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Parkinson’s disease (PD) has become a major health problem affecting 1.5% of the world’s population over 65 years of age. As life
expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic
(DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad
of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter
systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances,
dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor
symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to
provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte
growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against
degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have
been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of
Parkinson’s disease.

1. Introduction

Parkinson’s disease (PD) was first described by James
Parkinson in 1867 and now affects approximately 1.5% of
the world’s population over 65 years of age [1]. This disease
is characterized by a progressive loss of dopaminergic (DA)
neurons in the substantia nigra pars compacta. The striatum
is the primary projection field of these substantia nigra
neurons, thus the loss of DA results in insufficient stim-
ulation of dopaminergic D1 and D2 receptors throughout
the striatum [2–4]. Decreased availability of DA triggers
the symptomatic triad of bradykinesia, tremors-at-rest, and
rigidity. The pathogenesis of PD is unclear with both
genetic and environmental factors playing roles. There is
evidence from animal models and PD patients that neuroin-
flammatory processes, triggered by reactive oxygen species,
damage mitochondrial membrane permeability, enzymes,

and mitochondrial genome resulting in DA cell death [5,
6]. Progressive neurodegeneration may also impact non-DA
neurotransmitter systems such as cholinergic, noradrener-
gic, and serotonergic. This expanded neural damage adds
nonmotor symptoms such as sleep disturbances, depression,
dementia, and possibly autonomic nervous system failure. L-
DOPA is efficacious at controlling motor symptoms in the
majority of patients but is ineffective regarding nonmotor
symptoms. Current treatment strategies to relieve these
symptoms include DA replacement via levodopa (L-DOPA,
the precursor of DA), DA receptor agonists, monoamine
oxidase B inhibitors, and catechol-O-methyltransferase
inhibitors (to protect the DA that is formed). As the disease
progresses periods of decreased mobility, dyskinesia, and
spontaneous involuntary movements complicate treatment
[7]. These motor dysfunctions are currently treated with
the DA receptor agonists, apomorphine and levodopa, and

mailto:wrightjw@wsu.edu


2 Parkinson’s Disease

surgical techniques including pallidectomy and deep brain
electrical stimulation [8–10]. Progressive neurodegeneration
may also involve additional nondopaminergic neurotrans-
mitter systems including noradrenergic, cholinergic, and
serotonergic [11]. As a result, nonmotor symptoms may
develop including depression, sleep disturbances, dementia,
and autonomic nervous system failure [12, 13].

L-DOPA continues to be the most efficacious oral
delivery treatment for the control of motor symptoms
[14]. Unfortunately, L-DOPA is reasonably ineffective at
combating nonmotor symptoms [12]. Thus, current research
efforts are directed at controlling these additional symptoms,
as well as the development of new strategies designed to
offer neuroprotection and overall disease reversal benefits.
Attaining the goal of slowing or reversing the rate of DA
neuron loss may also result in the protection of non-DA
neurotransmitter systems.

This paper focuses on a new target for the treatment of
this disease, specifically the brain renin-angiotensin system
(RAS), and the recent discovery of its interaction with
hepatocyte growth factor (HGF) and its tyrosine kinase
c-Met receptor [15, 16]. The HGF/c-Met receptor system
functions as a critical survival system for motor and sensory
neurons and a subset of root ganglion neurons [17–19].
This relationship offers interesting possibilities with respect
to neurotransmitter systems crosstalk, suggesting that small
angiotensin-based agonists and antagonists can be designed
to act at the HGF/c-Met complex in place of large protein
ligands. The next sections provide summaries of the RAS
and HGF systems, consideration of reports describing their
interaction, and the involvement of the RAS and HGF
systems in PD. We conclude by presenting support for the
notion that angiotensin agonists may be useful in activating
the HGF/c-Met receptor system in order to provide cere-
broprotection and encourage synaptogenesis in Parkinson’s
disease patients.

2. Brain Angiotensins and the AT1, AT2,
and AT4 Receptor Subtypes

The renin-angiotensin-aldosterone system is well known
as a regulator of systemic blood pressure, body water
balance, activation of sympathetic pathways, and control
over vasopressin and oxytocin synthesis and release [20–22].
These functions are mediated, in part, by an independent
brain RAS complete with the necessary components includ-
ing angiotensinogen, renin, angiotensin converting enzyme
(ACE), angiotensin ligands, and receptor proteins [23–26].
Following the discovery of this independent brain RAS
separate from the peripheral system, three brain angiotensin
receptor subtypes were identified. The first two, AT1 and
AT2, are G-protein coupled and have been well described
in previous review papers [15, 20, 22, 27] (Figure 1). Our
laboratory discovered a third subtype, AT4, and its identity
is currently a matter of controversy (see below).

The distribution of brain structures possessing AT1

receptor sites is reasonably consistent among the mam-
malian species examined using quantitative autoradiography
and radioreceptor binding homogenate tissue preparations.

Receptor
proteins

Angiotensinogen (1-255 amino acids)

Angiotensin I (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu)

Angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe)

Angiotensin III (Arg-Val-Tyr-Ile-His-Pro-Phe)

Angiotensin IV (Val-Tyr-Ile-His-Pro-Phe)
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Figure 1: Description of the peptide structures and enzymes
involved in the conversion of angiotensinogen to angiotensin I
through shorter angiotensins. The biologically active forms include
angiotensins II, III, IV, and angiotensin (3–7). The respective
receptors where these angiotensins bind are indicated by arrows.
The locations of action of angiotensin inhibitors are also indicated.
Abbreviations: ACE = angiotensin converting enzyme; APA =
aminopeptidase A; APN = aminopeptidase N; ARB = angiotensin
receptor blocker; Carb-P = carboxy peptidase P; PO = propyl
oligopeptidase.

These species include rat, mouse, hamster, dog, monkey, and
human (reviewed in [28–30]). The AT1 subtype is localized
in high densities within the anterior pituitary, area postrema,
lateral geniculate body, inferior olivary nucleus, median emi-
nence, nucleus of the solitary tract, the anterior ventral third
ventricle region, paraventricular, preoptic and supraoptic
nuclei of the hypothalamus, subfornical organ, and ventral
tegmental area. This receptor subtype is represented in the
following motor related brain structures: caudate putamen,
cerebellum, striatum, and substantia nigra (Table 1).

The highest densities of the AT2 site are found in the
amygdala, medial geniculate body, habenula, hypoglossal
nucleus, inferior colliculus, inferior olivary nucleus, locus
coeruleus, striatum, thalamus, and ventral tegmental area.
This receptor subtype is present in the following motor
related structures: caudate putamen, cerebellum, globus
pallidus, and substantia nigra (Table 1).

The AT4 receptor is distributed within a number of brain
structures with notably high concentrations in the anterior
pituitary, cerebral cortex, lateral geniculate body, habenula,
hippocampus, inferior olivary nucleus, nucleus basalis of
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Table 1: Predominant distributions of the three angiotensin recep-
tor subtypes and the HGF/c-Met receptor identified in mammalian
brains.

Subtype AT1 AT2 AT4 c-Met

Structure

Caudate putamen + ++ ++

Cerebellum + + ++ ++

Globus pallidus ++ ++

Nucleus accumbens +

Periaqueductal gray ++

Red nucleus +

Striatum ++ ++ ++

Substantia nigra ++ +

Ventral tegmental area ++ ++ ++

Adapted from [15, 22, 30–33]; +: moderate levels of the receptor subtype;
++: high levels of the receptor subtype.

Meynert, periaqueductal gray, piriform cortex, superior
colliculus, thalamus, and ventral tegmental area, and of
particular interest caudate putamen, cerebellum, globus
pallidus, nucleus accumbens, red nucleus, striatum, and
substantia nigra (Table 1). Although the brain distribution
of AngIV is not available, the locations of aminopeptidase
A (AP-A, an aminopeptidase that converts the octapeptide
AngII to the heptapeptide AngIII) and aminopeptidase
N (AP-N, an aminopeptidase that converts AngIII to the
hexapeptide AngIV) are suggestive given their likely co-
localization with AngIV. Both AP-A and AP-N have been
localized to the plasma membrane of pericytes suggesting
that AngIV is found in the extracellular space surrounding
microvessels in the brain [34, 35]. In support of this notion
exogenous administration of AngIV has been shown to
increase cerebral microcirculation [36–38]. Most relevant,
Lanckmans and colleagues [39, 40] measured AngIV in
the striatum using microdialysis coupled with a sensitive
liquid chromatography mass spectrometry system. However,
shortly following probe insertion the levels of AngIV often
dropped below the detection limit of 50 pM. This was
interpreted to suggest an intracellular presence for AngIV.
This notion is supported by several reports indicating
that within neurons AngII is converted to AngIV (80%),
with smaller fractions of AngIII, Ang(1–7), and Ang(1–6)
(reviewed in [41]).

Thus, of the three subtypes the AT4 receptor, colocalized
with AngIV, is prominently represented in brain structures
associated with motor functioning; however, to date the
greatest attention has been devoted to the AT1 and AT2

receptor subtypes. Other functions associated with each
angiotensin receptor subtype are presented in Table 2.

3. Brain Hepatocyte Growth Factor/c-Met

Hepatocyte growth factor, also known as “scatter factor”, is a
glycoprotein recognized as a potent mitogenic, morphogenic,
and motogenic growth factor that acts via the type 1 tyrosine
kinase receptor c-Met [42]. HGF was originally isolated from

Table 2: Ligand activation of the AT1, AT2, and AT4 receptor
subtypes influence the following functions.

AT1 receptor subtype

Vasoconstriction

Aldosterone release

Vasopressin release

Cardiac hypertrophy

Fibrosis

Proliferation

Inflammation

Platelet aggregation

Oxidative stress

Endothelial disruption

AT2 receptor subtype

Vasodilation

Antifibrotic

Antiproliferative

Antihypertrophic

Antithrombotic

AT4 receptor subtype

Dendritic arborization

Changes in blood flow

Memory facilitation

Protection against seizures

Facilitates wound healing

the liver and was shown to promote liver regeneration [43].
In 1991, Bottaro et al. [44] identified c-Met as a receptor for
HGF. The c-Met receptor protein is made up of disulfide
bond-linked alpha (45 kDA) and beta (145 kDa) subunits
[45]. The alpha chain is extracellular while the beta chain
is transmembrane. HGF dimerization precedes binding to
the c-Met receptor which then undergoes phosphorylation.
Once phosphorylated, the tyrosine residues of the beta
subunit serve as docking sites for downstream signaling
mediators including the extracellular signal-regulated kinase
(ERK) and the phosphatidylinositol-3-kinase (P13K) path-
way [46, 47]. This HGF/c-Met signaling is regulated by
the activator, hepatocyte growth factor A (HGFA), and its
inhibitor, HGFAI. HGFA is a protease that acts on the
precursor protein and produces active HGF. In contrast,
HGFAI blocks the activation of HGFA [48]. c-Met has been
shown to play a role in multiple types of cancer (reviewed
in [49, 50]), blunt neurodegenerative changes [51], facilitate
long-term potentiation (LTP [52]), contribute to learning
and memory consolidation [52–56], and may play a role
in Alzheimer’s disease [57, 58]. Also, inactivation of c-
Met in the embryonic proliferative zones of mice results in
an increase in parvalbumin-expressing cells in the dentate
gyrus, a loss of these cells in the CA3 field, with an overall loss
of calretinin-expressing cells throughout the hippocampus
[59]. These results highlight the importance of c-Met with
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regard to appropriate hippocampal development. Lan et
al. [60] have shown that HGF regulates proliferation and
migration of dopaminergic progenitor cells isolated from
fetal striatum. These cells were capable of differentiating into
functioning neurons with the ability to release DA. Schwartz
and colleagues [61] have reported that human embryonic
stem cell-derived dopaminergic neurons increased expres-
sion of tyrosine hydroxylase (a DA neuron marker) when any
one of several growth factors were added to the cell culture
including HGF, stromal cell-derived factor-1α, and vascular
endothelial growth factor. The authors concluded that these
growth factors may be of potential use to induce DA cellular
differentiation of pluripotent human stem cells.

There have been reports of elevated levels of cere-
brospinal fluid HGF in PD patients as compared with normal
controls [62, 63]. Along these lines, several researchers
have suggested the use of HGF as a therapeutic agent for
amyotrophic lateral sclerosis and neuroimmune diseases [19,
64], ischemia-stroke [53, 65], neurodegenerative diseases
[66], and CNS neuron survival [67–69]. Recently, Koike and
colleagues [70] utilized the 6-hydroxy dopamine (6-OHDA)
rat model of PD to test the hypothesis that transfected human
HGF injected into the striatum could protect DA neurons.
6-OHDA lesioned rats treated with lacZ plasmid lost more
than 90% of their DA neurons. In contrast, 70% of the DA
neurons survived in rats transfected with HGF. Thus, over
expression of HGF protected DA neurons in these 6-OHDA
lesioned rats. These results are important for two reasons:
(1) a gene therapy approach designed to overexpress HGF
may be efficacious when applied to PD patients and (2)
these results indicate that a drug designed to facilitate HGF
expression in PD patients may offer neuroprotection from
ongoing DA neurodegeneration.

4. Interaction between Angiotensin IV and
the HGF/c-Met System

Although the identity of the AT4 receptor remains contro-
versial, this receptor protein has been partially sequenced
as insulin-regulated aminopeptidase (IRAP [71, 72]). The
distribution of brain IRAP mRNA and protein matches
that of the AT4 receptor protein as indicated by [125I]
AngIV-radioligand binding assay [71, 73]. IRAP is a mem-
ber of type 2 transmembrane proteins of the gluzincin
aminopeptidase family [74] which includes homologous
aminopeptidases such as aminopeptidases A and N. IRAP is
capable of cleaving the N-terminal amino acid from a num-
ber of peptides including met-enkephalin, dynorphin, oxy-
tocin, arginine-vasopressin, lysine-bradykinin, neurokinin
A, somatostatin, neuromedin B, and cholecystokinin-8 [75–
77]. Thus, IRAP has been variously identified as oxytocinase,
cystinyl aminopeptidase, placental leucine aminopeptidase,
gp 160, or vp 165 depending on its independent cloning
(reviewed in [78]). The key substrates acted upon by
this enzyme are thought to be arginine vasopressin and
oxytocin [72, 79]. IRAP consists of 1025 amino acid residues
with a 110 amino acid N-terminal hydrophilic intracellular
domain that includes two dileucine motifs. The hydrophobic
transmembrane domain consists of 22 amino acids that

Table 3: Summary of overlapping functions associated with the
AngIV/AT4 receptor subtype and the HGF/c-Met receptor.

Function AngIV/AT4

receptor subtype
HGF/c-Met

receptor

Memory facilitation [30, 86–92]
[51, 53, 54,

56, 69]

Hippocampal LTP, Ca++ signaling [93–96] [52]

Dendritic arborization [97] [98–102]

Cerebral blood flow [36, 38, 103]
[51, 53, 54,

65, 104–106]

Seizure protection [107–109] [12]

Parkinson’s disease [110] [60–63, 70]

Angiogenesis and PAI-1 expression [22, 83, 111,
112]

[65, 113, 114]

Neurite outgrowth [115]
[114, 116,

117]

continues with an 893 amino acid C-terminal extracellular
domain associated with its catalytic site. The catalytic site is
composed of a GAMEN motif and includes the HEXXH(X)18

Zn2+-binding motif [80–82].
Recently our laboratory has challenged the “AT4 receptor

is IRAP” hypothesis. This challenge is based on our search for
a molecular target with structural homology to angiotensin
IV and physiological functions in agreement with those
identified for the AngIV/AT4 system. We discovered a partial
match with the antiangiogenic protein angiostatin and the
related plasminogen family member HGF. The functions
associated with the HGF/c-Met system overlap with those
mediated by the AngIV/AT4 system including facilitated
memory consolidation, augmented neurite outgrowth, hip-
pocampal LTP and calcium signaling, dendritic arborization,
facilitation of cerebral blood flow and cerebroprotection,
seizure protection, and facilitated wound healing (Table 3;
reviewed in [15, 16]). This led to the hypothesis that AngIV
analogues may exert their activity via the HGF/c-Met system.
In a recent investigation we reported that the AT4 receptor
antagonist, Norleual-AngIV, inhibited HGF binding to c-
Met and HGF-dependent signaling, proliferation, invasion,
and scattering [83]. The mechanism of action regarding
Norleual-AngIV’s ability to act as a c-Met receptor antagonist
is by inhibiting the dimerization of HGF which is a prerequi-
site to c-Met binding [84, 85]. These results strongly suggest
that the biological effects of AngIV, and AngIV analogues, are
mediated through the HGF/c-Met system.

Several observations and research findings are relevant
to the hypothesis that the AT4 receptor subtype is HGF/c-
Met. (1) As mentioned earlier, heavy brain distributions
of the AT4 receptor subtype are located in neocortex,
piriform cortex, hippocampus, nucleus basalis of Meynert,
amygdala, cerebellum, caudate putamen, globus pallidus,
striatum, and substantia nigra, consistent with expectations
concerning brain locations for a receptor acting as a mediator
of cognitive and motor processing [28, 31, 118, 119].
Partial determination of brain c-Met receptor distributions
generally agree with this pattern [120, 121]. (2) The AT4

receptor subtype’s ability to facilitate LTP, separate from
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NMDA-dependent LTP, suggests a nonglutamatergic signal-
ing pathway [93]. (3) The finding that facilitation of the
AT4 receptor subtype results in increased internalization of
calcium via at least three different calcium channels suggests
a rapid and salient cell signaling event [93] and agrees with
the observation that HGF-induced responses also depend
upon the internalization of calcium [98]. (4) Conversion of
AngII to AngIV appears to be necessary for AngII-induced
DA release in the striatum [122], and acetylcholine release
in the hippocampus [123]. (5) The coupling of increased
neural intracellular calcium with matrix metalloproteinases
released into the extracellular space suggests a neural plas-
ticity function [124, 125]. (6) Recent neural imaging work
completed in our laboratory (see below [97]) indicates that
Nle1-AngIV stimulates dendritic spine numbers and size in
the hippocampus, as well as overall dendritic arborization,
suggesting a plausible synaptogenesis mechanism to explain
the ability of these molecules to enhance synaptic plasticity
and connectivity among neurons. In agreement, HGF has
been shown to increase dendritic arborization in hippocam-
pal neurons in culture [98].

Members of our research group have focused attention
on understanding how AT4 receptor agonists and antagonists
facilitate and interfere with, respectively, learning and mem-
ory. We determined that the metabolically resistant agonist
Nle1-AngIV significantly facilitated LTP in the CA1 field of
hippocampal slices [94], while both AngIV, and Nle1AngIV,
enhanced LTP in the dentate gyrus in vivo [95]. Pretreatment
with the AT4 receptor antagonist Divalinal-AngIV prior to
tetanization significantly disrupted the maintenance phase
of LTP. The Nle1-AngIV facilitation of LTP was shown to be
dependent on increased intracellular calcium via L- and T-
type voltage-dependent calcium channels [93]. The ability
of these agonists to promote Ca2+ entry, particularly via L-
type channels, suggested the potential mechanism of altered
dendritic arborization [126, 127]. We next examined the
ability of AT4 agonists to facilitate dendritic arborization in
disassociated rat hippocampal neurons labeled with mRFP-
bactin to visualize the cytoskeleton, including the spines.
Quantitative analysis from neurons exposed to Nle1-AngIV
for 5 days indicated an increased number of dendritic spines
per dendrite, accompanied by an expansion in dendritic
arborization [97]. The above observations support the
hypothesis that the primary mechanism underlying memory
facilitation by AngIV and its analogues may be the ability to
enhance synaptic communication and neural activity.

These Nle1-AngIV-induced increases in dendritic
arborization are consistent with the hypothesis that AT4

receptor ligands alter HGF docking at the c-Met receptor.
There are several reports indicating that HGF and c-
Met are neuronally expressed in several brain structures
including the neocortex and hippocampus [120] and
appear in high densities at excitatory synapses within the
hippocampus [121]. Activation of the c-Met receptor by
HGF promotes neurite outgrowth [128] and dendritic
branching by cortical neurons in sliced cultures [99]. The
complexity of the dendritic branching could be attenuated
with anti-HGF antibodies [99]. Recently, Tyndall and
colleagues [98] reported that HGF increased the size

and complexity of dendritic arborization in dissociated
hippocampal neurons in culture. This facilitation could be
blocked by pretreatment with the NMDA receptor antag-
onist, DL-2-amino-5-phosphonopentanoic acid (APV). It
was further determined that this HGF effect is dependent
on elevations in intracellular calcium and accompanying
increases in autophosphorylation of CaMKII. These results
suggest that Ca2+-dependent processing underlies HGF’s
ability to increase dendritic arborization and are consistent
with our findings indicating increased hippocampal
neuronal intracellular calcium with Nle1-AngIV treatment
and facilitated hippocampal dendritic arborization.
Pretreatment of cultured hippocampal neurons with an
AT4 receptor antagonist inhibited this Nle1-AngIV-induced
arborization. Recently our laboratory has used a tritiated
small molecule HGF analogue to further identify the
locations of brain HGF/c-Met receptors [129]. Reasonably
high concentrations of HGF/c-Met were measured in the
prefrontal cortex, hippocampus, cerebellum, thalamus,
hypothalamus, striatum, and lower brain stem structures.

5. A Link between the Brain Angiotensin
System and Parkinson’s Disease

The potential relationship between the brain RAS and
PD was initially suggested by Allen and colleagues [130].
These investigators measured decreased angiotensin receptor
binding in the substantia nigra and striatum in post mortem
brains of PD patients. A number of studies support an
important role for ACE in this disease. ACE is present
in the nigra-striatal pathway and basal ganglia structures
[131–133]. Parkinson’s disease patients treated with the ACE
inhibitor perindopril revealed improved motor responses
to the DA precursor 3,4-dihydroxy-L-phenylalanine [134].
Relative to this treatment with perindopril, elevated striatal
DA levels have been measured in mice [135]. In addition,
ACE has been shown to metabolize bradykinin and thus
modulate inflammation [136], a contributing factor in PD.
Activation of the AT1 receptor subtype by AngII promotes
nicotinamide adenine dinucleotide phosphate (NADPH)-
dependent oxidases, a significant source of reactive oxygen
species [137, 138]. Treatment with ACE inhibitors has been
shown to offer protection against the loss of DA neurons in 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal
models [139, 140], as well as the 6-OHDA rat model
[141]. The likely mechanism underlying this ACE inhibitor-
induced protection is a reduction in the synthesis of AngII
acting at the AT1 receptor subtype (reviewed in [142]). It is
known that AngII binding at the AT1 subtype activates the
NADPH oxidase complex, thus providing a major source of
reactive oxygen species [143, 144]. Further, activation of the
AT1 receptor results in the stimulation of the NF-κB signal
transduction pathway facilitating the synthesis of chemokine,
cytokines, and adhesion molecules, all important in the
migration of inflammatory cells into regions of tissue injury
[145].

Given the above reports, it follows that if AngII activa-
tion of the AT1 receptor subtype results in facilitation of
the NADPH oxidase complex, and thus formation of free
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radicals, then blockade of the AT1 receptor should serve a
protective function. This appears to be the case. Treatment
with AT1 receptor antagonists, known as angiotensin recep-
tor blockers (ARBs), protects DA neurons in both 6-OHDA
[33, 146–148] and MPTP animal models [144, 149, 150].
ARBs have been shown to reduce the formation of NADPH
oxidase-derived reactive oxygen species following adminis-
tration of 6-OHDA [33]. While the risk of developing PD is
reduced with the use of calcium channel blockers to control
hypertension, the influence of ACE inhibitors, β-blockers,
and ARBs is not clear [151]. Ascherio and Tanner [152]
have pointed out several shortcomings in the above study
by Becker and colleagues and suggested that their analysis be
redone to include a time frame of up to two years prior to the
onset of PD symptoms. Of relevance to this issue, there is the
occasional PD patient in which an ARB (Losartan) has been
reported to exacerbate the motor dysfunctions [153]. While
on Losartan, this patient experienced severe bradykinesia
accompanied by frequent episodes of freezing.

The AT2 receptor subtype is present in several fetal
tissues including uterus, ovary, adrenal gland, heart, vascular
endothelium, kidney, and brain (particularly neocortex and
hippocampus) [20, 154–157]. As the animal matures, the
expression of the AT2 receptor decreases. It appears that
adult mammalian brain levels of this receptor in the striatum
and substantia nigra are reasonably low [22, 158]. The AT2

receptor has been linked with cell proliferation, differentia-
tion, and tissue regeneration [159–162]. The results from a
study utilizing mesencephalic precursor cells indicated that
AngII, acting at the AT2 receptor, facilitated differentiation
of precursor cells into DA neurons [163]. Along these lines,
activation of the AT2 receptor has been shown to inhibit
NADPH oxidase activation [164]. However, Rodriguez-
Pallares et al. [165] found that AngII treatment of the 6-
OHDA lesioned rat increased DA cell death. This could be
due to the much greater numbers of brain AT1 receptors,
as compared with AT2 receptors, such that the beneficial
effects of AT2 receptor activation were overwhelmed by AT1

activation. Finally, the expression of AT2 receptors in PD
patients appears to be decreased in the caudate nucleus but is
unchanged in the substantia nigra and putamen [166].

Recent studies using several animal models indicate
that basal ganglia structures possess a local RAS that evi-
dences increased activity during dopaminergic degeneration
[167–169]. For example, reserpine-induced decreases in
DA resulted in a significant increase in the expression of
AT1 and AT2 receptors [170]. A similar pattern was seen
with 6-OHDA-induced DA denervation, with a decrease
in receptor expression when L-dopa was given. These
results are important in that a clear interaction between
the RAS and the DA system appears to be present in
basal ganglia structures. Related to this, Rodriguez-Perez
and colleagues [171] produced dopaminergic degeneration
via intrastriatal 6-OHDA injection and noted a significant
decrease in dopaminergic neurons in ovariectomized rats.
This neuron loss was attenuated by treatment with the AT1

receptor antagonist candesartan, or estrogen replacement.
Estrogen replacement also resulted in a downregulation
of AT1 receptors and NADPH complex in the substantia

nigra, accompanied by an upregulation of the AT2 receptor
subtype. These results indicate an important relationship
among estrogen levels, brain DA receptors, and the RAS. An
increase in the expression of AT1 receptors and decreased
expression of AT2 receptors has been reported in aged
rats [172]. This observation is of major importance given
the potentially deleterious consequences of AT1 receptor
activation on basal ganglia structures.

Recently the Rodriquez-Perez research group [173]
reported that chronic hypoperfusion in rats resulted in a
reduction in striatal DA levels, accompanied by a large
decline in dopaminergic neurons and striatal terminals.
This DA neuron loss was countered by orally adminis-
tered candesartan. In addition, AT1 receptor expression
was highest in the substantia nigra, while AT2 expression
was lower in rats that experienced chronic hypoperfusion
as compared with controls. Again these effects could be
attenuated by candesartan. Taken together, these findings
argue that inhibition of AT1 receptor activity should serve a
neuroprotective role in PD.

The potential involvement of AngIV in Parkinson’s
disease has been initially investigated [110]. A genetic in
vitro PD model was used consisting of the α-synuclein
overexpression of the human neuroglioma H4 cell line.
Results indicated a significant reduction in α-synuclein-
induced toxicity with Losartan treatment combined with
the AT2 receptor antagonist PD123319, in the presence
of AngII. Under these same conditions, AngIV was only
moderately effective. However, these researchers did not use
a metabolically stable AngIV analogue, nor did they confirm
effects with an AT4 receptor antagonist in combination with
AngII or AngIV.

Overall, experimental work suggests that treatment with
an ARB may offer some protection against the risk of
developing PD. However, much additional work must be
completed to better understand the relationship among brain
angiotensin receptors, ligands, inflammation, and reactive
oxygen species as related to PD.

6. Relationship among Angiotensins,
HGF, and Parkinson’s Disease

Aging is one of the major risk factors predisposing indi-
viduals to neurodegenerative diseases [174–177]. The neu-
rodegeneration accompanying aging is dependent in part
upon oxidative stress, neuroinflammation, and microglial
NADPH oxidase activity. Each is of significant importance
regarding DA neuron loss [178, 179]. Activation of AT1

receptors by AngII has been shown to facilitate DA neuron
degeneration by activating microglial NADPH oxidase [147].
The activation of AT1 receptors by AngII failed to cause
DA neuron degeneration when microglial cells were absent
[180]. Of related importance, Zawada and colleagues [181]
recently reported that nigral dopaminergic neurons respond
to neurotoxicity-induced superoxide in two waves. First, a
spike in mitochondrial hydrogen peroxide was measured
three hours following treatment with an MPTP metabolite
(MPP+). Second, by twenty-four hours following treatment,
hydrogen peroxide levels were further elevated. Treatment
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with Losartan suppressed this nigral superoxide production
suggesting a potentially important role for ARBs in the
treatment of PD. Further, AngII binding at the AT1 receptor
increased DA neuron degeneration initiated by subthreshold
doses of DA neurotoxins by stimulating intraneuronal levels
of reactive oxygen species (ROS) and neuroinflammation by
activation of microglial NADPH oxidase [37, 144, 182–184].

From the above observations, it follows that AT1 receptor
blockade should have a neuroprotective effect on DA neurons
in PD patients as demonstrated in animal models [149].
Less obvious is the likelihood that AT1 receptor blockade
results in accumulating levels of AngII which is converted
to AngIII and then to AngIV. This conversion cascade
has been shown to occur intracellularly [41]. In fact, this
conversion of AngII appears to be necessary for DA release to
occur in the striatum [122]. Thus, an intriguing alternative
explanation of these AT1 receptor antagonist results is that
the increased endogenous levels of AngIV facilitate activation
of the HGF/c-Met receptor system and neuroprotection of
DA neurons. In this way, AngIV may act in combination
with AT1 receptor blockade to protect DA neurons. Our
laboratory has offered evidence that AngIV, and AngIV
analogues, are capable of acting to facilitate HGF/c-Met
activity [97]. Support for this claim is presented in several
recent reports. First we found that the action of AT4 receptor
antagonists depends on inhibiting the HGF/c-Met receptor
system by binding to and blocking HGF dimerization [83,
84]. In contrast, AT4 receptor agonists facilitate cognitive
processing and synaptogenesis by acting as mimics of the
dimerization domain of HGF (hinge region) [85]. This
work has culminated in the synthesis of a small molecule
AT4 receptor agonist capable of penetrating the blood-brain
barrier and facilitating cognitive processing presumably by
increasing synaptogenesis. This small molecule (MM-201)
has a Kd for HGF≈ 13 picomolar [129]. This AngIV-HGF/c-
Met interaction could explain earlier reports indicating that
activation of the AT4 receptor facilitates cerebral blood flow
and neuroprotection [36, 38, 103].

In agreement with the above findings, HGF has been
shown to positively impact ischemic-induced injuries such
as cardiac [185] and hind limb ischemia [104, 105]. HGF
has also been shown to eliminate hippocampal neuronal cell
loss in transient global cerebral ischemic gerbils [65], and
transient focal ischemic rats [106]. Date and colleagues [54]
have reported HGF-induced improvements in escape laten-
cies by microsphere embolism-cerebral ischemic rats using a
circular water maze task. These authors measured reduced
damage to cerebral endothelial cells in ischemic animals
treated with HGF. Shimamura et al. [51] have recently shown
that over-expression of HGF following permanent middle
cerebral artery occlusion resulted in significant recovery of
performance in the Morris water maze and passive avoidance
conditioning tasks. Treatment with HGF was also found to
increase the number of arteries in the neocortex some 50 days
following the onset of ischemia.

In sum, these results suggest a role for the HGF/c-Met
receptor system in cerebroprotection and are consistent with
the notion that AngIV increases blood flow by an NO-
dependent mechanism [37]. In support of this hypothesis,

a report by Faure et al. [113] indicated that increasing
doses of AngIV via the internal carotid artery significantly
decreased mortality and cerebral infarct size in rats twenty-
four hours following embolic stroke due to the intracarotid
injection of calibrated microspheres. Pretreatment with the
AT4 receptor antagonist Divalinal-AngIV, or Nω-nitro-L-
arginine methyl ester (L-NAME), abolished this protective
effect. Sequential cerebral autoradiography indicated that
AngIV caused the redistribution of blood flow to ischemic
areas within a few minutes. Thus, AngIV may yield its
cerebral protective effect against acute cerebral ischemia
via an intracerebral-hemodynamic c-Met receptor-mediated
NO-dependent mechanism. Should these relationships hold,
then a metabolically stable blood-brain barrier penetrant
small molecule compound that activates the HGF/c-Met
system could prove highly efficacious in the treatment of PD.

7. Conclusion

Parkinson’s disease is a major neurodegenerative disease that
is increasing in patient numbers world wide as populations
live longer. New treatment strategies are needed to slow or
reverse this disease process. The HGF/c-Met receptor system
may offer neuroprotection to dopaminergic neurotransmit-
ter pathways. However, the direct use of HGF has at least two
major problems: (1) HGF is a large heterodimeric protein
that is very expensive to produce; (2) as a large protein, HGF
does not penetrate the blood-brain barrier and thus cannot
reach brain locations where neurodegeneration is occurring.
We have discovered that the small peptide AngIV, and its
analogues, cause HGF dimerization which is a prerequisite
to binding and activation of the c-Met receptor [42]. HGF
has been shown to be intimately involved in cell survival,
proliferation, migration, and differentiation [186–188] and
blunts neurodegenerative influences [51]. The availability
of small molecule HGF mimetics represents a significant
advantage over the use of large HGF analogues to accomplish
the treatment goal of slowing or reversing PD-induced
neurodegeneration. It remains to be seen whether long-term
treatment of PD patient is possible and efficacious using
small molecule HGF mimetics.
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[128] E. M. Powell, S. Mühlfriedel, J. Bolz, and P. Levitt, “Dif-
ferential regulation of thalamic and cortical axonal growth
by hepatocyte growth factor/scatter factor,” Developmental
Neuroscience, vol. 25, no. 2–4, pp. 197–206, 2003.

[129] A. T. McCoy, C. C. Benoist, J. W. Wright et al., “Evaluation
of metabolically stabilized angiotensin IV analogs as pro-
cognitive/anti-dementia agents,” Journal of Pharmacology
and Experimental Therapeutics. In press.

[130] A. M. Allen, D. P. MacGregor, S. Y. Chai et al., “Angiotensin II
receptor binding associated with nigrostriatal dopaminergic
neurons in human basal ganglia,” Annals of Neurology, vol.
32, no. 3, pp. 339–344, 1992.

[131] S. Y. Chai, F. A. O. Mendelsohn, and G. Paxinos, “Angiotensin
converting enzyme in rat brain visualized by quantitative in
vitro autoradiography,” Neuroscience, vol. 20, no. 2, pp. 615–
627, 1987.

[132] S. Y. Chai, J. S. McKenzie, M. J. KcKinley, and F. A.
O. Mendelsohn, “Angiotensin converting enzyme in the
human basal forebrain and midbrain visualized by in vitro
autoradiography,” Journal of Comparative Neurology, vol.
291, no. 2, pp. 179–194, 1990.

[133] S. M. Strittmatter, E. A. Thiele, M. S. Kapiloff, and S.
H. Snyder, “A rat brain isozyme of angiotensin-converting
enzyme,” Journal of Biological Chemistry, vol. 260, no. 17, pp.
9825–9832, 1985.

[134] K. A. Reardon, F. A. O. Mendelsohn, S. Y. Chai, and
M. K. Horne, “The angiotensin converting enzyme (ACE)
inhibitor, perindopril, modifies the clinical features of
Parkinson’s disease,” Australian and New Zealand Journal of
Medicine, vol. 30, no. 1, pp. 48–53, 2000.

[135] T. A. Jenkins, F. A. O. Mendelsohn, and S. Y. Chai,
“Angiotensin-converting enzyme modulates dopamine
turnover in the striatum,” Journal of Neurochemistry, vol. 68,
no. 3, pp. 1304–1311, 1997.

[136] M. R. W. Ehlers and J. F. Riordan, “Angiotensin-converting
enzyme: new concepts concerning its biological role,” Bio-
chemistry, vol. 28, no. 13, pp. 5311–5318, 1989.

[137] T. Chabrashvili, C. Kitiyakara, J. Blau et al., “Effects of
ANG II type 1 and 2 receptors on oxidative stress, renal
NADPH oxidase, and SOD expression,” American Journal of
Physiology, vol. 285, no. 1, pp. R117–R124, 2003.

[138] J. Rodriguez-Pallares, P. Rey, J. A. Parga, A. Muñoz, M.
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