table), suggesting that the single channel
information of either NeuN or Nissl is insufficient for
automatic discrimination between GAD67-positive and GAD67-
negative neurons.
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FIGURE 3 | Differences in the immunofluorescence and shape of GAD67-positive and GAD67-negative cells in the primary somatosensory and motor cortices.
(A) Histogram of the fluorescence of anti-GAD67 signals of manually annotated GAD67-positive (red) and -negative (gray) neurons in S1. (B) The same as (A), but for
anti-NeuN immunofluorescence signals. (C) The same as (A), but for Nissl fluorescence signals. (D) The same as (A), but for the area of individual neurons
(i.e., ROIs). (E) The same as (A), but for the circularity of individual neurons (i.e., ROIs). (F–J) The same as (A–E), respectively, but for M1. Abbreviations: S1, primary
somatosensory cortex; M1, primary motor cortex; ROI, region of interest.

DISCUSSION

The deep neural network-based algorithm established in this
study classified GAD67-positive and GAD67-negative cells with
high accuracy. In the presence of the GAD67 fluorescence
channel, the weighted F1 score of our FCN model was

significantly higher than that of the PCA-SVM hybrid model.
Surprisingly, even in the absence of the GAD67 channel,
the FCN model exhibited higher performance than the
PCA-SVM classifier.

Intuitively, the high classification performance of the
FCN model using all three channels was not surprising
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FIGURE 4 | Fully convolutional network architecture. The current model processes input cell images (leftmost) in multiple layers and outputs the results of the binary
classification (rightmost). The numbers (bottom) imply the channel features in each layer; note that N represents the number of fluorescence channels and thus
ranges from 1 to 3. Abbreviation: conv, convolutional layer.

FIGURE 5 | Classification performance of cell images using triple fluorescent
signals. (A) Weighted F1 score of the FCN model (red) and the PCA-SVM
classifier (blue) trained on cell images from S1. All three fluorescent signals
(i.e., anti-GAD67, anti-NeuN, and Nissl) were used for training. Each point
(gray) signifies the score for the cross-validation (5-fold). P = 1.3 × 10–4,
t(4) = 14.7, n = 5-fold cross-validations, paired t-test. *P < 0.05. (B) The same
as (A), but for M1. P = 1.4 × 10–5, t(4) = 25.6, n = 5-fold cross-validations,
paired t-test. *P < 0.05. Abbreviations: S1, primary somatosensory cortex;
M1, primary motor cortex; FCN, fully convolutional network; SVM, support
vector machine; PCA, principal component analysis.

(Figures 5–8) because the cortical neurons were labeled by
human experimenters based primarily on GAD67 fluorescence.
Nevertheless, this result suggests that our FCN model can
predict the neuron subtypes with near-human accuracy when the
network is fed with the GAD67 channel.

Moreover, even without the GAD67 channel, the performance
of the FCN model was superior to that of the PCA-SVM
classifier (Figure 6). Although the classification metrics of the
FCN model trained on both the Nissl and NeuN channels
were not as high as those of the model trained on all three
channels (i.e., GAD67 + NeuN + Nissl), the metrics for
the two (i.e., Nissl and NeuN) channels were high enough
for practical use. The requirement for both NeuN and Nissl
fluorescence also indicates that there are morphological and
neurochemical features in the NeuN- and/or Nissl-stained
images that can be distinguished by the fully trained FCN
model. Strictly, the features extracted from the cell images
by the neural network are obscure for humans, although

FIGURE 6 | Classification performance of cell images using both anti-NeuN
and Nissl fluorescence signals. (A) Weighted F1 score of the FCN model (red)
and the PCA-SVM classifier (blue) trained on cell images from S1. Two
fluorescent signals (i.e., anti-NeuN and Nissl) were used for training. Each
point (gray) signifies the score for the cross-validation (5-fold). P = 3.0 × 10–4,
t(4) = 11.7, n = 5-fold cross-validations, paired t-test. *P < 0.05. (B) The same
as (A), but for M1. P = 1.9 × 10–4, t(4) = 13.2, n = 5-fold cross-validations,
paired t-test. *P < 0.05. Abbreviations: S1, primary somatosensory cortex;
M1, primary motor cortex; FCN, fully convolutional network; SVM, support
vector machine; PCA, principal component analysis.

one possible anatomical characteristic learned by the neural
network may be cell type-dependent expression patterns of
NeuN. Abundant NeuN expression within cell nuclei is
associated with the increased expression of transcripts encoding
marker proteins for neurogenesis and neuroplasticity and
chromatin-modifying enzymes regulating histone acetylation
and methylation (Yu et al., 2015). During brain development,
one of the chromatin-modifying enzymes, HDAC1 (histone
deacetylase 1), binds to parvalbumin promoters and thereby
downregulates the gene expression required for the maturation
of parvalbumin-positive interneurons (Koh and Sng, 2016).
These results are potentially reflected by our findings that
GAD67-positive cells exhibited relatively low NeuN expression
(Figure 3).

Interestingly, however, the classification performance of the
FCN pre-trained on either the NeuN or Nissl fluorescence
channel was not significantly different from that of the
conventional method, indicating that both fluorescence channels
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FIGURE 7 | Classification performance of cell images using signal pairs
including anti-GAD67 fluorescence. (A) Weighted F1 score of the FCN model
(red) and the PCA-SVM classifier (blue) trained on cell images from S1. Each
point (gray) signifies the score for cross-validation (5-fold). Left: classification
performance using anti-GAD67 and Nissl fluorescence signals.
P = 9.9 × 10–7, t(4) = 46.9, n = 5-fold cross-validations, paired t-test.
*P < 0.05. Right: the same as on the left, but for anti-GAD67 and anti-NeuN
immunofluorescence signals. P = 4.1 × 10–4, t(4) = 10.8, n = 5-fold
cross-validations, paired t-test. *P < 0.05. (B) The same as (A), but for M1.
Left: P = 2.8 × 10–4, t(4) = 12.0, n = 5-fold cross-validations, paired t-test.
*P < 0.05. Right: P = 6.8 × 10–3, t(4) = 5.1, n = 5-fold cross-validations,
paired t-test. *P < 0.05. Abbreviations: S1, primary somatosensory cortex;
M1, primary motor cortex; FCN, fully convolutional network; SVM, support
vector machine; PCA, principal component analysis.

are necessary for the FCN model to perform better than the
PCA-SVM model in terms of classification of GAD67-positive
and GAD67-negative cells. The difference in the classification
score of the FCN model between single-channel training
(i.e., either Nissl or NeuN) and channel-pair training (i.e., both
Nissl and NeuN) may stem from the close relationship between
the fluorescence intensity of the two channels. These results are
consistent with our hypothesis that cortical neurons are classified
based on anti-NeuN and Nissl signals. This relationship is
undetectable by humans but mined by the deep neural network.
Information on the single fluorescence channel is insufficient for
the classification of GAD67-positive and GAD67-negative cells
regardless of whether the fluorescence intensity is based on the
characteristics of cells or dependent on the focus depth during
image acquisition.

During this study, the FCN models performed even better
than the PCA-SVM models. Compared with the SVM, the
advantage of the FCN lies in its ability to optimize better
with relatively small datasets (e.g., images), especially when the
number of parameters (e.g., pixels) is large (Hasan et al., 2019).
However, when the SVM is used for binary classification, it
generally needs a greater number of data than parameters. Given
that high-resolution images (composed of many pixels) were
analyzed, we used PCA to reduce the parameter size and applied
SVM to the data with reduced dimensions. In consideration of
the significant effect of the data size on the performance of the
SVM, the number of datasets in the current study may have been
insufficient for high performance.

We consider that our deep neural network had several
advantages compared with previous implementations of deep
learning. (i) Although training a deep network for image
segmentation is a popular method for the detection and
classification of tissue sections in images (Sadanandan et al.,
2017; Al-Kofahi et al., 2018), previous methods are generally
composed of an encoder and a decoder. These deep networks
usually require more convolutional layers than a simple FCN
model (Ronneberger et al., 2015) and are accompanied by more
learning parameters, allowing for less complicated modifications
(Xiao et al., 2018). (ii) Our workflow uses a pre-trained
network to extract cell images from the segmented image
and learns their features with only three convolutional layers.
Thus, our simple method saves time for the optimization of
multiple hyperparameters and thus can be run by a normal
laboratory computer. (iii) The advantage of the FCN model
lies in the lack of a fully connected layer. With the fully
connected layer alone, the input array is expected to be
the same size; thus, without this layer, the network can
accept images of virtually any size. (iv) By downsampling
the image dataset of GAD67-positive and GAD67-negative
neurons, we would expect a faster convergence of the model
and save computer disk memory. Therefore, the current method
outperforms the previous deep learning-based method for
cell classification.

Our novel deep learning-based method of detecting
GAD67-expressing neurons has the potential to provide
the unbiased classification of interneurons in the neocortex,
where neurons are distributed ubiquitously and sparsely. In
contrast to the neocortex, the hippocampus is composed
of the pyramidal cell layer (stratum pyramidale) and the
other layers (including stratum oriens, stratum radiatum,
and stratum lacunosum moleculare). Excitatory neurons
are densely packed in the pyramidal cell layer, whereas
inhibitory neurons are sparsely distributed in the other layers
(Supplementary Figure 4). Our FCN model may not be
suitable for the hippocampal pyramidal cell layer because a
densely packed neuronal population precludes us from precisely
separating cells one-by-one (Figure 2). On the other hand,
most neurons in the other layers in the hippocampus were
inhibitory and distributed more sparsely than any layer in
the neocortex (Supplementary Figure 4). Thus, inhibitory
neurons would be easily detected even without our deep
learning-based model.
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FIGURE 8 | Classification performance of cell images using single fluorescent signals. (A) Weighted F1 score of the FCN model (red) and the PCA-SVM classifier
(blue) trained on cell images from S1. Left: classification performance using an anti-GAD67 signal. Each point (gray) signifies the score for the cross-validation
(5-fold). P = 5.6 × 10–5, t(4) = 18.0, n = 5-fold cross-validations, paired t-test. *P < 0.05. Middle, the same as on the left, but for an anti-NeuN signal. P = 0.87,
t(4) = 0.18, n = 5-fold cross-validations, paired t-test. Right: the same as on the left, but for a Nissl signal. P = 0.09, t(4) = 2.18, n = 5-fold cross-validations, paired
t-test. (B) The same as (A), but for M1. Left, P = 0.01, t(4) = 4.1, n = 5-fold cross-validations, paired t-test. *P < 0.05. Middle, P = 0.06, t(4) = 2.6, n = 5-fold
cross-validations, paired t-test. Right, P = 0.22, t(4) = 1.45, n = 5-fold cross-validations, paired t-test. Abbreviations: S1, primary somatosensory cortex; M1, primary
motor cortex; FCN, fully convolutional network; SVM, support vector machine; PCA, principal component analysis.

As shown in various studies, interneurons have a vast
diversity of structural and functional features (Lawrence and
McBain, 2003; Maccaferri and Lacaille, 2003; Whittington
and Traub, 2003; Buzsáki et al., 2004; Monyer and Markram,
2004; Melzer and Monyer, 2020). This enormous diversity
of cortical interneurons plays a significant role in increasing
and expanding the computational power of neural circuits but
at the same time, poses a challenge for understanding their
functions (Tremblay et al., 2016). Cortical interneurons
are typically classified based on their morphological,
neurochemical, and physiological characteristics; however,
the interneurons differ over more parameters (The Petilla
Interneuron Nomenclature Group, 2008). Deep learning may
be beneficial and practical for the unbiased classification of
the interneuron subtypes from the perspectives of morphology
and neurochemistry.

A previous study demonstrated that convolutional
neural networks could morphologically profile cell types

(Pawlowski et al., 2016). Generally, the mechanism
underlying deep neural network-based classification is
regarded as a black box. It is almost difficult for humans
to understand how deep learning classifies cell types by
eye (Supplementary Figure 5). However, there are several
methods to visualize what the deep neural network focuses
on when performing classifications (Erhan et al., 2009;
Simonyan et al., 2013). When applied to our trained FCN
model, this visualization may reveal features that humans
have overlooked. In this sense, the current model will open
the door to uncovering unbiased and novel criteria for
neuron-type classification.
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