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A B S T R A C T

Background and purpose: Deep-learning (DL) models for segmentation of the gross tumor volume (GTV) in
radiotherapy are generally based on clinical delineations which suffer from inter-observer variability. The aim of
this study was to compare performance of a DL-model based on clinical glioblastoma GTVs to a model based on a
single-observer edited version of the same GTVs.
Materials and methods: The dataset included imaging data (Computed Tomography (CT), T1, contrast-T1 (T1C),
and fluid-attenuated-inversion-recovery (FLAIR)) of 259 glioblastoma patients treated with post-operative
radiotherapy between 2012 and 2019 at a single institute. The clinical GTVs were edited using all imaging
data. The dataset was split into 207 cases for training/validation and 52 for testing.
GTV segmentation models (nnUNet) were trained on clinical and edited GTVs separately and compared using
Surface Dice with 1 mm tolerance (sDSC1mm). We also evaluated model performance with respect to extent of
resection (EOR), and different imaging combinations (T1C/T1/FLAIR/CT, T1C/FLAIR/CT, T1C/FLAIR, T1C/CT,
T1C/T1, T1C). A Wilcoxon test was used for significance testing.
Results: The median (range) sDSC1mm of the clinical-GTV-model and edited-GTV-model both evaluated with the
edited contours, was 0.76 (0.43–0.94) vs. 0.92 (0.60–0.98) respectively (p < 0.001). sDSC1mm was not signifi-
cantly different between patients with a biopsy, partial, and complete resection. T1C as single input performed as
good as use of imaging combinations.
Conclusions: High segmentation accuracy was obtained by the DL-models. Editing of the clinical GTVs signifi-
cantly increased DL performance with a relevant effect size. DL performance was robust for EOR and highly
accurate using only T1C.

1. Introduction

Glioblastoma (GBM) is the most common primary brain cancer in
adults [1]. The current standard-of-care consists of a maximal safe
resection, followed by chemoradiotherapy and adjuvant chemotherapy
[2]. The ESTRO-EANO guideline for radiotherapy (RT), defines the gross
tumor volume (GTV) as follows “GTV is defined as T1 contrast-
enhancing tumor (for biopsy only patients) and/or resection cavity
plus residual contrast enhancing tumor, if present.” Rarely, a T2 or T2-
weighted fluid-attenuated-inversion-recovery (FLAIR)-based definition
is applied [3,4]. The clinical target volume (CTV) is defined as the GTV

plus a 2 cm isotropic margin along the white matter tracts and reduced
at anatomical barriers. In the guideline of 2023, the CTV margin was
reduced to 1.5 cm. A planning target volume margin of 2–3 mm is
typically added and the prescribed dose is typically 60 Gy in 30
fractions.

Delineation of the GTV can be a time-consuming task and is associ-
ated with inter-observer variation (IOV) [5–7], which affects the treat-
ment accuracy. One potential approach to achieve consistent
delineations while saving time is to use deep-learning (DL) segmentation
models. These models have been extensively explored in many contexts
within RT [8–14]. However, for GTV segmentation in the GBM setting
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there is only one report [8]. In that report by Ramesh et al., five different
U-Net approaches were compared using contrast-T1 (T1C) and FLAIR as
image modalities. Their best-performing model achieved a mean Dice
Similarity Coefficient (DSC) of 0.73 and a maximum Hausdorff Distance
(HD) of 10.75 mm.

To improve DL-segmentation models, many papers focus on opti-
mizing model parameters and architecture [8,12,15–18]. However, in
the setting of supervised learning, a determining factor for segmentation
accuracy lies in the quantity and quality of the imaging data, and the
provided ground truth delineations. Delineations and scans are often
sourced from historical patient data due to its accessibility, but can
contain noisy labels impacting the performance of DL-segmentation
models [19–21]. Noisy labels can arise due to IOV [5–7] and labels
that do not precisely fit the corresponding imaging data. In the setting of
GBM in which large CTV margins are advised, the position of the GTV
contour does not necessarily impact the position of the CTV contour.
Curating datasets and editing contours has been shown to improve DL-
segmentation performance of organs at risk in brain and head & neck
[13,22]. While curation is a well-known strategy to reduce bias and
increase accuracy, there are no established guidelines on best practices,
and the extent of editing practices in current literature is unclear.
Additionally, a head-to-head comparison of the impact of editing ground
truth delineations has not been done yet.

GBM patients first undergo a maximal safe resection resulting in a
great range of surgical extent across patients, i.e. from biopsy to com-
plete resection [23]. This in turn results in a varying appearance of the
GTV for post-operative RT [3,4], of which the possible impact on DL-
model performance is currently unknown.

Besides data curation, multi-modal imaging data can also be lever-
aged to improve segmentation accuracy. In the BraTS challenge [24],
which encompasses GBM tumor segmentation in the pre-operative
setting, T1, T1C, T2 and T2-FLAIR data are combined to improve seg-
mentation accuracy. However, in the post-operative setting there is a
limited knowledge concerning the influence of multi-modal imaging on
DL-model performance [25].

The primary aim of this study was to investigate how editing clinical
delineations affects DL segmentation performance of the GTV in post-
operative RT for GBM. This was done by comparing a DL-model
trained on clinical GTVs to a DL-model trained on single-observer edi-
ted GTVs. The secondary aims were to evaluate the robustness of the DL-
model performance to varying extent of resection (EOR) and to assess
the need for different multi-modal imaging combinations of Magnetic
Resonance Imaging (MRI) and Computed Tomography (CT) sequences.

2. Materials and methods

2.1. Study design and approvals

This single-center study used retrospective data for DL-segmentation
of the GTV in GBM patients. It was exempt from review by the Central
Denmark Region Committees on Health Research Ethics, approved by
the Danish Patient Safety Authority (Reg.no. 31-1521-174) and the
Danish Neuro-Oncology Registry (Reg.no. DNOR-2020-03-02), and
registered with the Central Denmark Region (Reg.no. 1-16-02-74-20).

2.2. Patient data

Using the Danish Neuro-Oncology Registry, we identified 406
eligible patients treated with post-operative RT at the Department of
Oncology, Aarhus University Hospital, between 2012 and 2019. The
registry was furthermore used to extract all patient-related variables
(including EOR, e.g. complete resection (CR), partial resection (PR) and
biopsy). In clinical routine for this patient group, at least the T1C from
the planning-MRI was rigidly registered to the planning-CT, with all
other imaging available in side-by-side viewing. Each GTV used for
clinical treatment has been reviewed before start of RT by a clinical

oncologist together with a neuro-radiologist. Over the studied period at
least five different clinical oncologists have delineated clinical GTVs.

Of the 406 eligible patients, 114 were excluded from this study due
to incomplete data (no dedicated planning MRI: n = 107, no complete
clinical, RT, and/or imaging data (transfer): n = 7). For this study the
T1, T1C, and FLAIR images of the remaining 292 patients, were rigidly
registered to the planning-CT using mutual information as cost function
and a region of interest conforming to the skull. The clinically used GTV
was subsequently identified and reviewed by a single radiation oncol-
ogist (A.K.T. 12 years of experience in radiation oncology, whereof 4.5
years with CNS focus and 3 years as board certified radiation oncolo-
gist). With review, another 33 patients were excluded (GTV not delin-
eated: n= 7, GTV based on FLAIR abnormalities: n= 26, Supplementary
Fig. 1A and B), resulting in a final dataset of 259 patients. Of those, 95
patients had undergone a CR, 85 a PR, and 80 a biopsy. For more details
see Supplementary material – Patient Population.

2.3. Edited GTVs

The clinically used GTVs were edited by a single radiation oncologist
(A.K.T.), who had not been involved in delineating the clinically used
GTVs. The editing goal was to produce a contour that optimally con-
formed to the GTV definition (strive to fit the contour with the infor-
mation in the imaging) and that could be used clinically (Fig. 1A–D).
Editing was done using all the co-registered planning-MRI sequences
and the planning CT. If in doubt, the pre- and post-operative MRI scans
were consulted in a separate viewing window.

2.4. Deep learning

Each image was resampled to a uniform spacing of 0.5× 0.5× 1mm,
and skull stripped using a mask of the clinical brain delineation com-
bined with the GTV in a binary union. To account for minor delineation

Fig. 1. Four examples of clinical and edited GTVs. Clinical GTVs are depicted in
red, edited GTVs are depicted in turquoise. A: Edited GTV follows surgical
cavity and residual contrast enhancement. B: Edited GTV follows contrast
enhancement. C: Minimal tightening of the clinical GTV. D: Edited GTV ex-
cludes postoperative hematoma. GTV: Gross Tumor Volume, Clin GTV: Clinical
GTV, Edit GTV: Edited GTV. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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errors, the mask was dilated by 2 mm in all directions. The data was
randomly split into a train and test set (80:20), with stratification for
extent of resection (biopsy/PR/CR) (Supplementary Table 2). The train
and test sets were identical for all explored models. The training and test
procedures were also similar for all models.

We made use of the no-new-Unet (nnUNet) framework [26], where
network structure and hyper-parameters are automatically configured
(see Supplementary material − Deep Learning). We trained one model
using the clinical GTVs (clinical-GTV-model) and one model using the
edited GTVs (edited-GTV-model). We repeated this process six times
using different combinations of image modalities: T1C/T1/FLAIR/CT,
T1C/FLAIR/CT, T1C/FLAIR, T1C/CT, T1C/T1 and T1C-only.

2.5. Statistical analysis

To evaluate model segmentation performance, we used Surface DSC
with a 1 mm tolerance (sDSC1mm), DSC, Mean Surface Distance (MSD)
and 95th percentile HD (HD95), calculated with Medpy and Surface
Distance Python libraries. Significance was set at 0.01. All statistical
analyses were conducted using R.

We first evaluatedmodel performance in a head-to-head comparison,
between the clinical- and edited-GTV-model using the Wilcoxon signed
rank test. We compared the predictions made by the clinical-GTV-model
evaluated on the clinical test set, to the predictions made by the edited-
GTV-model evaluated on the edited test set (Supplementary Fig. 2A). We
furthermore compared the predictions made by the clinical-GTV-model
evaluated on the edited test set, to the predictions made by the edited-
GTV-model evaluated on the edited test set (Supplementary Fig. 2B).
This step was also done using the clinical test set (Supplementary
Fig. 2C).

We investigated if editing influenced the evaluation of the clinical-
and edited-GTV-model using the Wilcoxon signed rank test. We
compared the predictions made by the clinical-GTV-model evaluated on
the clinical test set, to the predictions made by the clinical-GTV-model
evaluated on the edited test set (Supplementary Fig. 2D). For the same
purpose, we compared the predictions made by the edited-GTV-model
evaluated on the clinical test set, to the predictions made by the
edited-GTV-model evaluated on the edited test set (Supplementary
Fig. 2E).

To investigate whether the EOR influenced the DL-model perfor-
mance, we compared the type of surgery for both the clinical and edited-
GTV-model using the Kruskal-Wallis test. Furthermore, to evaluate the
impact of imaging modalities on the DL-model performance, we
compared all models utilizing multiple image modalities to the T1C
model using the Wilcoxon signed rank test with Holm-Bonferroni
correction. In each group (clinical and edited-GTV-model) six tests
were corrected.

3. Results

3.1. Clinical and edited GTVs

All GTVs were edited. Edits included for example tightening of the
delineation, excluding subdural hematoma, and expanding to encom-
pass contrast enhancement and cavity (Fig. 1). The majority of the GTVs
underwent small volume changes; the median (range) signed and rela-
tive volume change was 0.85 (-37.0–32.5) cc and 0.03 (-74.3–0.7) %,
respectively (Supplementary Fig. 2). In total, 65 % of all cases had a
decrease in volume in the edited version of the GTV, with the remaining
35 % increasing in volume.

3.2. Effect of editing on DL-model performance

In this part of the study, we compared the clinical- and edited-GTV-
model trained using all available modalities (T1C/T1/FLAIR/CT).

A. When both models were evaluated on their own test sets, the
sDSC1mm of the edited-GTV-model was significantly higher than that
of the clinical-GTV-model: median (range) 0.92 (0.60–0.98) vs 0.69
(0.26–0.89), p-value < 0.001 (Table 1, Fig. 2A, Fig. 3).

B. When both models were evaluated on the same edited test set, the
sDSC1mm of the edited-GTV-model remained significantly higher
than that of the clinical-GTV-model; 0.92 (0.60–0.98) vs 0.76
(0.43–0.94), p-value < 0.001 (Fig. 2B).

C. When the twomodels were evaluated on the same clinical test set, the
sDSC1mm of the models was not significantly different: 0.69
(0.26–0.89) for the clinical-GTV-model vs 0.70 (0.18–0.88) for the
edited-GTV-model, p-value = 0.34 (Fig. 2C).

Results were consistent across all metrics (Supplementary Tables 3
and 4).

3.3. Effect of editing on DL-model evaluation

In this part of the study, we evaluate the performance of the clinical-
and edited-GTV-models trained using all available modalities (T1C/T1/
FLAIR/CT).

D. The sDSC1mm of the clinical-GTV-model evaluated on the edited test
set was significantly higher than when evaluated on the clinical test
set; 0.76 (0.43–0.94) vs 0.69 (0.26–0.89), p-value < 0.001 (Fig. 2D).

E. The sDSC1mm of the edited-GTV-model evaluated on the clinical test
set was significantly lower than when evaluated on the edited test set;
0.70 (0.18–0.88) vs 0.92 (0.60–0.98), p-value < 0.001 (Fig. 2E).

Results were consistent across all metrics (Supplementary Tables 3
and 4).

3.4. Model performance stratified for extent of resection

In this part of the study, we evaluated the performance of the clin-
ical- and edited-GTV-models trained using all available modalities
(T1C/T1/FLAIR/CT). In the test set, 19 patients had undergone a CR, 17
a PR, and 16 a biopsy. The median (range) sDSC1mm of the clinical-GTV-
model predictions tested on the clinical test set, was 0.75 (0.37–0.89),
0.69 (0.26–0.87), and 0.60 (0.43–0.80) for CR, PR, and biopsy, respec-
tively (p-value = 0.074, Fig. 4). The median (range) sDSC1mm of the
edited-GTV-model predictions tested on the edited test set, was 0.93
(0.77–0.96), 0.89 (0.60–0.96), and 0.92 (0.72–0.96) for CR, PR, and
biopsy, respectively (p-value= 0.223). Results were consistent across all
metrics (Supplementary Table 5).

3.5. Model performance stratified for image modalities

The median (range) sDSC1mm of the clinical- and edited-GTV-models
based on multiple image modalities as input, evaluated on their own test
sets, did not differ significantly compared to the clinical- and edited-

Table 1
Deep learning model results for the clinical-GTV-model trained on full imaging
data and evaluated on the clinical test set and the edited-GTV-model trained on
full imaging data and evaluated on the edited test. GTV: Gross Tumor Volume,
sDSC1mm: Surface Dice Similarity Coefficient at 1 mm tolerance, DSC: Dice
Similarity Coefficient, HD95: 95th percentile Hausdorff Distance, MSD: Mean
Surface Distance, T1C: Contrast enhanced T1, FLAIR: T2-weighted fluid-atten-
uated-inversion-recovery, CT: Computed Tomography.

Model: T1CþT1 þ
FLAIRþCT

Clinical-GTV-model
Median (range)

Edited-GTV-model
Median (range)

sDSC1mm 0.69 (0.26–0.89) 0.92 (0.60–0.98)
DSC 0.90 (0.60–0.96) 0.95 (0.85–0.97)
HD95 (mm) 3.0 (1.4–22.1) 1.4 (1.0–11.1)
MSD (mm) 0.9 (0.5–3.6) 0.4 (0.2–2.8)

K.M. Hochreuter et al.



Physics and Imaging in Radiation Oncology 31 (2024) 100620

4

GTV-model using T1C-only (p-values > 0.01, Fig. 5). Results were
consistent across all metrics (Supplementary Table 6).

4. Discussion

We performed the first head-to-head comparison of a DL-model with
clinically used GTVs vs a DL-model with edited GTVs as labelled input to
quantify the effect of editing contours. Our results show that editing the
ground truth contours had a significantly positive impact on DL-
segmentation performance. Furthermore, model performance did not
depend on the extent of surgical resection. In addition, using multiple
MR sequences and CT as input did not improve the performance. Lastly,
our results suggest that edited contours in the test set, will increase
sensitivity for evaluation of DL-model performance.

In comparison to the one other GBM GTV-model reported in the
literature [8], our DL-model trained on clinical GTVs performed on a
similar level, while ours trained on edited GTVs demonstrated a higher
performance. Ramesh et al. had a similar size cohort of 225 patients for
training and 30 for testing. Their training data underwent a similar

editing procedure as in our study. They used a partially independent test
set for which it is unclear if the delineations were edited. They reported a
mean DSC of 0.73 and maximum HD of 10.75 mm where we observed a
mean DSC/maximum HD of 0.94/8.7 mm in our edited-GTV model
(Supplementary Table 7). Furthermore, their performance metrics from
training were also lower than our test performance, suggesting that their
model was not able to fully learn the task. Lastly, our DL-models per-
formed well even in comparison with DL-models on scans made before
surgery (top 10 contenders of the 2021 BraTS challenge, median DSC
scores ranged from 0.94 to 0.945).

Our clinical- and edited-GTV-model had a median DSC of 0.90 and
0.95 respectively on the edited test set, obtaining a 0.05 increase in DL-
model performance by editing the contours to fit with the imaging in-
formation. This improvement is substantial compared to DSC improve-
ments achieved by network modifications within the BraTS challenge.
For instance, Isensee et al. investigated modifications to the network
structure and obtained an 0.006 increase in median DSC from 0.906 to
0.912 [27]. Luu and Park obtained an increase of 0.003 in median DSC
from 0.925 to 0.928 [28]. Outside the field of GBM, other initiatives to

Fig. 2. Effect of editing on DL model performance and evaluation. (A, B and C): Comparisons of sDSC1mm where the models are fixed and the ground truths are
changed. (D) and (E): Comparisons of sDSC1mm where the ground truth is fixed and the models are changed. Beneath each histogram figure is a visualization of the
comparison made, along with the median sDSC1mm, range and p-value for the hypothesis of no difference between groups. sDSC1mm: Surface Dice Similarity Co-
efficient at 1 mm tolerance. Clin:Clin, Model trained on clinical data and evaluated on clinical test set. Clin:Edit, Model trained on clinical data and evaluated on
edited test set. Edit:Edit, Model trained on edited data and evaluated on edited test set. Edit:Clin, Model trained on edited data and evaluated on clinical test set.

K.M. Hochreuter et al.
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improve the performance of DL-models, such as multimodality imaging
in Head & Neck GTV have achieved an increase from 0.58 to 0.74 mean
DSC [14]. These findings support the hypothesis that the input imaging
and labels are an important driving factor in DL-model performance
using nnUNet.

Editing also had an influence on the evaluation of the DL-models, as
both models had better performance metrics on the edited test set
(Fig. 2D and E). Simultaneously, the edited-GTV-model performed on a
similar level compared to the clinical-GTV-model when evaluated on the
clinical test set (Fig. 2C). This leads us to conclude that using non-curated
clinical data in a test set, can render the test set less sensitive to measure
improvements in DL performance. Interestingly, these findings may also
indicate that a DL-model can only learn from information present in the
imaging, but not from random noise. This is supported by our finding
that although the clinical-GTV-model was trained on multi-observer
input delineations, its predictions were closer to the single-observer
edited contours.

The EOR is a marker for heterogeneity in the imaging data and GTV
definition, that could potentially be disruptive in the training procedure.
However, we saw no significant difference in performance of the DL-
models between patients with a biopsy, PR or CR. This indicates that
we had an adequate number of patients in the DL-training process to
effectively grasp and learn the GTV definition across varying EOR.

We considered six different combinations of image modalities, with

T1C being present in all of them. We have not tested combinations
without T1C due to its importance in the GTV definition. There was no
statistical difference in performance between the model using only T1C
and the more extensive combinations, similar to literature regarding
brain metastases [10]. This suggests that using sequences on top of T1C
has a very limited impact on DL-model performance. From our findings,
we may also conclude that the clinical-GTV-model performance is not
driven by other sequences than the edited-GTV model. A simple model
based on a single image sequence is easier to implement and maintain in
clinical practice.

We identified the following limitations for this study. With the
chosen methodology, we cannot disentangle the effects of working with
a single-observer and editing on DL-model performance. Nevertheless,
we hypothesize that the fitting of the contours to the imaging informa-
tion is responsible for a large part of the observed effect, as the multi-
observer clinical-model generalized better to the edited contours. Our
findings are furthermore limited to the specific GTV definition used, i.e.
the GTV was based on the surgical cavity and any residual contrast
enhancement. Although this definition is suited for the vast majority of
GBM patients, it excludes patients in whom the GTV should be defined
by FLAIR abnormalities as well [4]. Quantifying IOVwould havemade it
possible to measure if the automatic segmentations meet the clinical
threshold. In addition to this, automatic segmentations that exceed IOV
could be a sign that the model is too observer specific. Training a model

Fig. 3. Three examples of clinical and edited GTV segmentations together with clinical- and edited-GTV-model predictions, provided by the model using full imaging
data. Each row depicts four image modalities from a patient; from left to right contrast enhanced T1 (T1C) without and with contours, T1, Fluid attenuated inversion
recovery (FLAIR) and Computed Tomography (CT). Turquoise: Clinical ground truth (Clin GT), Red: Edited ground truth (Edit GT), Blue: Clinical deep learning
prediction (Clin Pred), Magenta: Edit deep learning prediction (Edit Pred). Clin GT: Clinical Ground Truth, Edit GT: Edited Ground Truth, Clin Pred: Prediction using
model trained on clinical ground truth, Edit Pred: Prediction using model trained on edited ground truth. T1C: Contrast enhanced T1, FLAIR: T2-weighted fluid-
attenuated-inversion-recovery, CT: Computed Tomography. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

K.M. Hochreuter et al.
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on delineations edited by a single observer will skew the predictions
towards the observer’s delineation style (bias). This could limit the
clinical applicability of the model. Nevertheless, an argument support-
ing the clinical applicability of our single-observer edited-GTV-model
would be that the predictions from the clinical-GTV-model were closer

to the edited than to the clinical contours. Finally, the increase in DL-
performance with editing was not evaluated for quality. Therefore, it
remains to be investigated prospectively whether this increase reduces
the need of manual corrections for an automatic segmentation to be
clinically acceptable.

To conclude, we achieved a high GTV segmentation accuracy for
post-operative GBM RT, where editing had a significant positive effect
on the DL-model performance with a relevant effect size. Our model was
not dependent on varying EOR. Finally, to achieve this result, only T1C
was needed as an input image.
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