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Age related changes of rib cortical 
bone matrix and the application 
to forensic age‑at‑death estimation
Andrea Bonicelli1,2, Peter Zioupos2*, Emily Arnold3, Keith D. Rogers3, Bledar Xhemali4 & 
Elena F. Kranioti5

Forensic anthropology includes, amongst other applications, the positive identification of unknown 
human skeletal remains. The first step in this process is an assessment of the biological profile, that 
is: sex, age, stature and ancestry. In forensic contexts, age estimation is one of the main challenges 
in the process of identification. Recently established admissibility criteria are driving researchers 
towards standardisation of methodological procedures. Despite these changes, experience still 
plays a central role in anthropological examinations. In order to avoid this issue, age estimation 
procedures (i) must be presented to the scientific community and published in peer reviewed 
journals, (ii) accurately explained in terms of procedure and (iii) present clear information about 
the accuracy of the estimation and possible error rates. In order to fulfil all these requirements, a 
number of methods based on physiological processes which result in biochemical changes in various 
tissue structures at the molecular level, such as modifications in DNA‑methylation and telomere 
shortening, racemization of proteins and stable isotopes analysis, have been developed. The current 
work proposes a new systematic approach in age estimation based on tracing physicochemical and 
mechanical degeneration of the rib cortical bone matrix. This study used autopsy material from 113 
rib specimens. A set of 33 parameters were measured by standard bio‑mechanical (nanoindentation 
and microindentation), physical (TGA/DSC, XRD and FTIR) and histomorphometry (porosity‑ImageJ) 
methods. Stepwise regressions were used to create equations that would produce the best ‘estimates 
of age at death’ vs real age of the cadavers. Five equations were produced; in the best of cases 
an equation counting 7 parameters had an  R2 = 0.863 and mean absolute error of 4.64 years. The 
present method meets all the admissibility criteria previously described. Furthermore, the method is 
experience‑independent and as such can be performed without previous expert knowledge of forensic 
anthropology and human anatomy.

Age estimation remains one of the most challenging tasks in establishing the biological profile of unknown skel-
etal remains. Following the Daubert (United States Supreme Court in Daubert vs Merrell Dow Pharmaceuticals, 
1993) ruling on admissibility of expert witness  testimony1,2, validation of age estimation methods has been a 
fundamental point of discussion. The main principles chosen by the scientific community in order to accept an 
age estimation procedure on unidentified human remains can be summarised in three main  points1. First, the 
method needs to be presented to the scientific community via peer-reviewed publications. Second, the method 
must provide clear indication of its accuracy regarding the specific case it is applied to. Finally, the method needs 
to be accurate and repeatable. However, more aspects need be considered in order to evaluate the applicability of 
a method. Additionally, assessed features should change consistently in all individuals so that they are applicable 
to samples other than the initial reference one. Furthermore, the statistical approach chosen should be able to 
classify data (categorical or continuous) without relying on observer error in order to provide consistency to the 
 results3. These requirements are not always easy to meet, thus introducing error in the age estimates produced.

Further, experience remains one of the main factors in any anthropological assessment based on visual 
estimation. Baccino et al.4 evaluated the efficiency of age-at-death estimations based on the Suchey-Brooks 
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method for the pubic symphysis, the İşcan et al. method for the sternal end cartilage calcification of the fourth 
 rib5, the single root translucency by Lamendin et al.6 and the histomorphometric analysis of the femur devel-
oped by Kerley et al.7, on a French population. The two observers (one forensic pathologist and one forensic 
anthropologist) appeared to be able to estimate age without significant difference. Inaccuracy was, however, 
the highest for the histological method potentially due to the inexperience of the observers. In addition, the 
pubis symphysis method, although it exhibited relatively low inter-observer inaccuracy, also showed significant 
differences in terms of observer variability. The article also tested the effectiveness of a multifactorial approach 
and found that this performs generally better than each single method used in  isolation4. Similarly, Garvin and 
 Passalacqua8 analysed the preferences of 145 forensic anthropologists for age estimation approaches. In terms 
of method selection, Suchey-Brooks remains the favoured method followed by cranial sutures and dental wear, 
regardless of practitioner experience level. One interesting outcome of this study was that the vast majority of 
anthropologists stated that they chose the age estimation methodological approach on a case by case  basis8. 
Overall, results indicate that in order to perform morphological age estimation, experience plays a central role, 
especially at the time of choosing the appropriate method, suggesting that the case itself drives the choice only 
to a limited  extent8. This is a non-quantifiable source of bias that cannot be overlook by witness admissibility. 
Another technical issue relies on the fact that the majority of methods are developed on a specific reference 
population and this could prevent operators using them on samples of unknown populations. Konigsberg and 
 Frankenberg9 cautioned that applying a method to a different population can increase the error rate and this 
was verified for most traditional  methodologies10–13. This could also be the case for inter-population variation 
due to factors such as income, diet and  activity3,14,15. Endogenous and exogenous factors additionally introduce 
a high degree of inaccuracy in individuals of advanced age and as a result these methods are vastly unsuitable 
for forensic applications. However, the issue of ‘age mimicry’ was highlighted early on by Bouquet-Appel and 
 Masset16, who stressed the fact that not only the genetic origin of the population can represent a biasing factor 
but also the composition of the sample used for the development of the  methodology17,18. Bayesian statistics, 
and more specifically transition analysis (TA) combined with Bayesian techniques, have been employed to mini-
mize the mimicry effect by employing informative priors to improve prediction. The combination of these two 
approaches, applied to traditional or newly developed age estimation methods, allows for a transition control 
between different age stages for biased age estimation to be carried  out19. Despite the fact that this approach 
created a large amount of interest due to its potential and has been widely  applied17,18, the methodology is not 
free of limitations. For example, if the sample used to create priors does not have the appropriate age profile this 
could lead to an erroneous estimation. Therefore, the choice between a Bayesian and frequentist approach needs 
to be case driven to optimise the accuracy of the  result19,20.

Advances in medical sciences and biomedical engineering have led to the development of several quantita-
tive methodologies for investigating physiological processes related to ageing and pathological conditions. The 
main advantages offered by these approaches is that they are independent of anthropological experience and 
provide a highly standardised experimental procedure which is easy to replicate and apply in other contexts. 
Furthermore, the statistical approach that is involved in these methods produces a measurable degree of error 
and therefore confidence in the reliability of the  estimation21,22. Nonetheless, these approaches need validation 
in order to be applied in forensic settings.

One physiological process largely exploited in forensic anthropology is the racemization of aspartic acid 
(AAR). It is based on the conversion of optically active amino acids into racemic compounds. All amino acids, 
with the exception of glycine, have the ability to rotate the plane of plane-polarised light. These optic isomers are 
known as L-enantiomers (laevorotary) and D-enantiomers (dextrorotary). The change in the ratio of these two 
isomers, quantified by gas chromatography or high-performance liquid chromatography (HPLC) is related to the 
natural ageing process with an increase in D-amino acid. Aspartic acid is affected by a high rate of turnover due to 
its tendency of bonding with acidic residues, resulting in a quick accumulation of D-Asp over L-Asp, making it a 
suitable target in clinical and forensic  settings21,23. Teeth have been identified as the most suitable skeletal element 
for AAR analysis. Both dentin and enamel proteins have a lower turnover rate as compared to bone and it is easy 
to isolate pathological specimens (e.g., caries) to obtain the best age estimation possible. Caries, for example, 
have been seen to promote the accumulation of D-aspartic acid resulting in an overestimation of the  sample23,24. 
Despite the difficulties in the experimental procedure and the variability of the racemisation process in relation 
to pH and temperature, it remains significantly more consistent than traditional macroscopic  approaches25.

Post-translational modifications of collagen have also been identified as a target for age estimation. The 
physiological accumulation of enzymatically-mediated cross-links26,27 evaluated by Martin-De Las Heras et al.28 
produced an age estimation formula from human molars of 22 individuals that was able to predict age with 
65% confidence levels and a mean error of ± 14.9 years. Although the accuracy is not sufficient for admissibility 
criteria, this could represent a complementary method to apply on teeth and/or an advantageous asset when 
developing multi-factorial approaches for age estimation.

Recently, both mineral and collagen bone matrices were evaluated by ATR-FTIR in order to assess their 
potential for age  estimation29. Eighty human femora and humeri showed that crystallinity and type B carbon-
ate in cortical bone matrix are significantly correlated with age, although correlation is only poor to moderate 
(R < 0.5). With the advances of imaging technologies, new options for age estimation have emerged. Despite the 
fact that they normally involve the use of X-rays techniques (e.g., DXA or computed tomography), their main 
advantage is that they can be carried out non-invasively on both living individuals as well as human remains. 
Navega et al.32 proposed to employ bone densitometry, normally used to identify metabolic bone disorders, to 
quantify bone mineral density (BMD) from femora belonging to the Coimbra Identified Skeletal Collection. The 
combination of this technique with a general regression neural network showed good potential for age estima-
tion with an error rate ranging between 9.19 to 13.49 years. This potential was confirmed in a further  study33 
which used clinical data from the National Health and Nutrition Examination Survey. Despite the different 
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populations, the Navega et al.32 estimation technique provided a similar accuracy in the result as in the original 
 study33. Additionally, computed tomography has been employed to analyse age-related bone  loss34. Microstruc-
tural changes in trabecular bone have shown promising results in a study where age was estimated with  R2-adj of 
0.79 and mean standard error of 6.3  years35. Future studies should employ a larger sample size to confirm these 
results. DNA analysis have also been employed for age estimation with promising  results30,31. Despite the narrow 
error (approximately 2 years) these methods remain difficult to apply, time consuming, and heavily affected by 
contamination and changes in environmental  conditions21.

Although these are only few examples of age estimation based on bone matrix degeneration, it becomes 
clear that these are generally reproducible and observer independent. Accuracy standards are still not met in 
general, yet it is expected that by using a combination of various complementary methods one can achieve a 
significant improvement in the accuracy of age estimation. The present study explores a multifactorial approach, 
the potential of which have been previously proposed by Zioupos et al.36and Bonicelli et al.37. In practice, this 
study combined nano- and micro-level mechanics including investigation of water, mineral and organic matrix 
by means of X-ray diffraction, Fourier transformed infrared spectroscopy, and thermal analysis, to provide age 
at death estimates for a collection of 113 rib cortical bone specimens. The present approach utilises a number of 
well-known analytical methods, which are combined in an effort to understand age-related changes and has the 
potential to be used as a multifactorial, observer-independent forensic age estimation method.

Results
A total of 33 physicochemical parameters were investigated in the present study. Several variables were found to 
violate normal distribution: optical porosity  (PoAr%), elastic modulus of osteons (OnEIT), nanohardness of the 
interstitial bone matrix (ItHIT), enthalpy values for both dehydration and (L∆H) organic combustion (C∆H), 
mineral to matrix (MM), carbonate substitution (CP), crystallinity index (CI), collagen content (CC) and crystal-
lite Size (Size). This is not expected to affect parametric tests and regression analysis for age estimation due to the 
large sample size (N > 40).38 ANOVA results showed that only two of the variables showed statistical differences 
between males and females. Crystallite size showed higher value for females (F(1,111) = 1.205 and p = 0.040) 
whereas the enthalpy value for the exothermic peak (C∆H; F(1,111) = 4.746 and p = 0.031) was higher for males. 
The remaining variables showed no significant differences between males and females.

Correlation between physicochemical and mechanical properties and age. There were also a 
number of significant correlations between mechanical and physicochemical parameters and age as evaluated by 
Pearson’s correlation. Scatterplots for visualisation of the relationships are presented in Supplementary Fig. 1–4. 
The most robust correlation was porosity, which increases linearly with age (R = 0.83 and p < 0.001). DSC results 
(Supplementary Fig. 1) showed that there is a reduction of bone matrix water content associated with increased 
age, with significant negative correlations for L∆H (R = − 0.27, p = 0.004) and  W% (R = − 0.25, p = 0.007). Fur-
thermore, the enthalpy value for organic matrix combustion (C∆H) was also negatively correlated with age 
(R = 0.24, p = 0.010) and agreed with an age-related decrease in organic content, as shown by weight loss during 
combustion of organic  (Or%) matter (R = − 0.39, p < 0.001). Finally, mineral content calculated at the very end of 
the combustion process  (Ash%) displayed the most robust positive correlation for these TGA variables (R = 0.41, 
p < 0.001). Some features of mineral crystal structure and composition appear to change with increasing age 
following a linear trend (Supplementary Fig. 2). For instance, carbonate substitution (CP) increases (R = 0.36, 
p < 0.001). XRD analysis shows a general decrease in the lattice size along the ’a’axis (R = − 0.20, p = 0.030) and an 
increase in CL030 (R = 0.23, p = 0.016). The segregation of crystallite size and strain by means of Williamson-Hall 
plot also indicates the increase in crystallite size for the〈00ℓ〉crystallographic direction (R = 0.22, p = 0.018). 
Considering the experimental evidence on bone tissue mechanical behaviour, elastic modulus  (EIT, R = − 0.19 
and p = 0.048) and indentation creep  (CIT, R = − 0.30 and p = 0.002) decreases significantly, while indentation 
work ratio showed a robust negative relationship (ηIT, R = − 0.41 and p < 0.001). Supplementary Fig.  3 shows 
mean tissue values and Vickers hardness results with age. Similar trends were observed for the osteonal area: 
OnEIT (R = − 0.20 and p = 0.032), OnCIT (R = − 0.29 and p = 0.002) and OnηIT (R = 0.40 and p < 0.001) show weak cor-
relations with age. For the interstitial area, elastic modulus loses significance while ItCIT (R = − 0.27 and p = 0.004) 
and ItηIT (R = 0.38 and p < 0.001) are still moderately correlated to age. Finally, the two values for microhard-
ness show robust increase with age for osteons (OnHV, R = 0.44 and p < 0.001) and the surrounding interstitial 
area (ItHV, R = 0.55 and p < 0.001). Thermal analysis parameters also showed clear trends with age. Results for 
mechanical analysis are visualised in Supplementary Fig. 3, 4.

Age estimation: unrestricted parameter selection. The aim of this study was to use all available 
parameters, mimicking a forensic investigation where time and resources are unlimited, with the final goal of 
reaching maximum accuracy and reliability, as well as meeting the demanding standards required for court 
admissibility. Stepwise-based parameter selection was employed in order to create optimal regression formulas 
that produced the best age estimation while maintaining robusticity of the statistical model. In Table 1, E1shows 
the highest accuracy between all the models with  R2 of 0.863 and residual standard error (RSE) of 6.453 yrs. 
Mean absolute error (MAE) is 4.644 years with a maximum residual error of 20.73 for a 49-year-old male indi-
vidual (Fig. 1a, b). The variables included in this E1 model were selected mainly from nanoindentation, porosity 
(Po.Ar%) and structural parameters crystallite size/geometry obtained from XRD analysis. The only parameter 
from thermal analysis is C∆H. In terms of experimental procedures, the entire evaluation can be performed in 
approximately 36 h which would be quick enough to avoid structural and chemical modifications due to storage 
time and freezing-unfreezing cycles. The only non-significant variable was ’a’axis and none of the parameters 
violated collinearity restrictions. The model does not violate the assumption for heteroscedasticity (p = 0.423). 
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To conclude, residuals were normally distributed (S-W = 0.984, p = 0.198) and no autocorrelation was detected 
(D-W = 1.983, p = 0.736).

Age estimation: restricted parameter selection. The next step in the analysis is to apply stepwise 
regression by using two specific subsets (combinations) of parameters in order to address practical problems that 
can occur in forensic context, such as limitations in time, technical resources, or available bone material. Results 
for this restricted parameter selection approach can be found in Table 1 with the two formulas E2 and E3. E2 
(Table 1) was developed by means of Aikake criterion-based stepwise selection choosing from variables obtained 
by nanoindentation. The result was an equation  (R2 = 0.845,  R2-adj = 0.836) which was produced employing 
Po.Ar%,  HIT, OnEIT, HV, OnηIT and ItHV as independent variables. This approach remains time-consuming (36 h) 
but reduces the experimentally used instruments to just one. Residual standard error was slightly increased com-
pared to the previous model RSE = 6.737 and mean average error was 5.098 years (Fig. 1c, d). All assumption for 
residual distribution, heteroskedasticity and autocorrelation were true and valid. Collinearity assumption was 
not respected for  HIT which showed variance inflation factor of 11.24. The final model E3 (Table 1) was built 
using the automatised stepwise selection based on the entire physicochemical characterisation. In this case, there 
is a significant reduction in  R2and an inflation in the RSE = 14.101 and MAE = 11.395 years. The main advantage 
is the possibility to perform this in only 12 h but accuracy is not sufficient to meet the standard of the forensic 
settings. Regression plots are shown in Fig. 1e, f.

Cross‑validation. All the models considered the whole cohort of samples and provided, in essence, the 
maximum possible prediction power of the approach we have implemented. In reality, any unknown sample 
is not likely to be from the same population which produced the calibration relationship. To simulate this, we 
applied a leave-one-out method, where in turns one sample was kept out and analysis was produced from the 
other 113 samples. Results show a minimal decrease in accuracy for all the regression formula with the exception 
of E3 which had already presented the lowest  R2 between all the models (Table 2).

Discussion
The indeterminacy in estimating age-at-death of unknown skeletal remains, especially from mature individuals, 
is ascribable to the high biological variability associated with the maturation/degeneration  process39. The tradi-
tional age estimation methods based on skeletal morphology, development or degeneration are often subjective 
or heavily biased and do not fulfil the newly established standards for expert witness admissibility. A number 
of approaches based on chemical and molecular methods have been developed in order to overcome these 
limitations. The present study evaluated the effectiveness of cortical bone matrix analysis for age estimation. 
This method employs a multifactorial approach starting from a pool of physicochemical parameters related to 

Table 1.  Regression coefficient and diagnostic results. Stepwise regression based on the full set of parameters 
(E1), only nanoindentation (E2) and physicochemical modifications (E3) (*p < 0.01; **p < 0.05; ***p < 0.001).

(E1) (E2) (E3)

Po.Ar% 6.001*** 6.120***

HIT − 0.446*** − 0.858***

CIT 3.825***
OnEIT 1.222** 1.683**

HV 0.531*
OnOnIT 2.523*** 1.946**
OnHV 0.624*** 0.466**

Ash% 4.697***

CΔH − 0.005*** − 0.012***

CC 204.382***

CL030 5.450*** 8.938***

’a’axis − 369.968

’c’axis 597.609***

CL004 − 3.455***

Constant − 759.525 − 62.45*** − 249.937***

Observations 113 113 113

R2 0.863 0.845 0.315

Adjusted  R2 0.850 0.836 0.283

Residual Std. Error 6.453 (df = 102) 6.737 (df = 106) 14.101 (df = 107)

F Statistic 64.425***(df = 10; 102) 96.441***(df = 6; 106) 9.860***(df = 5; 107)

Akaike Inf. Crit 754.5063 760.5891 926.564

Bayesian Inf. Crit 787.235 782.4082 945.6557
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water, collagen and mineral acquired by physical and chemical methods and indentation mechanical parameters. 
However, not all the parameters showed sufficient correlations with age in order to predict age at death and 
therefore stepwise regression was applied in order to produce optimal estimation formulae. Results are prom-
ising and, although the lowest MAE is 4.644 years, there is no noticeable decrease in accuracy for individuals 
after maturity (Table 2). Equations E1 (based on the entire set of parameters, Fig. 1a, b), and E2 (obtained from 
histomorphometry and mechanical analysis, Fig. 1c, d), were deemed the most suitable for age estimation. Esti-
mates based only on chemical analysis did not provide the necessary accuracy showing age estimate deviations 
of > 10 years (Fig. 1e, f).

This discrepancy between chronological and tissue age of the bone matrix has been attributed to alterations 
in modelling/remodelling rate due to physiological maturing and pathological conditions (e.g., osteoporosis). 
Age-related changes in one of the matrix components (mineral, organic or water) has a profound effect on 
the others and in the mechanical behaviour of bone from the nano- to macro-scale. The increase in mineral 
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Figure 1.  Regression diagnostic plots for the three models. Regression plots presenting the relationship 
between real age and predicted age for E1 (a), E2 (c) and E3 (e). It is possible to see that there is minimal 
difference between predicted age for different age ranges. Distribution of residuals is homogeneous for E1 and 
E2 (b and d), while E3 does not show regular residuals distribution (f).

Table 2.  Leave-one-out cross validation results for all the models. It is possible to see a general decrease in 
all the diagnostic indicators considered to evaluate the regression formulas (CV: cross-validated; RMSE: root 
mean square error; MAE: mean absolute error).

(E1) (E2) (E3)

R2 0.863 0.845 0.315

CV—R2 0.835 0.825 0.249

RMSE 6.453 6.737 14.101

CV—RMSE 6.736 6.946 14.420

MAE 4.644 5.098 11.395

CV—MAE 5.125 5.428 11.996
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content is the most apparent change. However, this is related to a number of modifications in crystallite size and 
overall  crystallinity40–43. This is in part due to the effect of impaired remodelling with age,  osteocalcin43,44, and 
changes in hydroxyapatite composition, such as the reduction in a-axis length with the increase in carbonate 
substitution as well as the increase in overall crystal  size41,45–47. In the present study, there is a robust increase in 
mineral content  (R2 = 0.41 and p < 0.001) accompanied by the increase in carbonate substitution, a trend which 
has recently been confirmed by Pedrosa et al.29 Results for the present study support previous findings showing 
that mineralisation increases until maturity is reached. After this point, approximately 35 years, the variation 
in mineral content remains stable for the rest of the age  range48–50. These results are supported by the decrease 
in both water and collagen content. These variations in matrix composition result in changes in the functional 
mechanical behaviour. Despite the fact that weak or no correlation has been previously found between nano-
hardness and elastic  modulus51, the present study reveals a significant decrease in the elastic modulus of bone 
with the exception of interstitial  bone52. Furthermore, this is coupled with the decrease in crystal strain values 
and an increase in elastic indentation work ratio with age. Finally, microhardness showed a significant increase 
with age for both osteon and interstitial bone and was strongly associated with increase in mineral content. This 
suggests that microstructure (e.g., number, thickness and mineralisation of lamellae) along with age, could be a 
key factor in determining micromechanical properties.

In terms of age estimation, E1 (in Fig. 1a, b) shows the best prediction between all models produced along 
the entire age range. Age-at-death estimates from this model, however, require the longest time to produce 
(approximately 36 h) and involves a large number of analytical tests, both physicochemical and mechanical, 
which may not be always easily accessible. Regardless this model (E1) stands out as one of the best methods for 
age estimation. With a mean absolute error of 4.64 years, it is comparable to aspartic acid racemisation.

Other comparable and commonly used age estimation methods include Griffin et al.53, who developed a 
procedure based on teeth with the potential accuracy of ± 8.7 years for all ages and ± 6.2 for under 35 individuals. 
Alkass et al.54 achieved ± 1 year of deviation from real age by radiocarbon and ± 5.4 for aspartic acid racemization. 
However, one must consider the fact that the first methodology was developed for a collection of just 39  teeth53 
while the second on 66 tooth  samples54 which are hardly representative of a larger population and might retain 
a certain degree of uncertainty, while the present study is based on almost double the number of specimens 
allowing for a more reliable estimation. Recently researchers have utilised DNA analysis increasingly due to its 
high accuracy despite the destructive nature of the  procedure21,22,55. Xu et al.30 tested 2,957 novel age-associated 
DNA methylation sites and claimed that a certain combination of 11 sites could be used to estimate age with an 
absolute error of ± 2.8 years. These methodologies, despite the high effectiveness, require specific training and 
facilities to be carried out and are more sensitive to environmental conditions and external contamination than 
the present one.

In order to limit the complexity of the experimental procedures and reduce execution time E2 (Fig. 1c, d) was 
developed involving only histomorphometry and mechanical analysis. Loss in accuracy is minimal, as can be 
seen in Table 2, and the entire experimental procedure can be carried out in less than 24 h. Though the present 
method has not yet been tested extensively for the possible bias of diagenesis, it was found that, for short post-
mortem intervals, it has only a marginal effect on micro- and nano-mechanical matrix  properties56. Additionally, 
the overall physicochemical analysis based on powder only in isolation does not provide the necessary accuracy 
for the forensic setting (E3 in Table 1), making E2 the preferable option for a model that combines both speed 
of execution and desirable results. Finally, as expected, leave-one-out cross-validation (Table 2) for all of the 
models was overall only slightly less accurate, suggesting that this approach produces robust and reproducible 
estimations.

Compared to the two previous pilot studies based on the same approach, as shown in Table 336,37
, the most 

evident difference is the higher number of specimens involved: 113 for the present study compared to the 24 
in Bonicelli et al.28 and 14 in Zioupos et al.27. This approximately tenfold-increase in sample size is essential in 
order to confer robusticity to the regression models based on a multifactorial  approach57. An expected effect 
of this difference is the decrease in accuracy (from  R2 = 0.99 to  R2 = 0.86) as well as the increase in standard 
error of the estimation. This can be attributed to the broader age range of this study (12 to 84) as compared to 
Bonicelli et al.28 (20–68 years) and Zioupos et al.27 which only involved mature individuals (> 35 years of age). 
Additionally, this study’s methodology is accurate across the entire age range, a clear advantage for applicability 
on unknown skeletal remains.

The present approach is not without limitations. The variation of mechanical behaviour of rib cortical bone 
has been investigated by Agnew et al.58,59, in a study that simulated frontal impact on 70 rib specimens. They 
reported that age does not explain the majority of the variance but other factors at individual (e.g., sex, BMI) and 
structural (e.g., geometry and microstructure) levels need to be considered during ageing. Furthermore, it has 
been proved that there is high regional variation due to the local geometrical properties of the area  tested60,61. 
This would suggest that macroscopic mechanical properties may not be suitable for age estimation. However, 
the method developed in the present study employs only indentation testing, which has a lower intra-site vari-
ation as compared to dynamic macroscopic  testing62. Further, diagenesis could have an impact on all analytical 
parameters produced in the various methods and tests employed on fresh bone specimens. The same can be 
said, however, for all alternative methodologies such as aspartic acid racemisation or DNA. Biological variability 
and medical history are unavoidable complications. Concerning chemical analysis, infrared spectroscopy has 
been used in the past to evaluate bone  diagenesis63,64, revealing that there are changes in both the organic phase 
(reduction in collagen and protein content) and the mineral phase (crystallite composition, size and crystallin-
ity). This could in turn have a systematic effect on thermal analysis and XRD. It is therefore essential that further 
studies focus on the influence of diagenesis on the model estimates and the ideal conditions in which the method 
should be applied. Diagenetic changes have also been shown to influence bone mechanical behaviour, but a 
specific test applied to this methodology to evaluate the impact of taphonomy on the present protocol should 
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be developed. It is worth mentioning that we found, although on a smaller sample size, no difference between 
Albanian and Greek samples in a previously published  study37. This suggests that the approach is not heavily 
affected by population differences. However, it has been proven that the variables under analysis are highly 
dependent on the remodelling rate and thus they may be connected with genetic factors linked to population 
differences. Moreover, environmental factors such as diet and activity could play a crucial role in affecting bone 
matrix behaviour, thus, further research is necessary to investigate all these sources of bias in the estimates. Lastly, 
male to female numbers in this study were not balanced, a fact that could have caused some unknown bias and 
may require further consideration. Despite the aforementioned limitations the current study represents the first 
and largest study to consider five different methods of assessing changes in bone matrix as a function of age. 
This attempt resulted in a reliable, objective and accurate age estimation method with great potential to become 
widely applicable in forensic settings. Naturally, follow-up validation studies are needed to confirm the present 
results to make it applicable for forensic applications.

To conclude, the present study introduces the first comprehensive multifactorial approach based on phys-
icochemical and mechanical modifications of bone matrix. Its main advantages are it is observer independent 
and easy to apply, even by an operator who does not possess forensic expertise. Furthermore, the protocol only 
requires a small bone volume and it could be carried out by shipping the unknown sample to a fully equipped 
laboratory. Despite being a study based exclusively on fragments of one skeletal element, the method showed 
satisfactory accuracy and therefore it meets the three main requirements for expert witness admissibility in 
forensic settings. The approach, developed on fresh samples, needs further testing in order to understand the 
effect of post-mortem intervals, any effects of taphonomy and the potential bias introduced by pathological 
conditions (e.g., osteoporosis, osteogenesis imperfecta). Finally, a larger number of reference bones should be 
targeted in order to optimise applicability of the approach.

Materials and methods
The skeletal material employed in this study consists of 113 sternal ends of the fourth right rib, approximately 
5 cm in length, with known ages ranging from 12 to 84 years (46.64 ± 16.33 years), all collected at the Institute 
of Forensic Medicine in Tirana, Albania. Seventy-seven male individuals (45.23 ± 16.66 years) and 36 females 
(44.57 ± 16.88 years) were used in total (see Supplementary Table 1).

Bone specimen preparation. The autopsy material, sampled for the purpose of the present study at the 
Institute of Forensic Medicine of Tirana after permission was granted by the Ministry of Justice of Albania, was 
received in dry ice and kept at − 20 °C between extraction, preparation and experimental procedure. The sam-
ples were allowed to dry completely in order to avoid structural modifications due to the increase in volume of 
water when freezing. The experimental procedure was carried out ensuring minimal storage time and avoiding 
repeated freezing and defrosting cycles. A Struers Accutom wafering saw equipped with a diamond impregnated 
blade (300 µm) cooled down using deionised water was used to produce two, 3 mm thick, cross sections of the 
sternal portion of the rib. The sections were high pressure washed to remove bone marrow and then degreased 
using a solution of chloroform–methanol in the ratio 1:1 for 36 h. Subsequently, the samples were immersed in 
100% ethanol for 12 h and left overnight to dry at room temperature. After drying for 24 h at room temperature, 
the sections were embedded in epoxy resin (MetPrep Kleer Set Type SSS) and metallographically polished using 
an automatic Struers RotoPol-15 with 203 mm silicon carbide abrasive disks grinding paper of decreasing grit 
size (400, 800, 1200, 2500) on a MasterTex cloth with Alumina 3B 6 oz. The result is a mirror-like surface that 
enables magnification × 20.

The remaining material was divided in two parts using the wafer edge saw. Trabecular bone and periosteum 
were scraped off using a scalpel. The bone was treated following the chloroform–methanol procedure explained 
in the above paragraph. In order to obtain the powder, the material was processed using a Retsch Mixer mill 
2000 by cycling for 1 min and then at 60 Hz. In between the two different cycles, the powder was filtered using 
a 106 µm sieve to guarantee particle homogeneity. The powder was left resting at room temperature overnight 

Table 3.  Commonly used age-at-death methodologies. Comparison of accuracy and error of the estimation of 
the main laboratory-based approaches in age estimation  (R2: coefficient of determination; RE: mean absolute 
residual error; SDE: standard deviation of absolute residual errors).

Reference Method R2 RE SDE

E1 Rib (n = 113) 0.863 4.64 -

Bonicelli et al.37 Rib (n = 24) 0.949 2.14 0.4

Zioupos et al.36 Femur (n = 14) 0.997 0.6 0.31

Griffin et al.53 Teeth (n = 31) 0.92 8.7 -

Alkass et al.54 Teeth (n = 57) 0.99 1.88 1.3

Huang et al.55 Blood (n = 89) 0.819 7.87 -

Bekaert et al.31 Blood (n = 206) 0.95 3.75 -

Bekaert et al. 31 Teeth (n = 29) 0.74 4.86 -

Martin-De Las Heras et al.28 Teeth (n = 22) 0.65 14.9 -
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before testing. In order to maintain consistency throughout the study, the same particle size (106 µm) was used 
for chemical characterisation.

Mechanical characterisation and histomorphometry. Nanoindentation was performed using a 
CSM-NHT (system v.3.75, CSM, 2034 Peseux, Switzerland) instrument. Maximum hold load was set at 10 mN 
with a loading and unloading speed of 20 mN/min with 30 s long load/hold/unload phased experiment. The 
cortical area was divided in four quadrants (two on the cutaneous and two on the pleural surface). For each 
quadrant, eight indentations were placed on one osteon (On) and on the surrounding interstitial matrix (It). The 
three steps of nanoindentation testing, from location targeting to curve acquisition, can be seen in Fig. 2A–C. 
The target sites were chosen according to the regularity of the surface. Mean tissue values were also calculated 
based on the average between the mechanical properties of the two areas. Universal hardness  (HIT in Vickers) 
was calculated from load and contact area in Eq. (1).

where  Pmax is maximum load and A is the total area of the impression resulting from the indentation. Elastic 
modulus  (EIT, GPa) was obtained (assuming Poisson’s ratio value of ν = 0.3) in the unloading phase as per the 
Oliver and Pharr method, Eq. (2).

where νi and  Ei refer to the Poisson’s ratio and the elastic modulus of the indenter respectively, and νs to the Pois-
son’s ratio in the sample, assuming that the latter is homogeneous. Indentation creep  CIT was calculated by the 
proportional increase in depth occurring while the load is held at its maximum level (for 30 s) and its measure-
ment reflects the visco-plasticity of the tissue shown in Eq. (3).

The elastic portion of the indentation work ηIT was obtained by examining the percentage ratio of the elasti-
cally recovered energy over the total (elastic + plastic) energy input during an indentation sequence, Eq. (4).

An INDENTEC HWDM-7 instrument, equipped with a square-shaped pyramid diamond tip of θ = 136°, 
was employed to produce Vickers microhardness (HV, Kg/mm2) values for osteonal and interstitial bone areas 
for each specimen. The maximum load in these tests was set at 10 gf. The same areas selected for nanohardness 
testing were examined applying one indentation on the osteon and one on the surrounding matrix for a total of 
eight indentations per section.

(1)HIT =
Pmax

A

(2)EIT =

[

1− ν
2
s

Es
+

1− ν
2
i

Ei

]−1

(3)CIT =
h1 − h2

h1
× 100

(4)ηIT =
welast

welast + wplast
× 100

Figure 2.  Steps for nanoindentation. The four quadrants used to divide the cortical area for sampling in 
order to perform porosity calculation (A) and nanoindentation impressions (B) on the osteon (O) and the 
surrounding interstitial bone (I) divided by the cement line (red dashed line). (C) Shows the typical load/
indentation depth curve used to acquire mechanical parameters.
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Optical porosity (Po.Ar, %) was obtained from four images taken for each specimen with a reflected light 
microscope × 20 and the use of  ImageJ65,66. Four locations were selected in order to sample the entire cortical 
area in the four quadrants, two sites on the pleural surface and two from the cutaneous surface. Each image was 
cropped to select areas completely occupied by bone and converted into 16-bit images. A threshold mask was 
applied to highlight the areas not occupied by bone tissue. The volume fraction was calculated using the open 
source software  BoneJ65,66 and was then transformed into a percentage value. The values obtained for the four 
locations tested in each individual were averaged in order to obtain a mean measurement for optical porosity. 
Osteocyte lacunae were included when automatically selected by the software. When thickness of cortical area 
did not allow accurate measurement of porosity due to excessive bone resorption the measurement was taken 
manually. With the segmented line tool, total area was calculated. The surface occupied by vascular canals was 
measured in the same manner. Bone area was obtained subtracting vascular areas from total cortical area. Poros-
ity was assessed as a percentage by dividing bone area by total cortical surface.

Thermal analysis. Thermal analysis was carried out by using a TGA/DSC 3 + (Mettler Toledo , Indium 
calibrated) with a two-phase experiment: (i) dynamic temperature increase from 25 to 550 °C at a rate of 10 °C/
min and (ii) a static phase in which 550 °C was sustained for 10 min in order to completely eliminate the organic 
matrix and reduce the bone to ashes (Fig. 3). Temperature in the chamber was controlled by a continuous flow 
of water at room temperature. The powder was tested in air in 40 µL aluminium pans with flat bases filled with 
approximately 10  mg of bone powder and the weight was recorded using a microbalance (Sartorius Genius 
ME235), while an empty crucible was used as a reference. STAR e version 16.00 was used for the curve analysis. 
Thermogravimetric curves (TGA) were divided in three temperature ranges and step horizontal was used to 
calculate percentage weight loss. Dehydration of the sample  (W%, %) was calculated between ~ 25 and 200 °C 
and organic weight loss  (Or%, %) between ~ 200 and 550 °C. The sum of the two steps represents the entire weight 
loss and subtracting it from 100 gives the mineral content percentage  (Ash%, %). The same intervals were used to 
calculate enthalpy values from differential scanning calorimeter curves by means of linear integration. The first 
endothermic episode represents the energy required to dehydrate the bone and break hydrogen bonds (LΔH, 
 Wg−1) while the second exothermic episode represents organic combustion (CΔH,  Wg−1). These intervals were 
chosen according to  literature36,37,67 and are shown in Fig. 3.

Fourier transform infrared spectroscopy. In this study, spectra were collected by means of ALPHA 
T Platinum spectrometer (Bruker Optics) in attenuated total reflectance mode (ATR). The range analysed is 
4000–400 cm−1 with 4 cm−1 resolution for a total of 64 scans. Approximately 3 mg (~ 106 µm particle size) of 
bone powder was analysed. The stage and crystal were cleaned with deionised water before the first and after 
each measurement. The measurements for the entire sample were carried out in the same conditions to max-
imise consistency. Spectral analysis was performed in the open source software SpectraGryph version 1.2.15. 
The baseline was calculated for each peak individually and the areas under the peak and intensity values were 
obtained. The variables considered in this study were the mineral to matrix ratio, the carbonate to phosphate 
ratio, the crystallinity index, and the collagen content. Calculations for all these variables are shown in Table 4.

Figure 3.  Graphic representation of thermal analysis experiment. Example of thermogravimetric (A) and 
differential scanning calorimetry (B) curves. The first weight loss represents the bone matrix dehydration and 
matches with the endothermic peak responsible for triple helix thermal denaturation (LΔH and W%). The 
second weight loss (Or%) represents organic combustion (CΔH) and matches the DSC curve. Subtracting the 
entire weight loss (Ash%) from 100, it is possible to obtain mineral content.
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X‑ray diffraction. This study employed a pXRD sample holder with a glass spacer filled with bone powder 
for XRD analysis and a PANalytical X’Pert Pro Multi-Purpose Diffractometer by means of Cu Kα  radiation 
source for the characterisation. Data collection was carried out across an angular range of 10–80 2θ(°) (8.84–1.20 
d-spacing) using a PIXcel strip detector at count rate ∼1 s. Data were also collected for two further stepped scans 
under the same sample conditions but across an angular range of 23–27 2θ(◦) (3.86–3.30 d-spacing) and 50–55 
2θ(◦) (1.82–1.67 d-spacing), and with a count time at each step equivalent to ∼3 s. The two additional stepped 
scans were collected to provide greater quality data at the 002 and 004 Bragg maxima respectively. Asymmetrical 
split pseudo-Voigt (SPV) peaks were fit to the 002, 004, 030 and 210 diffraction maxima (as it represents a sat-
isfying compromise between intensity, overlapping reflections and differing lattice direction) for all diffraction 
data. SPV peaks approximate a Voigt function which is a combination of Gaussian and Lorentzian peaks. From 
this data, the full width at half maximum (FWHM) of the 002 and 004 Bragg maxima was calculated. FWHM 
was also calculated from the 10–80 angular range for the 030 and 210 peaks. The FWHM values were to calcu-
late coherence length using the Scherrer equation. In order to control the instrument resolution factor, a silicon 
standard (NB1640) was measured weekly and the factor was calculated by means of Caglioti equation. Bruker 
Topas software (Version 4.1, 2008) was used for fitting each diffraction profile. This provided quantitative crys-
tallite size and morphology parameters through calculation of the coherence length and structural parameters 
of the crystal lattice. Coherence length was calculated for three orthogonal crystallographic directions:〈00ℓ〉,
〈hk0〉and〈0k0〉using the Scherrer equation, which uses the instrument corrected FWHM of the desired 
peak. After fitting the peaks, FHWM was calculated and used to obtain coherence length (CL in Eq. (5)) at all 
crystallographic directions under investigation.

where K is the Scherrer constant (0.9), λ is the X-ray wavelength (0.15406 nm) and θ is the Bragg angle. Coher-
ence length is a calculation of both the size and strain of the crystal, showing positive relationship with size and 
negative with strain. The lattice parameters were calculated from whole pattern fitting refinement of diffraction 
profiles to obtain the 2θ peak positions. Considering the difficulties in analysing peak broadening for biogenic 
hydroxyapatite, coherence length for〈00ℓ〉crystallographic direction was separated in crystallite size and 
microstrain using the 002 and 004 maxima by means of the indirect Williamson-Hall plot according to Eq. (6), 
where βis the FWHM, L is the crystallite size, and ε is the  microstrain68,69.

Statistical analysis. Statistical analysis was carried out in R 3.6.0. First, normality was investigated using 
Shapiro–Wilk Test (S-W) with significance value set at ≤ 0.05. Analysis of variance (ANOVA) were also applied 
to evaluate mean differences considered significant for p ≤ 0.05. A preliminary inspection of the correlation 
between age and the entire set of predictors was carried out with Pearson’s correlation (≤ 0.05). Stepwise AIC 
regression (using https ://githu b.com/rsqua redac ademy /olsrr ) was then applied to the entire set of parameters 
(unrestricted parameter selection) which built regression models from a set of candidate predictor variables 
by entering and removing predictors based on Akaike Information Criteria. This aims to achieve the maxi-
mum accuracy without considering time and facilities limitation. The same procedure was applied separately for 
nanoindentation and full physicochemical characterisation (thermal analysis, FTIR and XRD) data, in order to 
simulate forensic cases where there may be limited time and resources available for analysis. All the models were 
checked for collinearity, variance inflation factor, condition index and heteroscedasticity (Breusch-Pagan test 
Bonferroni adjusted). Residuals diagnostics were carried out visually by means of residual QQ plots, Residual 
vs Fitted Values plots, Scale-Location plots, Shapiro–Wilk normality tests (S-W) and Durbin-Watson tests for 
residual autocorrelation (D-W). Finally, outliers were detected by Cook’s Distance bar plot to evaluate the effect 
of different antemortem conditions on the age-at-death estimation. To conclude, leave-one-out (LOO) cross-
validation was applied to all regression models to avoid splitting the sample (https ://githu b.com/topep o/caret ). 
Cross-validated results were compared to the initial regression results by means of  R2, root mean square error 
and mean absolute error. This way it was possible to evaluate the concentration of residuals along with the best fit 
after cross-validation. The entire set of variables and descriptive statistic can be found as Supplementary Table 2.

(5)CL =
K�

βcosθ

(6)βcosθ = 4εsinθ +
k�

L

Table 4.  ATR-FTIR variables. Description of the semiquantitative analysis of FTIR spectra (A: area of the 
peak; I: intensity of the peak: MM: mineral to matrix ratio; CP: carbonate to phosphate ratio; CI: crystallinity 
index; CC: collagen content).

Parameter Abbreviation Explanation

MM A1200-900/A1750-1600 Integrated values of v1v3 phosphate over Amide I  band70

CP A890-850/A1200-900 Integrated values of v2 carbonate over v1v3 phosphate  bands70

CI I605 + I565/I595 Mineral crystallinity index calculated on the v4 phosphate  peak71

CC A1750-1600/A1200-900 Integrated values of Amide I band v1v3 phosphate  band72

https://github.com/rsquaredacademy/olsrr
https://github.com/topepo/caret
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Ethical approval. Permission for sampling was granted to the Institute of Forensic Medicine in Tirana 
(Protocol Number 795/3 A. Xh.) and the Ministry of Justice in Albania for the current study. Albania’s local regu-
lations had no condition for informed consent in minimal sampling that was required for the study as long as 
anonymisation of the samples was guaranteed. This condition was met. The study protocol was approved by the 
Ethics Committee of the University of Edinburgh. All methods were carried out in accordance with the approved 
guidelines and the appropriate standards applying in the medico-legal context. The material was further cleared 
by the NHS Lothian Tissue Governance (reference number ICA01/17). Additionally, ethical approval was pro-
vided by Cranfield University Ethics Committee (CURES/2294/2017) to carry out experimental procedures.

Received: 18 September 2020; Accepted: 22 December 2020

References
 1. Ritz-Timme, S. et al. Age estimation: the state of the art in relation to the specific demands of forensic practise. Int. J. Legal Med. 

113, 129–136 (2000).
 2. Christensen, A. M. & Crowder, C. M. Evidentiary standards for forensic anthropology. J. Forensic Sci. 54, 1211–1216 (2009).
 3. Márquez-Grant, N. An overview of age estimation in forensic anthropology: Perspectives and practical considerations. Ann. Hum. 

Biol. 42, 308–322 (2015).
 4. Baccino, E., Ubelaker, D. H., Hayek, L.-A.C. & Zerilli, A. Evaluation of seven methods of estimating age at death from mature 

human skeletal remains. J. Forensic Sci. 44, 931–936 (1999).
 5. İşcan, M. Y., Loth, S. R. & Wright, R. K. Metamorphosis at the sternal rib end: A new method to estimate age at death in white 

males. Am. J. Phys. Anthropol. 65, 147–156 (1984).
 6. Lamendin, H. et al. A simple technique for age estimation in adult corpses: the two criteria dental method. J. Forensic Sci. 37, 

13327J (1992).
 7. Kerley, E. R. The microscopic determination of age in human bone. Am. J. Phys. Anthropol. 23, 149–163 (1965).
 8. Garvin, H. M. & Passalacqua, N. V. Current practices by forensic anthropologists in adult skeletal age estimation. J. Forensic Sci. 

57, 427–433 (2012).
 9. Konigsberg, L. W. & Frankenberg, S. R. Estimation of age structure in anthropological demography. Am. J. Phys. Anthropol. 89, 

235–256 (1992).
 10. Prince, D. A. & Ubelaker, D. H. Application of Lamendin’s adult dental aging technique to a diverse skeletal sample. J. Forensic Sci. 

47, 15209J (2002).
 11. Cunha, E. et al. The problem of aging human remains and living individuals: a review. Forensic Sci. Int. 193, 1–13 (2009).
 12. Moraitis, K., Zorba, E., Eliopoulos, C. & Fox, S. C. A test of the revised auricular surface aging method on a modern European 

population. J. Forensic Sci. 59, 188–194 (2014).
 13. Michopoulou, E., Negre, P., Nikita, E. & Kranioti, E. F. The auricular surface as age indicator in a modern Greek sample: a test of 

two qualitative methods. Forensic Sci. Int. 280(246), e1-246.e7 (2017).
 14. Maat, G. J. R., Maes, A., Aarents, M. J. & Nagelkerke, N. J. D. Histological age prediction from the femur in a contemporary Dutch 

sample: The decrease of nonremodeled bone in the anterior cortex. J. Forensic Sci. 51, 230–237 (2006).
 15. Keough, N., L’Abbé, E. N. & Steyn, M. The evaluation of age-related histomorphometric variables in a cadaver sample of lower 

socioeconomic status: implications for estimating age at death. Forensic Sci. Int. 191, 12–15 (2009).
 16. Bocquet-Appel, J. P. & Masset, C. Farewell to paleodemography. J. Hum. Evol. 11, 321–333 (1982).
 17. Godde, K. & Hens, S. M. Age-at-death estimation in an Italian historical sample: a test of the Suchey-Brooks and transition analysis 

methods. Am. J. Phys. Anthropol. 149, 259–265 (2012).
 18. Godde, K. & Hens, S. M. Modeling senescence changes of the pubic symphysis in historic italian populations: a comparison of the 

rostock and forensic approaches to aging using transition analysis. Am. J. Phys. Anthropol. 156, 466–473 (2015).
 19. Nikita, E., Xanthopoulou, P. & Kranioti, E. An evaluation of Bayesian age estimation using the auricular surface in modern Greek 

material. Forensic Sci. Int. 291, 1–11 (2018).
 20. Nikita, E. & Nikitas, P. Skeletal age-at-death estimation: Bayesian versus regression methods. Forensic Sci. Int. 297, 56–64 (2019).
 21. Meissner, C. & Ritz-Timme, S. Molecular pathology and age estimation. Forensic Sci. Int. 203, 34–43 (2010).
 22. Zapico, S. & Ubelaker, D. H. Applications of physiological bases of ageing to forensic sciences Estimation of age-at-death. Ageing 

Res. Rev. 12, 605–617 (2013).
 23. McCudden, C. R. & Kraus, V. B. Biochemistry of amino acid racemization and clinical application to musculoskeletal disease. 

Clin. Biochem. 39, 1112–1130 (2006).
 24. Sirin, N., Matzenauer, C., Reckert, A. & Ritz-Timme, S. Age estimation based on aspartic acid racemization in dentine: what about 

caries-affected teeth?. Int. J. Legal Med. 132, 623–628 (2018).
 25. Ritz-Timme, S. et al. Quality assurance in age estimation based on aspartic acid racemisation. Int. J. Legal Med. 114, 83–86 (2000).
 26. Zioupos, P., Hamer, A. J. & Currey, J. D. The role of collagen in the declining mechanical properties of aging human cortical bone. 

in 44th Annual Meeting of the Orthopaedic Research Society 108–116. https ://doi.org/10.1002/(SICI)1097-4636(19990 5)45 (1998).
 27. Wang, X., Shen, X., Li, X. & Mauli Agrawal, C. Age-related changes in the collagen network and toughness of bone. Bone 31, 1–7 

(2002).
 28. Martin-De Las Heras, S., Valenzuela, A. & Villanueva, E. Deoxypyridinoline crosslinks in human dentin and estimation of age. 

Int. J. Legal Med. 112, 222–226 (1999).
 29. Pedrosa, M., Curate, F., Marques, M. P. M. & Ferreira, M. T. Beyond metrics and morphology: the potential of FTIR-ATR and 

chemometrics to estimate age-at-death in human bone. Int. J. Legal Med. https ://doi.org/10.1007/s0041 4-020-02310 -3 (2020).
 30. Xu, C. et al. A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Sci. Rep. 5, 

1–10 (2015).
 31. Bekaert, B., Kamalandua, A., Zapico, S. C., Van De Voorde, W. & Decorte, R. Improved age determination of blood and teeth 

samples using a selected set of DNA methylation markers. Epigenetics 10, 922–930 (2015).
 32. Navega, D., Coelho, J. D. O., Cunha, E. M. & Curate, F. DXAGE: a new method for age at death estimation based on femoral bone 

mineral density and artificial neural networks. J. Forensic Sci. 63, 497–503 (2018).
 33. Bethard, J. D., Berger, J. M., Maiers, J. & Ross, A. H. Bone mineral density adult age estimation in forensic anthropology: a test of 

the DXAGE application. J. Forensic Sci. https ://doi.org/10.1111/1556-4029.13987  (2018).
 34. McGivern, H. et al. Age-related trends in the trabecular micro-architecture of the medial clavicle: is it of use in forensic science?. 

Front. Bioeng. Biotechnol. 7, 1–8 (2020).

https://doi.org/10.1002/(SICI)1097-4636(199905)45
https://doi.org/10.1007/s00414-020-02310-3
https://doi.org/10.1111/1556-4029.13987


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2086  | https://doi.org/10.1038/s41598-021-81342-0

www.nature.com/scientificreports/

 35. Castillo, R. F., Ubelaker, D. H. & Djorojevic, M. Age estimation through histological study of trabecular volume and cortical bone 
width of the iliac crest. Sci. Justice 52, 177–180 (2012).

 36. Zioupos, P., Williams, A., Christodoulou, G. & Giles, R. Determining ‘age at death’ for forensic purposes using human bone by a 
laboratory-based biomechanical analytical method. J. Mech. Behav. Biomed. Mater. 33, 109–123 (2014).

 37. Bonicelli, A., Xhemali, B., Kranioti, E. F. & Zioupos, P. Rib biomechanical properties exhibit diagnostic potential for accurate 
ageing in forensic investigations. PLoS ONE 12, 1–20 (2017).

 38. Ghasemi, A. & Zahediasl, S. Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab. 10, 
486–489 (2012).

 39. Milani, S. & Benso, L. Why we can’t determine reliably the age of a subject on the basis of his maturation degree. J. Forensic Leg. 
Med. 61, 97–101 (2019).

 40. Handschin, R. G. & Stern, W. B. X-ray diffraction studies on the lattice perfection of human bone apatite (Crista Iliaca). Bone 16, 
(1995).

 41. Akkus, O., Adar, F. & Schaffler, M. B. Age-related changes in physicochemical properties of mineral crystals are related to impaired 
mechanical function of cortical bone. Bone 34, 443–453 (2004).

 42. Greenwood, C. et al. Towards new material biomarkers for fracture risk. Bone 93, 55–63 (2016).
 43. Poundarik, A. A., Boskey, A., Gundberg, C. & Vashishth, D. Biomolecular regulation, composition and nanoarchitecture of bone 

mineral. Sci. Rep. 8, 1–8 (2018).
 44. Farlay, D. et al. Bone remodeling and bone matrix quality before and after menopause in healthy women. Bone 128, 115030 (2019).
 45. Zapata-LeGros, R. Effect of carbonate on the lattice parameters of apatite. Nature 006, 403–404 (1965).
 46. Zioupos, P. & Currey, J. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone 22, 57–66 (1998).
 47. Unal, M. et al. Assessing matrix quality by Raman spectroscopy helps predict fracture toughness of human cortical bone. Sci. Rep. 

9, 7159 (2019).
 48. McCalden, R. W., McGlough, J. A., Barker, M. B. & Court-Brown, C. M. Age-related changes in the tensile properties of cortical 

bone. The relative importance of changes in porosity, mineralization and microstructure. J. Bone Jt. Surg. Ser. A 75, 1193–1205 
(1993).

 49. Yeni, Y. N., Brown, C. U. & Norman, T. L. Influence of bone composition and apparent density on fracture toughness of the human 
femur and tibia. Bone 22, 79–84 (1998).

 50. Akkus, O., Polyakova-Akkus, A., Adar, F. & Schaffler, M. B. Aging of microstructural compartments in human compact bone. J. 
Bone Miner. Res. 18, 1012–1019 (2003).

 51. Zioupos, P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen. J. Biomater. Appl. 15, 
187–229 (2001).

 52. Lefèvre, E. et al. Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula. Sci. Rep. 
9, 1–16 (2019).

 53. Griffin, R. C., Moody, H., Penkman, K. E. H. & Collins, M. J. The application of amino acid racemization in the acid soluble frac-
tion of enamel to the estimation of the age of human teeth. Forensic Sci. Int. 175, 11–16 (2008).

 54. Alkass, K. et al. Analysis of radiocarbon, stable isotopes and DNA in teeth to facilitate identification of unknown decedents. PLoS 
One 8, e69597 (2013).

 55. Huang, Y. et al. Developing a DNA methylation assay for human age prediction in blood and bloodstain. Forensic Sci. Int. Genet. 
17, 129–136 (2015).

 56. Walden, S. J., Evans, S. L. & Mulville, J. Changes in Vickers hardness during the decomposition of bone: possibilities for forensic 
anthropology. J. Mech. Behav. Biomed. Mater. 65, 672–678 (2017).

 57. Knofczynski, G. T. & Mundfrom, D. Sample sizes when using multiple linear regression for prediction. Educ. Psychol. Meas. 68, 
431–442 (2008).

 58. Agnew, A., Kang, Y.-S., Moorhouse, K., Herriott, R. & Bolte IV, J. Age-Related Changes in Stiffness in human Ribs. in IRCOBI 
Conf. 257–269 (2013).

 59. Agnew, A., Moorhouse, K., White, S. & Kang, Y. The effect of age on the structural properties of human ribs. J. Mech. Behav. Biomed. 
Mater. 41, 302–314 (2015).

 60. Stitzel, J. D. et al. Defining Regional Variation in the Material Properties of Human Rib Cortical Bone and Its Effect on Fracture 
Prediction. Stapp Car Crash J. (2003).

 61. Kemper, A. R. et al. Material properties of human rib cortical bone from dynamic tension coupon testing. Stapp Car Crash J. 49, 
199–230 (2005).

 62. Isaksson, H. et al. Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone. J. 
Biomech. 43, 2410–2417 (2010).

 63. France, C. A. M., Thomas, D. B., Doney, C. R. & Madden, O. FT-Raman spectroscopy as a method for screening collagen diagenesis 
in bone. J. Archaeol. Sci. 42, 346–355 (2014).

 64. Wang, Q. et al. Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains. 
Forensic Sci. Int. 281, 113–120 (2017).

 65. Doube, M. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).
 66. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
 67. Lozano, L. F. et al. Thermal analysis study of human bone. J. Mater. Sci. 38, 4777–4782 (2003).
 68. Williamson, G. K. & Hall, W. H. Discussion of the theories of line broadening. Acta Metall. 1, 22 (1953).
 69. Rogers, K., Beckett, S., Kuhn, S., Chamberlain, A. & Clement, J. Contrasting the crystallinity indicators of heated and diagenetically 

altered bone mineral. Palaeogeogr. Palaeoclimatol. Palaeoecol. 296, 125–129 (2010).
 70. Paschalis, E. P., Mendelsohn, R. & Boskey, A. L. Infrared assessment of bone quality: a review. Clin. Orthop. Relat. Res. 469, 

2170–2178 (2011).
 71. Dal Sasso, G., Asscher, Y., Angelini, I., Nodari, L. & Artioli, G. A universal curve of apatite crystallinity for the assessment of bone 

integrity and preservation. Sci. Rep. 8, 1–13 (2018).
 72. Lebon, M., Reiche, I., Gallet, X., Bellot-Gurlet, L. & Zazzo, A. Rapid quantification of bone collagen content by ATR-FTIR spec-

troscopy. Radiocarbon 58, 131–145 (2016).

Acknowledgements
The authors are grateful to Mr. Kostaq Beluri, of Control Department Investigation and Prosecution of the Gen-
eral Prosecutor, Ministry of Head Justice, Tirana, Albania for granting permission to carry out the project. PZ 
and KDR are grateful to the EPSRC (EP/K020196/1 and EP/N509450/1) for supporting their research. Special 
thanks to Mara Karell for the linguistic review.

Author contributions
Study Design: A.B, P.Z and E.F.K.; Study conduct: A.B. and P.Z.; Sample Collection: B.X.; Data Collection: A.B.; 
XRD analysis: E.A., K.D.R.; Data Analysis: A.B, P.Z and E.F.K.; Data Interpretation: A.B, P.Z, E.A. and E.F.K.; 



13

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2086  | https://doi.org/10.1038/s41598-021-81342-0

www.nature.com/scientificreports/

Drafting Manuscript: A.B., P.Z. and E.F.K.; Approving final version of manuscript: A.B., P.Z., B.X., E.A. and E.F.K.; 
A.B. takes responsibility for the integrity of the data analysis.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https ://doi.
org/10.1038/s4159 8-021-81342 -0.  Data underlying this paper can be accessed at CORD (Cranfield Online 
Research Data) https ://doi.org/10.17862 /cranfi eld.rd.13516 532.v1.

Correspondence and requests for materials should be addressed to P.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-81342-0
https://doi.org/10.1038/s41598-021-81342-0
https://doi.org/10.17862/cranfield.rd.13516532.v1
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Age related changes of rib cortical bone matrix and the application to forensic age-at-death estimation
	Results
	Correlation between physicochemical and mechanical properties and age. 
	Age estimation: unrestricted parameter selection. 
	Age estimation: restricted parameter selection. 
	Cross-validation. 

	Discussion
	Materials and methods
	Bone specimen preparation. 
	Mechanical characterisation and histomorphometry. 
	Thermal analysis. 
	Fourier transform infrared spectroscopy. 
	X-ray diffraction. 
	Statistical analysis. 
	Ethical approval. 

	References
	Acknowledgements


