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Abstract

Isogenic cells sensing identical external signals can take markedly different decisions. Such decisions often correlate with
pre-existing cell-to-cell differences in protein levels. When not neglected in signal transduction models, these differences are
accounted for in a static manner, by assuming randomly distributed initial protein levels. However, this approach ignores
the a priori non-trivial interplay between signal transduction and the source of this cell-to-cell variability: temporal
fluctuations of protein levels in individual cells, driven by noisy synthesis and degradation. Thus, modeling protein
fluctuations, rather than their consequences on the initial population heterogeneity, would set the quantitative analysis of
signal transduction on firmer grounds. Adopting this dynamical view on cell-to-cell differences amounts to recast extrinsic
variability into intrinsic noise. Here, we propose a generic approach to merge, in a systematic and principled manner, signal
transduction models with stochastic protein turnover models. When applied to an established kinetic model of TRAIL-
induced apoptosis, our approach markedly increased model prediction capabilities. One obtains a mechanistic explanation
of yet-unexplained observations on fractional killing and non-trivial robust predictions of the temporal evolution of cell
resistance to TRAIL in HeLa cells. Our results provide an alternative explanation to survival via induction of survival pathways
since no TRAIL-induced regulations are needed and suggest that short-lived anti-apoptotic protein Mcl1 exhibit large and
rare fluctuations. More generally, our results highlight the importance of accounting for stochastic protein turnover to
quantitatively understand signal transduction over extended durations, and imply that fluctuations of short-lived proteins
deserve particular attention.
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Introduction

TNF-Related Apoptosis Inducing-Ligand (TRAIL) is a prom-

ising therapeutic agent against cancer because it induces apoptosis

specifically in tumor cells [1–3]. This motivated dozens of clinical

trials based on TRAIL-related therapies. However, efficiency was

usually limited [4]. Most of the molecular events leading from

TRAIL exposure to cell death are known [3]. After TRAIL

binding to death receptors, initiator caspases are activated, which

in turn promote effector caspases activation either directly or via a

mitochondrial pathway (Fig. S1). In most cells, Mitochondrial

Outer Membrane Permeabilization (MOMP) is required to

efficiently activate effector caspases. Several kinetic models have

been proposed to describe a part or all of those biochemical

reactions [5–12].

Not all cells of an isogenic population die after TRAIL

treatment, even at saturating ligand doses. This fractional killing

property is widely shared among cell lines and is critical for

therapeutical applications [13]. In addition, surviving cells were

shown to be transiently resistant to a second TRAIL treatment.

This reversible resistance property was observed in various cell

lines and could also have important implications for therapy

[14,15]. Fractional killing is generally thought to result from cross

talks between the apoptosis pathway and survival pathways [16].

Indeed, several studies reported that TRAIL increases the

production of anti-apoptotic proteins, via the activation of survival

pathways [17–19]. While fractional killing illustrates cell-to-cell

variability in the decision between life and death, variability is also

observed among cells that die: they commit to death after a highly

variable delay from one another [13,20]. This variability cannot

be explained by differences in TRAIL-induced gene regulation: it

is also observed when cells are co-treated with cycloheximide

(CHX), an efficient inhibitor of protein synthesis [13]. Rather, it

was proposed to originate mostly from pre-existing differences in

the levels of proteins composing the apoptosis pathway. Indeed,

recently divided sister cells die almost synchronously [13,20], as

expected if protein content is equally shared between daughters

and if noise in signaling reactions play a marginal role. This
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explanation was supported by modeling: when taken as initial

conditions of a deterministic, kinetic model describing signaling

reactions, differences in protein levels are sufficient to explain

observed variability in death times [13].

Another observation indicated that this cell-to-cell variability in

protein levels is not frozen but result from a dynamical equilibrium

driven by fluctuations in individual cells: death synchrony between

sister cells was weaker as the duration between division and

treatment increased [13,20]. To quantitatively assess this effect, the

previously mentioned modeling approach, where only the conse-

quences of protein fluctuations (cell-to-cell variability at a fixed time)

are accounted, is inadequate. Instead, protein fluctuations them-

selves should be modeled. The need to account for protein

fluctuations is even more stringent when considering observations

after treatment with TRAIL alone. In that case, protein synthesis is

not blocked and thus can impact the decision between life and

death. Even if TRAIL does not change protein synthesis (via

induction of survival pathways), significant differences with TRAIL

and CHX treatments are expected, as the constitutively noisy

protein synthesis will interact with signaling reactions. Thus, before

complexifying the model to account for eventual regulations via

survival pathways induction, it is critical to assess how much can be

explained when protein synthesis is not altered by TRAIL signaling.

Here, we investigate this question by enabling a kinetic model of

TRAIL-induced apoptosis with stochastic protein turnover for all

proteins, following a generic and principled approach. To our

knowledge, this is the first attempt to systematically include gene

expression noise in a signal transduction model. It enriches the

model with a fundamental property as the dynamics of cell-to-cell

variability is represented, allowing disentangling the effects of

constitutive protein fluctuations, signaling protein-protein reactions

and potentially induced changes in protein synthesis.

Results

Extended vision of signal transduction pathways
Protein synthesis and degradation are subjected to noise, resulting

in fluctuations of protein concentrations in individual cells and in

cell-to-cell variability at the population level [21,22]. Such

variability could have consequences on signal transduction: aside

of conventional epigenetic differences [23], unequal access to ligand

molecules or simply noise in signaling reactions, it often contributes

importantly to heterogeneous behavior within an isogenic popula-

tion [13,24]. One approach to account for those differences is to

incorporate protein level variability as random initial conditions of

an ODE model describing the signaling reactions (‘‘extrinsic noise

approach’’) [13,25]. However, variability is imposed at time zero

and then behavior is deterministic: it is thus not appropriate to study

transduction on long time scales, during which protein levels

dynamically fluctuate [26]. A more natural manner to account for

protein level variability is to represent their stochastic synthesis and

degradation (‘‘intrinsic noise approach’’). Although several studies

did account for cell-to-cell differences in protein levels in an

extrinsic, static manner via random initial conditions [13,27,28],

and many models of signal transduction considered the effect of

noise in protein-protein reactions [29,30] or in the expression of

signal transduction target genes [31–33], no kinetic model of signal

transduction pathways considering systematically noise in protein

synthesis and degradation has been developed so far. Here by

systematically we mean for all the proteins acting in the pathway.

We propose a modeling approach to account for gene

expression noise within kinetic models of signal transduction

pathways. Following Singh et al. [34], we model protein turnover

with stochastic processes describing mRNA level fluctuations, and

deterministic processes for protein translation and degradation

(random telegraph model, see also [35–41]). These processes are

integrated into a kinetic model of protein-protein reactions

(Fig. 1). While the rates of such stochastic protein turnover models

(Fig. 2A) are rarely directly measurable, their value can be

constrained by using experimentally measurable data and

analytical results (Fig. S2). Recently, significant progress has been

made on both experimental and theoretical sides to enable this

inference approach [34–41]. Importantly, we found that for

typical protein and mRNA half-lives, a large set of promoter rate

combinations lead to similar fluctuations at the protein level, as

characterized by protein level variability (coefficient of variation)

and mixing time (half-autocorrelation time). Interestingly, the

obtained mixing time is around 40 hours (Fig. 2B), in the middle

of the range of experimentally estimated values for twenty

endogenous proteins in human cells [26]. Thus, standard

stochastic protein turnover models (Fig. 2C) can provide a good

approximation of protein fluctuations for most proteins. Only

short-lived proteins necessitate particular attention (Fig. S3). This

finding is a cornerstone of our approach.

Modeling stochastic protein turnover in TRAIL-induced
apoptosis

We applied this approach to TRAIL-induced apoptosis, using

EARM kinetic model [5,13] to describe protein-protein reactions

taking place between TRAIL exposure and cell death commit-

ment. We equipped all native proteins with a default model of

stochastic protein turnover, with the exception of proteins with fast

turnover, here Flip and Mcl1 [42–44]. Details of model

construction are given in Text S1 (see dedicated section, Fig. S4

and Tables S1-3). Importantly, all parameters have been

constrained based on experimental data and analytical results,

with the exception of four parameters (‘‘ON’’ and ‘‘OFF’’

promoter switching rates, mRNA and protein half-lives for Flip

and Mcl1). Note that because of their similar protein and mRNA

half-life, we use the same couple of promoter switching rates for

both proteins in our exploration of parameter space. This

drastically limited the number of introduced degrees of freedom

and made it possible to systematically explore realistic ranges for

remaining parameters. To study the influence of stochastic protein

turnover on fractional killing and reversible resistance, we sought

to confront our model with existing quantitative data about

TRAIL-induced apoptosis in HeLa cells. Those experiments,

described in detail later, can be classified into two groups based on

the type of information they contain: 1) quantification of the

variability in cell fate, 2) characterization of the transient memory

Author Summary

TRAIL induces apoptosis selectively in cancer cells and is
currently tested in clinics. Having a mechanistic under-
standing of TRAIL resistance could help to limit its
apparition. Several observations suggested that protein
level fluctuations play an important role in TRAIL resistance
and its acquisition. However, quantitative, systems-level
approaches to investigate their role in cellular decision-
making processes are lacking. We propose a generic and
principled approach to extend signal transduction models
with protein fluctuation models for all proteins in the
pathway. The key aspect is to use standard protein
fluctuation models for long-lived proteins. We show that
its application to TRAIL-induced apoptosis provide a
quantitative, mechanistic explanation to previously pub-
lished but yet unexplained critical observations.
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in cell state. While previous approaches using ODE models with

distributions for initial protein levels (capturing a static description

of cell-to-cell variability) [13,25] are potentially able to reproduce

the first type of data, a dynamic view on cell-to-cell variability as

proposed in our model is needed to account for both types of data.

We adopted the following strategy: first, search for models able to

reproduce observations on cell fate variability; and second test

whether valid models can robustly predict observed behaviors

where transient memory matters.

Stochastic protein turnover models predict transient
memory in cell sensitivity to TRAIL and CHX

Using live-cell microscopy, Spencer et al. [13] investigated the

fate of hundreds of cells after exposure to TRAIL and CHX

(10 ng/mL and 2.5 mg/mL, Fig. 3A). All cells undergo MOMP

with a highly variable delay (from 2 to 8 hours, Fig. 3B). To study

cell fate inheritance, the authors also recorded 20 hours before

treatment to identify sister cells (Fig. 4A). They were found to have

highly correlated MOMP times (correlation coefficient close to 1

for recently divided cells, about 0.5 for older sisters - Fig. 4B, black

curve). Here, the MOMP time distribution provides a quantifica-

tion of the cell fate variability, while MOMP time correlations

between sister cells also give information on the transient memory

in cell state. Within our framework, in-silico reproduction of those

experiments is straightforward (Figs. 3D and 4C), enabling us to

investigate possible origins of transient cell fate inheritance. We first

asked if the observed cell fate variability could be reproduced. In the

model, it is only determined by protein levels at treatment time

(behavior is deterministic as synthesis is assumed to be fully blocked

by CHX and noise in signaling reactions is neglected), and

differences between sister cells are only caused by protein synthesis

noise occurring between division and treatment (in agreement with

the fact that recently divided sisters died almost synchronously, we

assumed an equal repartition of protein content at division). We

found that excellent agreement with observed MOMP time

variability can be obtained (Fig. 3E). Further analysis revealed that

such agreement requires Flip and Mcl1 protein half-life to be short

and to fall within a narrow range (between 0.3 and 0.6 hours, Fig.

S5-C). This model prediction is consistent with previous measure-

ments in HeLa cells (30 and 40 minutes for Flip short isoform and

Mcl1 respectively, [42,43]). In contrast, Flip and Mcl1 mRNA half-

life and promoter switching rates are not strongly constrained,

probably because their influence on cell fate is limited by the rapid

protein level decrease caused by synthesis blockade. We then asked

whether our extended model also capture transient cell fate

inheritance (Fig. 4B). It is the case: fitted models accurately predict

the MOMP time correlation between sister cells (Fig. 4D - black

curve, Fig. S5-C). Of note, assuming standard promoter switching

rates for Flip and Mcl1 (but accounting for their short mRNA and

protein half-life - this parameterization will later be referred as the

‘‘non-fitted’’ model) already provides a good agreement for both

Figure 1. Accounting for stochastic protein turnover in signal transduction pathways. Scheme of the modeling approach. Protein-protein
interactions mediating signal transduction (signal transduction layer) are modeled by ordinary differential equations. In parallel, promoter activity
changes, mRNA production and degradation (gene expression layer) are seen as stochastic events and generate fluctuations in mRNA levels. This
impacts the synthesis rates of the corresponding proteins. Together with protein degradation, it generates fluctuations in protein levels (here shown
in absence of transduction). Only a fragment of the extrinsic apoptosis pathway is shown. Deterministic/stochastic interpretation of chemical
reactions is represented with black/red arrows respectively.
doi:10.1371/journal.pcbi.1003893.g001
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MOMP time distribution and MOMP time correlation between

sister cells (Fig. S6). This non-trivial result shows that the speed at

which the sensitivity to TRAIL and CHX fluctuates in single cells is

well captured and thus suggests that our generic approach permits

to describe fluctuations of protein levels with sufficient accuracy.

Large, rare fluctuations of short-lived anti-apoptotic
proteins explain fractional killing and predict transient
cell fate inheritance

Spencer and colleagues repeated this experiment but treated

cells with TRAIL alone (250 ng/mL). In this condition, an

important fraction of cells died fast (MOMP in ,2 hours) but 40%

were still alive after 8 hours (Fig. 3C), illustrating the fractional

killing property. Also, cell fate inheritance between sister cells was

markedly changed: only young sister cells that underwent MOMP

rapidly were importantly correlated (Fig. 4B, grey curve). We

asked whether the observed cell fate variability, including

fractional killing, could be reproduced in-silico. Within our

modeling assumptions, absence of co-treatment with CHX makes

a fundamental difference: as synthesis continues, the effect of gene

expression noise during TRAIL-induced apoptosis could be

investigated, and comparison with the TRAIL and CHX

condition is insightful. Strikingly, we found that quantitative

Figure 2. Standard stochastic protein turnover models. (A) Schematic description of the reactions constituting the stochastic protein turnover
model. Gene activity switches, mRNA production and degradation (red arrows) are stochastic reactions. Protein synthesis and degradation reactions
(black arrows) are deterministic. (B) For typical mRNA and protein half-lives, promoter switching rates have a limited influence on the protein level
half-autocorrelation time: using an analytical derivation of the protein level autocorrelation function (see Supplementary Results, Text S1), the protein
half-autocorrelation time is plotted against mean promoter switching times. (C) Behavior of a standard stochastic protein turnover model. Promoter
switching rates respect typical ranges observed by Suter et al. [36] and lead to a protein level coefficient of variation (CV) of 0.25. See Fig. S3 for more
details. Upper plots show three representative single-cell time courses of protein and mRNA levels. Histogram at the bottom displays the
corresponding distribution of protein level obtained when simulating a large number of cells for a long duration, corresponding to a snapshot of the
cell-to-cell variability expected in a population.
doi:10.1371/journal.pcbi.1003893.g002
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agreement for both MOMP time distribution and surviving

fraction could be obtained (Fig. 3F). Robustness analysis showed

that rates of the Flip and Mcl1 stochastic protein turnover model,

and particularly promoter switching rates, are in this case strongly

constrained. Interestingly, MOMP time distribution and surviving

fraction constrain those values differently (Fig. 5A–B), resulting in

an narrow ranges for their values: agreement for both observations

together is obtained only when promoter switching rates are both

low (Fig. 5C). Such low switching rates lead to large, rare

fluctuations of protein levels (Fig. 5D). Those atypical fluctuations

phenotypes are expected to leave a signature at the population

level: the shape of the protein level distribution would be bimodal

Figure 3. Cell fate variability in TRAIL-induced apoptosis. (A–C) Cell fate variability experiments performed in [13]. (A) HeLa cell populations
were treated with either 10 ng/mL of TRAIL and 2.5 mg/mL of cycloheximide (CHX) or 250 ng/mL of TRAIL alone. Cells were tracked during 8 hours by
live-cell microscopy and MOMP time was detected via mitochondrial release of a fluorescent reporter. (B–C) Histograms of MOMP times and surviving
fractions observed for treatment with (B) TRAIL and CHX or (C) TRAIL alone. (D–F) In-silico reproduction of those experiments with our ‘‘fitted’’ model
(i.e. the parameterization in the explored parameter space region giving the best agreement for cell fate variability data, described in Tables S1-3). (D)
Simulations (see Supplementary Methods in Text S1 for details). (E–F) Results for the (E) TRAIL and CHX or (F) TRAIL alone treatments. For the latter
case, representative model trajectories are given in Fig. S9.
doi:10.1371/journal.pcbi.1003893.g003
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rather than resembling a lognormal distribution (Fig. S7). This

property is thus a model prediction. Those fluctuations are likely to

impact how the fate of sister cells diverge with time. Thus, we

asked whether the model could also account for the observed fast

loss of cell fate inheritance. Remarkably, the fitted models

accurately and robustly predict MOMP time correlations between

sister cells (Figs. 4D and 5E). As mentioned earlier, the same

couple of promoter switching rates was used for Flip and Mcl1

during exploration, but further analysis showed that assuming low

promoter switching rates for Mcl1 alone was sufficient to obtain

quantitative agreement for MOMP distributions surviving frac-

tions, and that sister cells MOMP time correlations were still

correctly predicted (Fig. S8). Thus, comparison with transient cell

fate inheritance data supports that large, rare fluctuations of Mcl1

could be responsible for the observed cell fate variability.

Accounting for stochastic protein turnover predicts
reversible resistance

Recently, reversible resistance was observed among various cell

lines [14]. Cell populations were submitted to two consecutive

TRAIL treatments. The duration between treatments was varied

from 1 day to 1 week (Fig. 6A). One-day survivors were

significantly more resistant than the initial population, but such

resistance was significantly decreased or even lost in one-week

survivors. Thus, cells surviving a first TRAIL treatment are

transiently resistant. Remarkably, in-silico reproduction of those

(Fig. 6B) showed that our model predicts the presence of reversible

resistance (Fig. 6C): one-day survivors exhibit a dose-dependent

increase of resistance to a second TRAIL treatment, which

disappears after 3 to 5 days. This is surprising since our model does

not include induced regulation mediated by survival pathways.

Figure 4. Transient cell fate inheritance in TRAIL-induced apoptosis. (A–B) Experiments measuring correlation of MOMP times between
sister cells performed in [13]. (A) HeLa cells were recorded from 20 hours before treatment as in Fig. 3A. Sister cells were identified to permit
comparison of their fate. (B) Quantification of cell fate inheritance was realized by computing the correlation between sister cells MOMP time as a
function of the duration between division and MOMP (averaged between sisters). (C–D) In-silico reproduction of those experiments with the model of
Fig. 3. (C) Description. (D) Quantification of cell fate inheritance was applied to simulation results as in (B). See Supplementary Methods in Text S1 for
details.
doi:10.1371/journal.pcbi.1003893.g004
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Moreover, the presence of reversible resistance is a robust property

of the model as it is also obtained when assuming standard

promoter switching rates for Mcl1 and Flip (‘‘non-fitted’’ model,

Fig. S6). However, agreement with related experimental data

[14,15] is only qualitative. While we cannot exclude that model

parameterizations allowing a quantitative agreement exist, it might

be needed to include additional mechanisms such as survival

pathways induction to explain the observed sustained resistance

gain after one week when treating cells with a high TRAIL dose

[14].

Molecular determinants of fractional killing and
reversible resistance

What are the mechanisms behind cell escape to TRAIL-

induced apoptosis, either on the short-term (fractional killing) or

the long-term (reversible resistance)? Using the fact that in-silico,

all protein, mRNA levels and gene activity states can be monitored

in single cells, we investigated those questions at the molecular

level. To study the influence of pre-existing differences on cell fate,

we compared at the time of stimulation the sub-population of

‘future survivors’ with the whole population (Fig. 7A–B). Future

survivors strongly stood out by their Mcl1 protein level and gene

activity state (Fig. 7B). Flip also appeared to play an important role

in determining cell decision, and smaller but significant effect was

also seen for Bid, Bax, Bcl2 and XIAP. Although it is a good

predictor of cell fate, initial Mcl1 gene activity status does not

completely determine survival: neither all Mcl1 ‘‘ON’’ cells

survived nor all Mcl1 ‘‘OFF’’ cells died. Thus, pre-existing

differences in protein levels and promoter activities are major

determinant of cell fate but stochastic events in gene expression

occurring during signal transduction also play a role. While timing

of death for cells treated with TRAIL and CHX appeared to be

multi-factorial [13], our results suggest that cell survival is

predominantly determined by Mcl1 (Fig. 7B). This important role

of Mcl1 is robustly predicted. Indeed, it also holds for the ‘‘non-

fitted’’ model, which assume standard promoter switching rates for

all proteins, including Mcl1 and Flip (Fig. S6).

To investigate the determinants of reversible resistance, we

tracked the temporal evolution of protein levels in surviving cells

(Fig. 7 A&C). The protein level composition of one day survivors

contrasts with the protein content observed in future survivors:

almost all protein levels differ importantly from the naı̈ve

population composition, while that was the case only for Mcl1

and Flip in future survivors. This is expected as all proteins are

partly activated during signal transduction, leading to a higher

degradation (active forms have a shorter half-life). Therefore, the

distinction between the causes of cell survival and the conse-

quences of partial apoptosis induction cannot be easily resolved by

the sole observation of protein levels in survivors. When signaling

stops, recovery of protein levels is expected to follow exponential

kinetics governed by the turnover rate (Fig. 7C, inset – see the

death receptor (R), pro-caspase 8, Bar and Bid). Deviation from

such kinetics indicates either the persistence of signaling reactions

that continue to consume proteins (it is the case for Apaf, pro-

caspase 9 and XIAP, as further analysis confirmed) or is a

consequence of important selection. Indeed, while Mcl1 and Flip

Figure 5. Model fitting to cell fate variability data predicts large, rare fluctuations of Flip/Mcl1 and transient cell fate inheritance.
(A–C) Agreement between model prediction and experimental data for (A) death (i.e. MOMP) time distribution, (B) surviving fraction after 8 hours,
and (C) both together, for treatment by TRAIL alone (250 ng/mL), as a function of Flip/Mcl1 promoter switching times (other parameters as in Table
S1). (D) Representative protein level fluctuations of Mcl1 described by a stochastic protein turnover model allowing good agreement for both MOMP
time distribution and surviving fraction. This model has been used for Figs. 3,4,6 and 7. (E) Model-data agreement for MOMP time correlation
between sister cells. For (A), (B), (C) and (E), agreement quality increases from red to green. The quantification algorithm is detailed in Supplementary
Methods (Text S1).
doi:10.1371/journal.pcbi.1003893.g005
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should recover normal levels in a few hours in absence of selection

because of their high turnover rate, Mcl1 levels (but not Flip levels)

are still strongly higher than in naive cells one day after TRAIL

treatment, consistently with previous observations on the relative

selection strength that operated on them. Together, those results

indicate that recovery phenotypes in surviving cells result from a

complex interplay of three distinct effects: selection during

apoptosis, transcriptional noise and protein turnover as a driving

force tending to reset protein levels to their initial, pre-stimulus

distribution, and long-term residual signaling activity. This

explains why it is difficult to understand the recovery process

and justifies the use of modeling to disentangle the various

contributions.

Discussion

Rehm et al. and Spencer et al. [13,20] made two insightful

observations about TRAIL-induced apoptosis. First, recently born

sister cells died almost synchronously when treated with TRAIL

and a protein synthesis inhibitor, while in contrast, unrelated cells

died after highly variable durations. This demonstrated that

TRAIL signaling is mostly deterministic when protein synthesis is

blocked and that the timing of death is determined by the cell

internal state at the time of treatment. Second, they observed that

such synchrony in sister cells death is gradually lost as the time

between division and treatment increases. This showed that the

cell ’TRAIL sensitivity state’ (the part of cell internal state involved

in death timing determination) naturally fluctuates over a dozen of

hours. In addition, the modeling results in ref. [13] highly

suggested that such state is mainly composed by the various levels

of the proteins acting in the extrinsic apoptosis pathway. In

parallel, important progress on the characterization of the

stochasticity in gene expression has been made: the two-state

transcriptional bursting model was shown to permit high accuracy

and several approaches to infer its parameters were proposed,

enabling the quantitative modeling of protein fluctuations in single

cells [34–40].

Modeling protein fluctuations in TRAIL-induced
apoptosis

In this study, we merged those two approaches by integrating

such stochastic models of gene expression within an existing kinetic

model of TRAIL-induced apoptosis [5] in a systematic and

principled manner. Doing so provides advantages compared to

previous approaches to account for cell-to-cell variability in

protein levels [13,25]. First, variability is not considered as an

‘‘input’’ parameter but arises naturally from stochastic fluctua-

tions. The dynamics of this variability is thus intrinsically

represented within the system, allowing investigating the effects

Figure 6. Reversible resistance in repeated TRAIL treatments. (A) Schematic description of the ‘repeated TRAIL’ experiments performed in
[14,15] to characterize reversible resistance in HeLa cells. (B) In-silico reproduction of these experiments with our model (details in Supplementary
Methods, Text S1). (C) Resistance gains in surviving cells relative to naı̈ve cells as a function of time between the two TRAIL treatments. Data are
shown for experimental observations [14,15] and model predictions (our study). Comparison of resistance gain experimental measurements between
the two TRAIL doses (500 and 50 ng/mL for [14] and [15] respectively) should be done with care, as the measurement and quantification method
differed.
doi:10.1371/journal.pcbi.1003893.g006
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of transient memory in protein levels. Second, the influence of

protein synthesis noise during TRAIL-induced apoptosis could

also be investigated. Importantly, we followed a parsimonious

parameterization strategy, motivated by the fact that fluctuations

of long-lived proteins are rather insensitive to the precise kinetics

of transcriptional bursting, enabling us to equip most proteins

(long-lived proteins) with reasonably accurate fluctuation models

even in absence of gene expression data for each and every

promoter. The sister cells experiment for which cells were treated

with TRAIL and CHX provided ideal data to validate our

modeling approach: in that case, behavior is mostly deterministic

as soon as treatment starts and only fluctuations occurring before

treatment are responsible for death time variability and de-

correlation between sister cells. Moreover, gene regulation via

survival pathways induction is ineffective as protein synthesis is

blocked. Because our model was able to quantitatively reproduce

the MOMP time distribution and then accurately predicted sister

cells correlation, our modeling approach appears as a promising

tool to investigate the effect of protein fluctuations on signal

transduction, despite the limitations inherent to its simplicity (for

Figure 7. Molecular determinants of cell fate and resistance to repeated TRAIL treatments. (A) Cartoon illustrating that the determinants
of cell fate and resistance can be studied by analyzing the over-representation of protein levels in ‘future survivors’ (cells that will still be alive after
treatment) at the time of treatment, and in surviving cells at day X, respectively. (B) Cell fate determinants analysis: over-representation (compared to
initial population) of protein level (blue) and promoter activity (red) at the time of treatment in ‘future survivors’. Asterisks mark differences that
passed a 5% significance test. (C) Resistance determinants analysis: over-representation of protein levels in surviving cells at day X. Inset illustrates the
recovery kinetics expected from protein turnover only (i.e. in absence of significant selection effect or residual signaling activity). Therefore, deviation
from such kinetics indicates the presence of a selection effect or residual signaling activity.
doi:10.1371/journal.pcbi.1003893.g007
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example, stochastic gene expression events were assumed to be

independent between proteins, neglecting the fact that levels of

different proteins can be partially correlated [25,26], possibly

because of common transcription factors or coordinated chroma-

tin-state transitions). Of note, good agreement was readily

obtained when assuming for Flip and Mcl1 standard promoter

switching rates, but short protein and mRNA half-lives - in

agreement with available knowledge (‘‘non-fitted’’ model, Fig. S6).

Finally, the transposition of fluctuation timescales from individual

proteins into ‘TRAIL sensitivity states’ is not trivial: while in our

model, stable proteins levels are mixed in about 40 hours, cells

were switching between ’fast dying’ and ’slow dying’ phenotypes

more rapidly (about 10–15 hours). As combinatorial effects are at

play, mechanistic models of protein-proteins reactions are needed

to link protein-level timescales with more high-level phenotypic

transitions [45].

Questioning the role of survival pathways
Several studies reported that TRAIL can induce survival

pathways [17–19]. How such induced changes affect signal

transduction and eventually stop apoptotic signaling remains

unclear. On the other hand, the contribution of constitutive

protein synthesis noise, which is responsible for pre-existing

differences between cells, has not been evaluated. Although it

does not exclude the existence of other mechanisms, an important

result of our study is that fractional killing can be obtained without

assuming any TRAIL-induced regulation. Alternatively, we find

that because of its fast turnover, constitutive expression of the

Mcl1 protein has the potential to rescue cells from TRAIL

apoptotic signaling. In this context, solely accounting for protein

fluctuations within the TRAIL apoptosis pathway predicts the

fractional killing property (Figs. 3 and S6). While our results

challenge current opinion on the role of survival pathways in

TRAIL-induced apoptosis, they are consistent with observations

made on wild type HeLa cells that neither blocking NF-kB

response nor inhibiting the Akt pathway do significantly change

the surviving cell fraction after TRAIL treatment [46,47]. The

pivotal role for Mcl1 in TRAIL-induced apoptosis predicted by

our model is consistent with the recent finding that Mcl1 silencing

by shRNA in HeLa cells completely sensitize cells to TRAIL [48].

While moderate fluctuations of Mcl1 levels were sufficient to

obtain fractional killing, a quantitative agreement with the

Spencer et al. [13] single-cell data (MOMP time distribution

and surviving fraction) required large and rare Mcl1 fluctuations,

caused by rare switches between long periods of gene activity or

inactivity. Interestingly, in that case, the observed rapid loss of

MOMP time correlation between sister cells quantitatively

emerged from model simulations. Flip is often mentioned as a

key factor in cell resistance to TRAIL [49], but in our model Flip

has less impact on cell survival than Mcl1. Consistently, Lemke et

al. [48] silencing experiments demonstrated a dominant role for

Mcl1 and a synergy with Flip. However, our model might under-

estimate the role of Flip: the representation of DISC-related events

in EARM is simple and thus does not account for recent biological

findings, including the stoichiometry between its components

[50,51]. Improving how DISC assembly is modeled might thus be

needed to elucidate the precise role of Flip in fractional killing and

reversible resistance, especially for cell lines that express higher

Flip amounts than HeLa.

Origins of reversible resistance: joint effect of selection
and stochastic protein turnover

A second significant result reported here is that our model

predicts the phenomenon of reversible resistance, showing that

constitutively noisy protein synthesis, protein-protein interactions

and protein degradation are by themselves sufficient to explain a

dose-dependent, significant increase of resistance in recent

survivors and its gradual loss within 3–5 days. This result is

consistent with the observation that Nf-kB blockade does not

change resistance acquisition after TRAIL treatment [14] (in

MCF10A cells; HeLa cells have not been tested). In-silico analysis

at the molecular level revealed that reversible resistance as

predicted by the model was shaped by a complex interplay

between 1) selection based on protein levels and transcriptional

activity, 2) protein turnover and 3) residual signaling activity. As

opposed to the death process, which involves a sharp and complete

activation of effector caspases, our results suggest that recovery in

cells that did not commit to death is a slow and complex process.

While one should not conclude from our results that parallel

activation of survival pathways by TRAIL plays no role in

reversible resistance, our results show that the sole contribution of

protein level fluctuations occurring within the extrinsic apoptosis

pathway can partly lead to reversible resistance. Thus, protein

fluctuations should be accounted for to gain quantitative insights

into reversible resistance.

Accounting for gene expression noise appears necessary
to investigate signal transduction

While here we focused on TRAIL-induced apoptosis, our

modeling approach is generic and can be applied to other signal

transduction pathways. Our results showed that even in absence of

induced gene regulation, gene expression noise interacts with

signaling dynamics on a non-trivial manner. Thus, even in

contexts where the influence of induced gene-regulation is

indisputable, its sound quantification probably requires to

investigate first the role of constitutive gene expression noise.

Only then models could be enriched parsimoniously with well-

characterized regulatory links until all observations are successfully

explained. Significant advances to allow such detailed character-

ization of gene regulation occurred recently [31,52,53]. Following

such approaches could significantly extend the reach of models of

signal transduction towards accurate, single-cell level description

of populations submitted to varying signaling contexts over

multiple cell generations.

Methods

Modeling stochastic protein turnover
Denoting Gon and Goff the two states of the promoter, m the

number of mRNAs and P the protein level, the stochastic protein

turnover model comprises the following reactions:

Gon

koff

Goff , Goff
kon

Gon (Gene activity switches).

Gon
ksm

Gonzm , m
cm 1 (Transcription and

mRNA degradation).

m
ksp

mzP , P
cp

1 (Translation and protein deg-

radation).

We interpret the four first reactions as stochastic reactions and

the translation and protein degradation reactions as deterministic

reactions. Thus, the model state is given by a Boolean

G~Gon~1{Goff , an integer m and a continuous variable P.

The statistical properties of this system can be investigated

analytically by writing the corresponding chemical master

equation, which describes the temporal evolution of the state joint

probability distribution. While the obtained equations cannot be

solved analytically, it can be used to derive moments of the

underlying distribution by applying generating functions tech-
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niques, as was done by Paszek [39]. We next give the analytical

expressions of several moments of interest:

E G½ �~ kon

konzkoff

~
kon

cg

cg~konzkoff

� �

CV G½ �2~ 1{E G½ �
E G½ �

E m½ �~E G½ � ksm

cm

, CV m½ �2~ cm

cmzcg

CV G½ �2z 1

E m½ �

E P½ �~E m½ � ksp

cp

, CV P½ �2~
cpcm cpzcmzcg

� �

cmzcp

� �
cmzcg

� �
cpzcg

� �

CV G½ �2z
cp

cmzcp

1

E m½ �

While those expressions characterize the steady-state distribu-

tion of the model, and thus can be compared to snapshot

measurements of a cell population, they do not provide

information about how fast single cells move with time within

those distributions. Such information can be obtained by

computing the autocorrelation function. Its expression and

derivation are given in Supplementary Results (Text S1).

Modeling TRAIL-induced apoptosis and protein
fluctuations

We used the EARM model described in Spencer et al. [13] to

represent protein-protein reactions. No kinetic rates were changed,

except the rate of pC6 cleavage by C3, set to zero to remove the

feedback loop. Degradation rates of non-native forms were

modified according to biological knowledge (Table S3). The effect

of those changes is discussed in SI Appendix. Rates of the standard

stochastic protein turnover models and rates of Flip&Mcl1 models

were determined following an algorithm constructed to incorpo-

rate constraints based on biological knowledge (Fig. S4). Their

values are given in Table S1-2. Notably, for comparability and

consistency with the findings of Spencer et al. [13], we kept their

mean protein values, even if for a few proteins new data were

available, as for Mcl1 for example [54], provided that the order of

magnitude is the same.

In-silico ‘‘sister cells’’ and ‘‘repeated TRAIL’’ experiments
The simulation procedure is detailed in SI Appendix. Briefly,

mother cell states (promoter activity, mRNA and protein levels)

were chosen by Monte-Carlo sampling and the two sister cells

were constructed by duplication of the mother cell state. Promoter

activity and mRNA fluctuations were simulated using an

implementation of the Gillespie algorithm. For the ODEs

governing evolution of all protein levels, the Semi-Implicit

Extrapolation method was used. MOMP was considered to have

occurred when half of mitochondrial Smac has been released. For

all simulations, at least 104 pairs of sister cells were simulated.

Quantitative comparison of simulation results with related

experimental data (Fig. 5) was achieved by computing a measure

of model-data agreement described in Supplementary Methods

(Text S1). For repeated TRAIL simulations, a naı̈ve population of

104 cells was obtained as in the sister cells experiment. Cells

divided after a gaussian cell cycle duration (mean 27 hours,

standard deviation 3 hours). Death was detected via cPARP levels

as in Gaudet et al. [25].

Supporting Information

Figure S1 Simplified view of the TRAIL-induced apop-
tosis pathway. Only the type of each protein-protein interaction

(activation or inhibition) is represented. A diagram displaying the

detail of protein complexes and activated forms can be find in [5].

(PDF)

Figure S2 Numerical simulation and analytical charac-
terization of stochastic protein turnover models. A

stochastic protein turnover model is defined by six rates: the

promoter activity switching rates, the mRNA production and

degradation rates, the protein per mRNA synthesis rate and the

protein degradation rate. Numerical simulations can be used to

simulate temporal fluctuations in single cells. When a population

of cells is simulated, the cell-to-cell variability can be studied. After

some time, cell-to-cell variability reaches a steady state. Analytical

calculations on the stochastic protein turnover model provide

expressions characterizing the steady-state variability (moments of

the steady-state distributions), but also fluctuations (autocorrelation

functions). Complete expressions are given in Text S1.

(PDF)

Figure S3 Fluctuations of protein levels caused by
transcriptional bursting are smoothed out for long-lived
proteins. Comparison of protein level coefficient of variation (A)

and half-autocorrelation time (C) as a function of transcriptional

bursting rates for two situations: a short-lived protein and mRNA

(half-lives of 2 and 1 hours, resp.) and a long-lived protein and

mRNA (27 and 9 hours, resp.). Other rates of the stochastic

protein turnover model are chosen such that mean protein and

mRNA level are the same (1000 and 17). Combinations of Ton

and Toff values ranging from 0.1 to 5 hours and 0.1 to 10 hours

respectively were tested. Ton and Toff are mean ON and OFF

time of the gene. (B and D) Representation of the range of values

obtained for all models tested in (A) and (C).

(PDF)

Figure S4 Building stochastic protein turnover models
for TRAIL-induced apoptosis. Routine followed to choose

rates of all 17 native proteins in the EARM kinetic model of

TRAIL-induced apoptosis. Typical values from multi-genes

studies in mammalian cells are used to constrain rate values.

Specific attention is given to Flip and Mcl1 because they are

known to be short-lived, and thus more prone to exhibit large

variations.

(PDF)

Figure S5 Stochastic protein turnover models captures
fluctuations of cell sensitivity to TRAIL and CHX. (A) Best

found agreement between model and data for MOMP times

distribution in the +CHX condition. Obtained for Flip and Mcl1

model rates such that protein/mRNA half-life and mean ON/

OFF promoter activity duration equaled 0.4/1 and 1.9/3.1 hours

respectively. See Supplementary Methods (Text S1) for quantifi-

cation of model data agreement. (B) Best found agreement

between model and data for MOMP time correlation between

sisters in the +CHX condition. Obtained for Flip and Mcl1 model

rates such that protein/mRNA half-life and mean ON/OFF

promoter activity duration equaled 0.3/1 and 0.35/24 hours

respectively. (C) Influence of Flip and Mcl1 model rates on Model-

Data agreement in the +CHX condition. For each parameter, we
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plot the model to data distance corresponding to the best model

when all other three parameters are varied.

(PDF)

Figure S6 The ‘‘non-fitted’’ model quantitatively pre-
dicts TRAIL+CHX single-cell data and lead to fractional
killing and reversible resistance for TRAIL alone treat-
ments. In the non-fitted model, Flip and Mcl1 promoter switching

rates are standard (Ton = 0.1 hours and Toff = 2.6 hours) but the

short-half life of their mRNA and protein is accounted for (2 hours

and 0.5 hours respectively). We reproduce here for this model all

the results presented in the main text for the ‘‘fitted’’ model.

Quantitative agreement is obtained for TRAIL + CHX single cell

data from Spencer et al. [13] (MOMP time distribution and sister

cell MOMP time correlations). No quantitative agreement is

obtained in the case of TRAIL alone treatments, but the existence

of fractional killing and reversible resistance is nevertheless

predicted. Note that because fewer cells were simulated compared

to main text figures (50000 instead of 105 for sister cell experiments),

sister correlation curves appears slightly noisier.

(PDF)

Figure S7 Mcl1 and Flip fluctuations for standard or
‘‘fitted’’ promoter switching rates. For the top frame,

promoter switching rates are standard (as in Fig. 2). Because

mRNA and protein half-lives are short, protein level fluctuates more

rapidly and the steady-state distribution is changed (it is wider and

the mode is in 0) compared to the standard stochastic protein

turnover model (Fig. 2). On the bottom frame, the steady-state

distribution becomes bimodal because the promoter switching rates

are low compared to mRNA and protein degradation. In both

cases, fluctuations and distribution are shown for Mcl1; they are

similar for Flip as only the protein synthesis rate changes to account

for a different mean protein level.

(PDF)

Figure S8 Large, rare fluctuations of Mcl1 alone are
sufficient to explain cell fate variability and transient
inheritance in both conditions. While Flip and Mcl1 protein

and mRNA half-lives were the same as for the ‘‘fitted’’ model (0.4

and 1.0 hours respectively), only the Mcl1 promoter was assumed

to have low switching rates (Ton and Toff are 16 and 24 hours

resp.). The switching rates of the Flip promoter were assumed to

be standard (Ton = 0.1 hours and Toff = 2.6 hours). All the

results presented in the main text for the ‘‘fitted’’ model are

reproduced here. Note that because fewer cells were simulated

compared to main text figures (50000 instead of 105 for sister cell

experiments), sister correlation curves appears slightly noisier.

(PDF)

Figure S9 Representative single-cell trajectories before
and after TRAIL treatment for the ‘‘fitted’’ model.
Trajectories for two dying and two surviving cells (after 12 hours

of TRAIL treatment) are shown. T-marked arrows denote the

time of TRAIL addition (250 ng/mL), D-marked arrows denote

the time of death commitment (MOMP). mRNA (lower left of

each panel) and native form protein levels (upper left of each

panel) are shown for pro-caspase 8, Bid and Mcl1. Levels of

activated caspase 8, truncated Bid and activated caspase 3 are also

shown (upper right of each panel), as well as the ratio of released

Smac and of cleaved PARP (lower right of each panel).

(PDF)

Figure S10 Robustness of short-term model behavior
regarding the presence/absence of feedback loop and
the degradation of active forms. Model-Data agreement is

shown for MOMP time distributions, surviving fractions and

sisters correlation of MOMP time in both treatment conditions for

model variants when the C3-.C6-.C8 feedback loop is either

present/absent and the default active forms half-life is 27, 15, 5 or

2 hours. Significant model-data deviation is seen only for the

fastest active forms degradation.

(PDF)

Figure S11 Resistance gain in one day survivors is
robust regarding the presence/absence of feedback loop
and the degradation of active forms. In-silico repeated

TRAIL experiment (as in Fig. 6) was repeated for variants of the

‘‘fitted’’ model regarding presence/absence of the C3-.C6-.C8

feedback loop and the default active forms half-life. Resistance

gain in one-day survivors is shown. Simulations were repeated 4

times with 104 cells, error bars indicate standard deviation of

estimated resistance gain between replicates.

(PDF)

Figure S12 Long-term population survival is not possi-
ble with the feedback loop and stable active forms.
Evolution of alive cell number in populations treated in-silico as in

Fig. 6, for model several variants regarding presence/absence of

the C3-.C6-.C8 feedback loop and the default active forms half-

life.

(PDF)

Table S1 Standard stochastic protein turnover models.

(DOCX)

Table S2 Specific stochastic protein turnover models.

(DOCX)

Table S3 Non-native form degradation.

(DOCX)

Text S1 Supplementary results and supplementary
methods.

(DOCX)
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28. Stoma S, Donzé A, Bertaux F, Maler O, Batt G (2013) STL-based analysis of
TRAIL-induced apoptosis challenges the notion of type I/type II cell line

classification. PLoS Comput Biol 9: e1003056.
29. Shibata T, Fujimoto K (2005) Noisy signal amplification in ultrasensitive signal

transduction. Proc Natl Acad Sci USA 102: 331–336.

30. Lapidus S, Han B, Wang J (2008) Intrinsic noise, dissipation cost, and robustness
of cellular networks: the underlying energy landscape of MAPK signal

transduction. Proc Natl Acad Sci USA 105: 6039–6044.
31. Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, et al. (2010) Single-cell NF-

kappaB dynamics reveal digital activation and analogue information processing.
Nature 466: 267–271.

32. Lipniacki T, Puszynski K, Paszek P, Brasier AR, Kimmel M (2007) Single

TNFalpha trimers mediating NF-kappaB activation: Stochastic robustness of
NF-kappaB signaling. BMC Bioinformatics 8: 376.

33. Lipniacki T, Paszek P, Brasier AR, Luxon BA, Kimmel M (2006) Stochastic

regulation in early immune response. Biophys J 90: 725–742.
34. Singh A, Razooky BS, Dar RD, Weinberger LS (2012) Dynamics of protein

noise can distinguish between alternate sources of gene-expression variability.
Molecular Systems Biology 8: 607.

35. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA

synthesis in mammalian cells. PLoS Biol 4: e309.
36. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, et al. (2011)

Mammalian genes are transcribed with widely different bursting kinetics.
Science 332: 472–474.

37. Dar RD, Razooky BS, Singh A, Trimeloni TV, McCollum JM, et al. (2012)
Transcriptional burst frequency and burst size are equally modulated across the

human genome. Proc Natl Acad Sci USA 109: 17454–17459.
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