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Abstract: Person re-identification is an important topic in retail, scene monitoring, human-computer
interaction, people counting, ambient assisted living and many other application fields. A dataset for
person re-identification TVPR (Top View Person Re-Identification) based on a number of significant
features derived from both depth and color images has been previously built. This dataset uses an RGB-D
camera in a top-view configuration to extract anthropometric features for the recognition of people in
view of the camera, reducing the problem of occlusions while being privacy preserving. In this paper, we
introduce a machine learning method for person re-identification using the TVPR dataset. In particular,
we propose the combination of multiple k-nearest neighbor classifiers based on different distance
functions and feature subsets derived from depth and color images. Moreover, the neighborhood
component feature selection is used to learn the depth features’ weighting vector by minimizing the
leave-one-out regularized training error. The classification process is performed by selecting the first
passage under the camera for training and using the others as the testing set. Experimental results
show that the proposed methodology outperforms standard supervised classifiers widely used for the
re-identification task. This improvement encourages the application of this approach in the retail context
in order to improve retail analytics, customer service and shopping space management.

Keywords: RGB-D camera; person re-identification; machine learning; K-nearest neighbors; retail

1. Introduction

Camera installations are widespread in several domains, from small business and large retail
applications, to home surveillance applications, environment monitoring, facility access, sports venues
and mass-transit. Identification cameras are widely employed in most public places like malls, office
buildings, airports, stations and museums. In these applications, it is desirable to identify different
instances or images of the same person, recorded at different moments, as belonging to the same
subject. This kind of process, commonly known as “person re-identification” (re-id), has a wide range
of applications and is of great commercial value.

Research in people behavior analysis has been thoroughly focused on person re-id during
the last decade, which has seen the exploitation of many paradigms and approaches of pattern
recognition [1–3]. In challenging situations, algorithms need to be robust to be able to deal with
issues such as widely-varying camera viewpoints and orientations, rapid changes in the appearance of
clothing, occlusions, varying poses and various lighting conditions [4,5].
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The first studied re-id problem was related to vehicle tracking and traffic analysis, where objects
move in well-defined paths, have almost uniform colors and are rigid. Features like color, speed,
size and lane position are generally embedded in Bayesian frameworks. However, person re-id requires
more elaborate methods in order to deal with the widely-varying degrees of freedom of a person’s
appearance [6].

Much of the research on person re-id has been devoted to modeling human appearance. In fact,
descriptors of image content have been proposed in order to discriminate identities while compensating
for appearance variability due to changes in illumination, pose and camera viewpoint. Re-id is also a
learning problem in which either metrics or discriminative models are actually learned [5,7]. Labeled
training data are required for metric learning approaches, and new training data are needed whenever
a camera setting changes [8].

Recently, person re-id has emerged as a very interesting tool for detection and tracking of
people under occlusion or partial camera coverage. In a retail environment, re-id can provide useful
information for improving customer service and shopping space management. In fact, changes in
consumer purchase behavior led retailers to adapt their businesses, the products and services provided,
as well as the way they communicate with customers. In the retail field, person re-id becomes a
useful tool to recognize consumers in a store properly, to study returning consumers and to classify
different shopper clusters and targets. The customer interactions such as (i) the level of attraction
(i.e., attraction that the shelf is creating for consumers), (ii) the attention (i.e, the time consumers spend
in front of a brand display) and (iii) the action (i.e., the number of consumers that enter the store and
interact with particular merchandise) can be closely monitored through RGB-D cameras. This solution
provides affordable and additional rough depth information coupled with visual images, offering
sufficient accuracy and resolution for indoor applications. A distributed RGB-D camera has already
been successfully applied in the retail field to identify customers univocally and to analyze behaviors
and interactions with shoppers [9,10]. The choice of the RGB-D camera in a top-view configuration
is preferred due to its greater suitability compared with a front view configuration, usually adopted
for gesture recognition or even for video gaming. The top-view configuration reduces the problem of
occlusions and has the advantage of being privacy preserving because a person’s face is not recorded
by the camera [11]. Top-view people counting applications are the most accurate (with accuracy up to
99%) even in very crowded scenarios (more than three people per square meter) [12]. The point of view
of the camera in the top-view configuration is also the only one that allows measuring anthropometric
features of the people passing by and interactions among shoppers and products on the shelf at the
same time [13,14]. However, this configuration may lead to an important limitation: it does not allow
one to retrieve features related to the front view that are widely employed in other state-of-the-art
approaches (e.g., [15,16]), in which the subject identification can be highly discriminative. Hence,
the proposed approach including the feature extraction and the classification stage was designed
according to this challenging setup.

Currently, several datasets using RGB-D technology are available for the study of person
re-id and cover many aspects of this problem, such as shape deformation, occlusions, illumination
changes, very low resolution images and image blurring [17]. The most popular are VIPeR [18],
the iLIDSmulti-camera tracking scenario [19], ETHZ [20], CAVIAR4REID [21] and [22]. However, since
these datasets are not collected in a top-view configuration, they are not suitable for our purposes.

In this regard, we have built a new dataset for person re-id that uses an RGB-D camera in a
top-view configuration: the TVPR (Top View Person Re-identification) dataset [23], using an Asus
Xtion Pro Live RGB-D camera, which allows the acquisition of color and depth information in an
affordable and fast way [24]. The camera was installed on the ceiling above the area to be analyzed.
This dataset includes the data of 100 people, acquired across intervals of days and at different times.

Differently from [23], the main goal of the paper comprises the introduction of the feature
extraction and classification stage for the re-id task in a top-view configuration scenario using a set
of features extracted by the color and depth images. The overall system comprises the recording
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stage, the pre-processing/feature extraction stage and the classification stage. Thus, we have tested
the approach using the TVPR dataset [23] with respect to other state-of-the-art classifiers in order
to measure the reliability and the effectiveness of our approach. In particular, we propose an
ensemble method, named Multiple K-Nearest Neighbor (MKNN), based on the combination of
different k-Nearest Neighbor (K-NN) classifiers. The problem of combining different K-NN has
been addressed in [25–27] respectively for different feature subsets and different distance functions.
The main contributions of this work with respect to the existing literature are: (i) the adoption of
different distance functions for each single K-NN based on the nature of the feature descriptors,
(ii) the introduction of Neighborhood Component Feature Selection (NCFS) for the anthropometric
features, (iii) the overall combination method and (iv) the application of the following methodology
on the TVPR dataset collected by the authors in a previous work [23]. The motivation for the usage of
the specific method, i.e., MKNN, arose from the need to exploit the informative power of depth
and RGB input properly combining the different nature of each feature. Although the authors
combined different existing classifiers in an ensemble strategy, the way these classifiers were chosen and
combined represents the main advantage of the proposed classification stage. The experimental results
demonstrated the effectiveness of the proposed approach, encouraging its application in public contexts
and in different real-world applications (e.g., safety and security in crowded environments, access
control), where the top-view configuration allows reducing the problem of occlusions and privacy.

Each K-NN is trained by different distance functions and feature subsets. The neighborhood
component feature selection is applied to the depth features to find the optimal weights, while cosine
distance and Spearman’s rank correlation are applied to measure the similarity between two RGB
feature points. Instead of the standard majority vote method, we propose a variation of the Bayesian
approach for combining the decision of different K-NN. The performance evaluation encourages the
reliability and the effectiveness of the proposed approach. The MKNN methodology decreases the
generalization error compared to the baseline K-NN method, outperforming supervised classifiers
used for the re-id task (i.e., K-Nearest Neighbors (K-NN) [28], Decision Tree (DT) [29] and Random
Forest (RF) [30,31]).

The paper is organized as follows: Section 2 provides a description of the approaches in the
context of re-id (Section 2.1) and the characterization of the TVPR dataset (Section 2.2). Section 3 gives
details on the proposed methodology for the feature extraction stage and the machine learning model
implemented. Section 4 provides the experimental results and comparison with respect to baseline
classifiers. The conclusions and future work in this direction are proposed in Section 5.

2. Background

This section presents an overview of the main approaches in the context of person re-id.
In particular, Section 2.1 provides a review/summary of the literature on person re-id methods,
and Section 2.2 gives details on the TVPR dataset for person re-id in a top-view configuration.

2.1. Previous Works on Person Re-Identification

Over the past few years, in the field of object recognition, the re-id problem has received
considerable attention, and various reviews and surveys are available, pointing out different aspects of
this topic [32,33]. Among the proposed approaches, four different classes could be defined, mainly
depending on the camera setup and environmental conditions: biometric, geometric, appearance-based
and learning approaches.

In the biometric approaches, the different person instances are matched together and are assigned
to the same identity by the use of biometric features. The examples adopted in the real situation
involve gait, faces, fingerprints, iris scans, and so on [34,35]. They are reliable and effective solutions,
but these require a collaborative behavior of the people and suitable sensors. Thus, in the case of
low resolution, poor views and a non-collaborative public, as in the case with common settings for
surveillance cameras, these techniques are not often applicable.
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The geometric approaches occur when more than one camera or sensor simultaneously collects
information of the same area, and geometric relations among the fields of view (homographies, epipolar
lines, and so on) can be adopted to match the data [18,36,37]. The geometric relations, when available,
guarantee strong matches or, at least, a stiff candidate selection.

In the general case, only the appearance of the different items can be adopted [38,39]. In the
appearance-based approaches, re-id can be correctly done only if the appearance is preserved among
the views. It consists of exploiting dress colors and textures, perceived heights and other similar cues
and can be considered a soft-biometric approach. Occlusions, illumination changes, different sensor
qualities and different viewpoints are some of the challenging issues that make the appearance-based
re-id difficult to implement. In [18], Gray et al. for the first time considered the problem of appearance
models for person recognition, reacquisition and tracking. Until then, these problems had been
evaluated independently, so they called for metrics that apply to complete systems [40,41]. A standard
protocol to compare the results is proposed. This is done using the Cumulative Matching Curve
(CMC) and introducing the VIPeR dataset for re-id. In [42], an algorithm was proposed that learns a
domain-specific similarity function using an ensemble of local features and the AdaBoost classifier.
Features are raw color channels in many color spaces and texture information captured by Schmid
and Gabor filters [8]. Background clutter highly affects the descriptors of visual appearance for person
recognition, and thus, the background modeling is used in many person re-id approaches [38,43,44].

The re-id has even been reinterpreted as a learning problem. In [45], the authors proposed a
discriminative model based on the use of Partial Least Squares (PLS). In [46], a robust Mahalanobis
metric for Large Margin Nearest Neighbor classification with Rejection (LMNN-R) was obtained
with the use of a metric learning framework. Accordingly, in [47], the authors introduced a metric
learning approach that learns a Mahalanobis distance from equivalence constraints derived from
target labels. A comparison model aimed to maximize the probability of a pair of correctly matched
images having a smaller distance than that of an incorrectly matched pair. The model was introduced
as the Probabilistic Distance Comparison (PRDC) approach [48]. In [49], the same authors modeled
person re-id as a transfer ranking problem, with the main goal of transferring similarity observations
from a small gallery to a larger unlabeled probe set. Camera transfer approaches have also been
introduced using images of the same person captured from different cameras to learn the associated
metrics [50,51]. The Multiple Component Dissimilarity (MCD) framework was defined in [52] to turn a
given appearance-based re-id method into a dissimilarity-based one. A supervised technique based on
SVM is the approach presented in [53]. Pairs of similar and dissimilar images and a relaxed RankSVM
algorithm [54] were used to rank probe images. The main issue with running RankSVM on large
datasets is its very expensive computational load due to a large amount of inequality constraints.
The authors in [29] used a decision tree to perform a fast matching between descriptors. In this
case, the association of the query to one of the models is done by a voting approach. Dimensionality
reduction was performed in [30] on image feature vectors through random projection. Afterwards,
they built an ensemble of random forests, trained by feature vectors randomly projected onto different
subspaces. Random forest was also employed in [31] to learn the similarity function of pairs of person
images using color features.

The main differences with our work lay in:

• An RGB-D camera in a top view configuration motivated by the enhancement of the applicability
of the proposed approach in crowded public environments is employed. The top-view
configuration reduces the problem of occlusions and has the advantage of being privacy
preserving because a person’s face is not recorded by the camera [55]. However, this challenging
configuration does not allow one to retrieve features related to the front view, which can be highly
discriminative for the subject identification. Hence, the proposed approach including the feature
extraction and the classification stage was designed according to this challenging setup
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• The ensemble classifier was built taking into account the different nature of each feature.
The model ensures a higher interpretability with respect to other black box models, allowing one
to localize which features contribute to the final prediction.

• The computation time of the training stage is reasonably fast and would be practically feasible for
real-world application.

2.2. TVPR Dataset and Related Applications

TVPR (Top View Person Re-identification) dataset (http://vrai.dii.univpm.it/re-id-dataset) for
person re-id [23] contains videos of 100 individuals recorded over several days from an RGB-D camera
installed in a top-view configuration. The camera was installed on the ceiling of a laboratory at 4 m
above the floor and covered an area of 14.66 m2 (4.43 m × 3.31 m). The camera was positioned above
the surface where the analyses took place (Figure 1).

4.43m

3.31m

(a)

58° H
45° V

(b)
Figure 1. System architecture. (a) represents the first passage under the camera as training set, (b) is
the the returning in the initial position considered as testing set.

The 100 people of our dataset were acquired in 23 registration sessions. Each of the 23 folders
contains a video of one registration session. Acquisitions have been performed over eight days, and the
total recording time was about 2000 s.

Registrations were made in an indoor scenario, where people passed under the camera installed
on the ceiling. A big issue was environmental illumination. In the recording sessions, the illumination
condition was not constant, but it varied as a function of the different hours of the day and also
depended on natural illumination due to weather conditions. Snapshots of the video acquisitions,
in our scenario, are depicted in Figure 2, where examples of person registration with artificial light
are given.

Each person during a registration session walked with an average gait within the recording area
in one direction and subsequently turned back and repeated over the same route in the opposite
direction. This methodology is used for a better split of the TVPR in the training set (the first passage
of the person under the camera) and the testing set (when the person passes a second time under the
camera).

Although in the previous datasets presented in the literature, data were gathered using the RGB-D
technology, they were not actually suitable for our purposes. The main motivating factors for our
top-view dataset are due to some related applications that will be described below.

First, the top-view configuration provides the reliable and occlusion free counting of persons,
which is crucial in many applications. Most of the previous works can only count moving people from
a single camera, and they fail to count still people or situations when occlusions are very frequent and
when there is a crowd. Possible applications can be: safety and security in crowded environments,
people flow analysis and access control, as well as counting [56–58]. Actual tracking accuracy of
top-view cameras overperforms all other tracking methods in crowded environments, with accuracies

http://vrai.dii.univpm.it/re-id-dataset
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up to 99%. When there are special security applications or the system is working in usually crowded
scenarios, the proposed architecture with the top-view configuration is the only suitable one.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2. Snapshots of a registration session of the recorded data, in an indoor scenario, with artificial
light. People passed under the camera installed on the ceiling. The sequence (a–e), (b–f) corresponds
to the sequence (d–h), (c–g), respectively, training and testing set of the classes 8–9 for the registration
session g003.

Second, the scope of this specific configuration and analysis is also the interaction detection
between people and the environment with the many possible applications for the field of intelligent
retail environment such as shopper analytics, in addition to the field of Human Behavior Analysis
(HBA) for Ambient Assisted Living (AAL) [59–62].

Third, another possible application of this specific top-view configuration is fall detection and
HBA in smart homes, from high-reliability fall detection to occlusion-free HBA at home for elders in
AAL environments [55,63].

All these applications have relevant outcomes from the current research, with the ability to identify
users or shoppers while performing tracking, interaction analysis or HBA. Furthermore, all these
scenarios can gather data using low-cost sensors and processing units, ensuring scalability and mass
usage. Finally, the proposed architecture can be certified on a EU basis privacy by design approach.

3. Methodology and Framework

Figure 3 shows the overview of the proposed approach comprised of data recording, feature
extraction and the classification stage.

58° H
45° V
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RGB
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Prediction
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Figure 3. Overview of the proposed approach comprised of data recording, feature extraction and
classification stage. NCFS, Neighborhood Component Feature Selection.
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3.1. Pre-Processing and Feature Extraction

The first step involves the processing of the data acquired from the RGB-D camera. The camera
captures the depth and color images, both with dimensions of 640 × 480 pixels, at a rate up to
approximately 30 fps. The scene/objects are illuminated with structured light based on infrared
patterns. People were detected from the top-view configuration using the same algorithm employed
in [64].

Seven out of the nine features selected are anthropometric features extracted from the depth image:
distance between floor and head, d1; distance between floor and shoulders, d2; area of head surface,
d3; head circumference, d4; shoulder circumference, d5; shoulder breadth, d6; thoracic anteroposterior
depth, d7. The remaining two color-based features are acquired by the color image. We also define the
color descriptor TVH:

TVH = {Hp
h , Hp

o } (1)

and the depth descriptor TVD:

TVD = {dp
1 , dp

2 , dp
3 , dp

4 , dp
5 , dp

6 , dp
7} (2)

Finally, TVDH is the signature of a person defined as:

TVDH = {dp
1 , dp

2 , dp
3 , dp

4 , dp
5 , dp

6 , dp
7 , Hp

h , Hp
o } (3)

Color is an important visual attribute for both computer vision and human perception. It is
one of the most widely-used visual features in image/video retrieval. To extract these two features,
we used HSV histograms. Local histograms have proven to be largely adopted and are very effective.
The signature of a person is also composed by two color histograms computed for head/hair and
outerwear: Hp

h , Hp
o in Equation (1), such as in [65], with n = 10 bin quantization, for both the H

channel and S channel.
Figure 4 depicts the set of features considered: anthropometric and color-based.

dp1 dp2

dp3
dp4

dp5

dp6

dp7

Hp
o

Hp
h

Figure 4. Anthropometric and color-based features.

3.2. Classification Stage

The classification stage is depicted in Figure 3. We propose an ensemble classification approach,
named Multiple K-Nearest Neighbor (MKNN), where the primary classification stage is represented
by different K-NN classifiers according to the nature of the feature descriptors. The overall prediction
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is performed averaging the computed posterior probability of each K-NN classifier, in order to provide
the optimal decision rule.

3.2.1. Predictive Model for TVD Descriptors

Since the TVD descriptors represent anthropometric features, we decided to adopt the 1-norm
distance as a discriminative function of the K-NN model and the well-known Neighborhood
Component Feature Selection (NCFS) approach [66] in order to learn the optimal feature weighting
vector by maximizing the approximate regularized leave-one-out classification error. The application of
NCFS allows decreasing the sensitivity of K-NN to irrelevant features [25]. In order to perform feature
selection and decrease overfitting, we further introduce the regularization parameter λ, which controls
the magnitude of the weighting vector. The optimal lambda found (i.e., λ = 5× 10−4) was selected
by previously implementing a grid-search and optimizing the macro-f1 score in the validation set.
For further explanation about NCFS, the reader can refer to [66,67].

3.2.2. Predictive Model for TVH Descriptors

The cosine and the correlation metric are widely used in the literature to measure the similarity
among different HSV descriptors [68,69]. Then, we implement two K-NN models with cosine and
Spearman rank correlation, respectively, as the distance function.

The cosine distance between two HSV histogram features is defined as:

dcosine = 1−
TVHtesti · TVH

′
trainj

‖TVHtesti‖
∥∥∥TVHtrainj

∥∥∥ (4)

while the Spearman rank correlation-based distance is defined as:

dspearman = 1−
(rg TVHtesti − rg TVHtesti ) · (rg TVHtrainj − rg TVHtrainj)

′∥∥(rg TVHtesti − rg TVHtesti )
∥∥ ∥∥∥(rg TVHtrainj − rg TVHtrainj)

′
∥∥∥ (5)

where TVHtest and TVHtrain are converted to ranks rg TVHtest and rg TVHtrain, while TVH is the
sample mean.

3.2.3. Predictive Model for TVDH Descriptors

For the single K-NN model of the TVDH descriptors, we consider the 1-norm metric, to measure
the distance between two different TVDH feature vectors.

3.3. Combiner

We introduce the approach for combining the prediction of the single K-NN model. Assuming
{yp1 , yp2 , yp3 , yp4} are the predictions of the TVD, TVH and TVDH unseen sample, respectively (i.e., xi),
if we use the majority vote to determine the final label of ypi , the result will be:

arg max
y∈1...100

4

∑
l=1

δ(y, ypl ) (6)

where δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise. The Majority Vote (MV) approach does not
take into account the posterior probability and does not always provide the best prediction results.
The standard Bayesian approach [70]. finds the most probable hypothesis {y ∈ 1 . . . 100} given the
observed data {yp1 , yp2 , yp3 , yp4}:

arg max
y

P(y|{yp1 , yp2 , yp3 , yp4}) (7)
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according to Bayes’ theorem, the maximally probable hypothesis becomes:

arg max
y

P({yp1 , yp2 , yp3 , yp4}|y)P(y) (8)

The Bayesian approach selects the model with the highest posterior probability and then proceeds
as if the selected model had generated the data.

Differently from the Bayesian approach, we compute the average of the posterior probability
(i.e., P(ȳ)) of the 4 hypotheses as follows:

P(ȳ) =
4

∑
l=1

P(y|ypl ) =
4

∑
l=1

P(ypl |y)P(y) (9)

and the final prediction is:
yp = arg max

ȳ∈1...100
P(ȳ) (10)

Our ensemble methodology is based on Bayesian Model Averaging (BMA), which is an application
of Bayesian inference to the problems of combined prediction of different classifiers. Although this
choice can lead to overfitting in some situations [71], it provides straightforward model choice criteria
and less risky predictions [72–74]. The BMA ignores the uncertainty in model selection, leading to
over-confident inferences and decisions [73].

4. Results

The baseline results are reported in Section 4.1 in terms of the Cumulative Match Curve (CMC).
In Sections 4.2 and 4.3, however, we show the results of the proposed MKNN approach for re-id
classification. The authors compare the performance of the proposed methodology with respect to
single K-NN classifiers and other supervised machine learning algorithms widely used in the re-id
literature. We have also performed the computation time comparison related to the training stage.

4.1. Baseline Results

The baseline performance of the TVPR dataset was evaluated in terms of recognition rate, using
the CMC curves, as previously described in [23]. Figure 5 depicts a comparison among the TVH, TVD
and TVDH predictors in terms of CMC curves, to compare the ranks returned by using these different
descriptors, where the horizontal axis is the rank of the matching score and the vertical axis is the
probability of correct identification.

In particular, Figure 5a,b represents respectively the CMC obtained using the TVH and TVD
descriptors for three different distances: one-norm (L1 city block), two-norm (euclidean) and
cosine. Figure 5c provides the CMC computed using both TVH and TVD descriptors (i.e., TVDH),
while Figure 5d is the averaged CMC over the three considered distances for the color (i.e., average
of CMC curves in Figure 5a), depth (i.e., average of CMC curves in Figure 5b) and depth + color
(i.e., average of CMC curves in Figure 5c). Although it can be assumed that the best performance
was achieved when using the combination of descriptors (TVDH), the contribution of the depth was
small, and the CMC curves in Figure 5a,c are very similar. However, the depth information can be
informative for the re-id task (see Figure 5b). These baseline results suggest the need for a methodology
to combine the different nature of descriptors, exploiting the importance and potential of the depth
information. In this context, our approach aimed to exploit the informative power of depth and RGB
input, properly combining the different nature of each feature.



Sensors 2018, 18, 3471 10 of 18

10 20 30 40 50 60 70 80 90 100
Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

og
ni

tio
n 

R
at

e

L1 City Block
Euclidean Distance
Cosine Distance

(a)

10 20 30 40 50 60 70 80 90 100
Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

og
ni

tio
n 

R
at

e

L1 City Block
Euclidean Distance
Cosine Distance

(b)

10 20 30 40 50 60 70 80 90 100
Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

og
ni

tio
n 

R
at

e

L1 City Block
Euclidean Distance
Cosine Distance

(c)

10 20 30 40 50 60 70 80 90 100
Rank

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

og
ni

tio
n 

R
at

e

Depth+Color
Color
Depth

(d)

Figure 5. The baseline Cumulative Matching Curve (CMC) curves obtained on the Top View Person
Re-Identification (TVPR) dataset. (a,b) shows respectively the CMC obtained using the TVH and
TVD descriptors for three different distance: one-norm (L1 city block, cyan), two-norm (euclidean,
purple) and cosine (green). (c) provides the CMC computed using both the TVH and TVD descriptors
(i.e., TVDH), while (d) is the averaged CMC over the three considered distance for the color (i.e., average
of CMC curves in (a), purple), depth (i.e., average of CMC curves in (b), orange) and depth + color
(i.e., average of CMC curves in (c), green).

4.2. Results of the Proposed Approach

We considered the first passage under the camera as the training set and the return to the initial
position as the testing set. The dataset was composed of 21,685 instances divided into 11,683 for
training and 10,002 for testing. The performance of the proposed MKNN method is reported in Table 1
in terms of macro-F1 score, precision and recall. We also report the results of the single K-NN classifier
for each descriptor (i.e., TVH, TVD, TVDH) and each different distance (i.e., cosine, Spearman’s rank
correlation and one-norm). We have highlighted in bold the single K-NN used for designing the
proposed MKNN method. The optimal number of neighbors is five, and it has been chosen since
it maximizes the macro-F1 score in the validation set. Additionally, we have reported the results of
different combiner approaches (i.e., MV, Bayesian and BMA). The proposed BMA-MKNN approach
performed favorably over the other methods.

According to the nature of the descriptors, the cosine distance was the most consistent measure in
order to achieve the best performance for the TVH input, while the K-NN with one-norm achieved the
best performance considering the TVDH input. The proposed MKNN methodology outperformed all
single K-NN classifiers. In particular, the MKNN improved the performance of TVD-KNN, TVH-KNN
and TVDH-KNN by 84.44%, 12% and 2.5%, respectively. Figure 6 shows the CMC curve of the MKNN
compared with respect to the CMC curves of the single weak learner fed with TVH, TVD and TVDH.
The ranking returned by MKNN showed better performance than the single classifier. This result
outlines the advantage of the proposed approach in order to exploit the discriminative power of the
depth information for the re-id task. In addition, the introduced BMA approach performed favorably
over the MV and Bayesian methods.
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Table 1. Classification results for single K-NN and Multiple K-Nearest Neighbor (MKNN) algorithms.
BMA, Bayesian Model Averaging.

Classifier Distance Precision Recall Macro-F1 Score

TVD KNN + NCFS 1-norm 0.49 0.46 0.45
KNN 1-norm 0.38 0.36 0.34

TVH KNN cosine 0.77 0.76 0.74
KNN Spearman 0.75 0.73 0.71
KNN 1-norm 0.76 0.76 0.74

TVDH KNN 1-norm 0.83 0.82 0.81
KNN 2-norm 0.81 0.80 0.78

MKNN (MV) 0.83 0.83 0.81
MKNN (Bayesian) 0.81 0.80 0.78
MKNN (BMA) 0.86 0.85 0.83
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Figure 6. The CMC curves of the MKNN and the standard K-NN methods.

In order to highlight the misclassification error, we disclose in Figure 7 the confusion matrices
of the TVDH-KNN, MKNN (BMA), MKNN (MV) and MKNN (Bayesian). The MKNN (BMA)
shows a lower number of misclassified id-subject with respect to TVDH-HNN, MKNN (MV) and
MKNN (Bayesian).

We summarize in Figure 8 the macro-f1 score for the MKNN and the TVDH-KNN for each class
(subjects). The macro-f1 score is the same for 32 out of 100 subjects, while the MKNN achieves higher
performance than TVDH-KNN in 42 out of 100 subjects. This result suggests how the MKNN (BMA)
recognizes 10% of subjects with a higher recognition rate with respect to TVDH-KNN.
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Figure 7. Confusion matrices of TVDH-KNN, MKNN (BMA), MKNN (MV) and MKNN (Bayesian).
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Figure 8. The macro-F1 for each subject for the MKNN and standard K-NN method.

The implemented NCFS for the TVD descriptors allowed decreasing the generalization error of
the standard K-NN classifier while increasing the sparsity, as well as the interpretability of the model.
Moreover, also the increase of K-NN performance in terms of precision, recall and macro-f1 score can
be seen in Table 1. The optimal weighting vector found by the NCFS algorithm is shown in Figure 9.
The feature with the highest predictive power is the thoracic anteroposterior depth (d7), while the
less relevant TVD descriptors are the distance between floor and shoulders (d2), the area of the head
surface (d3) and the shoulder circumference (d5).
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Figure 9. The optimal feature weights for TVD descriptors found by the NCFS algorithm.

4.3. Comparison with the Standard Supervised Machine Learning Algorithm

Table 2 shows the comparison between our approach and standard supervised learning algorithms
widely adopted in the re-id scenario such as DT [29], bagged tree, RF [30,31], adaptive boosting
(AdaBoost), linear programming boosting (LPBoost) and totally corrective boosting (TotalBoost).
The considered inputs for the DT, bagged tree, RF, AdaBoost, LPBoost and TotalBoost classifiers are
the TVDH descriptors.

Table 2. Comparison of MKNN with respect to the standard supervised learning approach. LPBoost,
linear programming boosting.

Classifier Input Precision Recall F1-Score

KNN TVDH 0.83 0.82 0.81
DT TVDH 0.52 0.50 0.47
Bagged Tree TVDH 0.83 0.81 0.80
RF TVDH 0.74 0.72 0.70
AdaBoost TVDH 0.65 0.60 0.58
LPBoost TVDH 0.57 0.52 0.49
TotalBoost TVDH 0.69 0.62 0.61
MKNN
(BMA)

0.86 0.85 0.83

The MKNN outperformed all standard methods, achieving an improvement of 76.60%, 3.75%,
18.57%, 43.10%, 69.39% and 36.07% with respect to DT, bagged tree, RF, AdaBoost, LPBoost and
TotalBoost. The K-NN may perform better than DT and RF when the number of training samples is
not huge compared to the number of classes. The advantage of our ensemble strategy lies in the way
we have built and combined each classifier. In particular, each weak learner was built according to
the different nature of the features in order to extract the discriminative information of each subject.
Differently from our approach, the other boosting and bagged strategies combined different weak
learners in an automatic fashion without taking into account the different descriptors (i.e., TVH
and TVD).

Table 3 shows the computation time expressed in seconds (s) for the training stage of all
methodologies. MKNN (BMA) was reasonably fast and would be practically feasible for the re-id task.
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Table 3. Computation time training stage.

Classifier Training Time (s)

KNN 0.02
DT 1.31
Bagged Tree 12.14
RF 113.21
AdaBoost 31.14
LPBoost 375.94
TotalBoost 576.24
MKNN
(BMA)

6.94

5. Conclusions and Future Works

In this paper, we describe a method for person re-identification based on features derived from
both depth (anthropometric features) and color. Different from other approaches, the experiments
were conducted on the TVPR dataset where the RGB-D images were collected in a top-view setting,
reducing the problems of occlusions, while preserving the privacy issue [55].

Person recognition is handled by using the proposed ensemble method, named Multiple K-Nearest
Neighbor (MKNN), based on the combination of different K-NN classifiers. Each K-NN is built with
a different distance function based on the nature of the feature descriptors, and the neighborhood
component feature selection is introduced for the anthropometric features. The experimental results
demonstrate how the proposed methodology outperforms standard supervised classifiers (i.e., k-NN,
DT, bagged tree, RF and boosting methods). Moreover, the computation time analysis of the training
stage suggests that the proposed MKNN method is reasonably fast, encouraging the application of the
proposed approach for the person re-identification task in the retail scenario. This improvement may be
explained by the fact that our approach is consistent to model and combine the nature and information
of different descriptors (i.e., TVH and TVD), weighting the importance of the anthropometric features.
Further investigation will be devoted to improve our approach by extracting other informative features
and setting up the proposed approach for the real-time processing of video images in the retail
scenario. In the field of retail applications, the long-term goal of this work is to merge the developed
re-identification system with an audio framework and the use of other types of RGB-D cameras, such as
Time Of Flight (TOF) ones. The system can be integrated additionally as a source of high semantic
level information in a networked ambient intelligence scenario, to provide cues for different problems,
such as detecting abnormal speed and dimension outliers, alerting one to a possible uncontrolled
circumstance. It would also be interesting to evaluate both color and depth images in a way that it
does not decrease the performance of the system when the color image is being affected by changes in
pose and/or illumination.
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