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Nonpharmaceutical interventions (NPIs) such as mask wearing can be effective in
mitigating the spread of infectious diseases. Therefore, understanding the behavioral
dynamics of NPIs is critical for characterizing the dynamics of disease spread. Nev-
ertheless, standard infection models tend to focus only on disease states, overlooking
the dynamics of “beneficial contagions,” e.g., compliance with NPIs. In this work, we
investigate the concurrent spread of disease and mask-wearing behavior over multiplex
networks. Our proposed framework captures both the competing and complementary
relationships between the dueling contagion processes. Further, the model accounts for
various behavioral mechanisms that influence mask wearing, such as peer pressure and
fear of infection. Our results reveal that under the coupled disease–behavior dynamics,
the attack rate of a disease—as a function of transition probability—exhibits a critical
transition. Specifically, as the transmission probability exceeds a critical threshold, the
attack rate decreases abruptly due to sustained mask-wearing responses. We empirically
explore the causes of the critical transition and demonstrate the robustness of the
observed phenomena. Our results highlight that without proper enforcement of NPIs,
reductions in the disease transmission probability via other interventions may not be
sufficient to reduce the final epidemic size.

epidemiology | social and behavioral contagions | multilayer networks | phase transitions |
individual behavior

During pandemics, nonpharmaceutical interventions (NPIs) are among the most effective
countermeasures to reduce infection rates and to contain the spread of diseases (1–3).
The effectiveness of NPIs, which include mask wearing (4), frequent hand sanitizing,
and social distancing (5, 6), have been thoroughly investigated (1–3, 7). In particular,
extensive work has demonstrated the efficacy of mask usage against the dissemination of
respiratory diseases (1, 8–10), and wearing masks has played a critical role in curtailing
disease prevalence during the COVID-19 pandemic (11).

Wearing masks provides social benefits but also requires some degree of personal
discomfort. Further, in many countries without a recent history of respiratory epidemics,
wearing masks is an unfamiliar behavior whose efficacy is not well understood (12). In
these contexts, it is thus unlikely that the population will adopt this prosocial behavior
spontaneously. Instead, the decision to wear a mask has been shown to depend on risk
perceptions, prosocial preferences, elite influence, and peer pressure (13–18). Formally,
mask-wearing behavior can be described as a complex contagion whose adoption requires
multiple social contacts with different sources (19). Complex contagion processes are
commonly studied using threshold models (20, 21) where an individual adopts a behavior
if the fraction of immediate connections engaging in the behavior exceeds a personal
threshold (i.e., peer pressure effects). There is extensive literature on threshold models,
with classic works including Granovetter’s model of collective behavior (20) and Watts’s
global cascades model (22). Threshold models have also been studied in the diffusion of
social influence (23), social conventions (24), public opinion (25), and social behaviors in
general (26).

In this work, we propose a multicontagion framework that intertwines a threshold
social contagion model with an epidemic model to investigate the interrelated dynamics
between mask wearing and disease. For the social dynamics, individual-level decisions
to wear masks are jointly determined by 1) peer pressure (13, 27, 28), 2) fear of
the pandemic (29, 30), and 3) prosociality (31–33). The disease dynamics extend
the susceptible-infected-recovered (SIR) model by accounting for the efficacy of mask
wearing in decreasing the disease transmission rates. Given that the two types of
contagions can spread through different social connections, we model the system
using a two-layer network (34) over the same population, where each contagion
spreads on a distinct layer simultaneously, as shown in Fig. 1. Overall, our model
captures a bidirectional relationship between the dueling processes: 1) Wearing masks
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Fig. 1. A pictorial example of the proposed dueling contagion framework
where the social contagion—mask wearing—spreads on the top layer, and
the disease spreads on the bottom layer. The two layers share the same
population.

reduces the transmission rates, and 2) increase in the disease preva-
lence triggers mask wearing. Further, our model can be extended
to incorporate other prosocial behaviors that incur private costs
and are likely subject to peer influences (e.g., vaccination or social
distancing).

Main Findings

Under the joint dynamics of social and biological contagions,
the fraction of the population that was ever infected by the end
of the epidemic (i.e., the attack rate of the disease) exhibits a
nonmonotonic critical transition (35, 36) as a function of the
disease transmission probability p, characterized by two tipping
points (37) (Fig. 2A). To our knowledge, this nonmonotonic
phenomenon is not observed under existing models.* We further
characterize two regimes of the disease transmission probabilities
based on the tipping points, where multiple infection waves
are expected only in the first regime. This result resembles the
real-world oscillation of infection and mask usage in various
states in the United States (e.g., the example of Virginia in
SI Appendix, Fig. S1). In a series of experiments, we demonstrate
the robustness of the observed phenomena over a wide range
of network settings, model parameters, and extensions. We also
observe the phenomena in an analogous mean-field model.

Our results suggest that in the presence of adaptive mask wear-
ing, a less infectious disease may produce a higher attack rate than
its more infectious counterparts. Subsequently, using traditional
interventions that effectively decrease the infection rate—such as
mass vaccination—without ensuring continued enforcement of
NPIs may not be sufficient to reduce the final epidemic size. In
the worst-case scenario, containment efforts may result in a larger

*An overview of the existing models appears in SI Appendix.

final epidemic size if mask wearing is not continuously reinforced.
Indeed, there was a resurgence of COVID-19 cases in the United
States after vaccinations.† The number of new daily cases jumped
by approximately an order of magnitude from early June 2021 to
early September 2021.‡ Our results emphasize the importance of
continued public mask-wearing mandates to effectively suppress
the evolution of the epidemic and prevent its revival.

Experimental Settings and Design

Model Overview. We model the concurrent dissemination of
mask-wearing behavior and disease on a two-layer network over
the same population, where each contagion spreads on a single
layer. Vertices in the network represent individuals, and the imme-
diate connections of each individual, which we refer to as neigh-
bors, are linked by edges. For the social dynamics, individuals
update actions synchronously based on their neighbors’ previous
actions. Specifically, at each time step, an individual v wears a mask
if and only if at least one of the following conditions is satisfied:
1) peer pressure, the fraction of neighbors wearing masks at the
previous time step exceeds a personal threshold τ1(v); 2) fear,
the overall fraction of infected population in the previous time
step exceeds a personal threshold τ2(v); and 3) prosociality, v is a
prosocial type, where prosociality is an indicator random variable
that is assigned to each individual as an initial condition. Since
prosocial individuals always wear masks, behavioral adaptations
are limited to nonprosocial people. Overall, the social dynamics
incorporate both global information based on the disease preva-
lence and local information based on neighbors’ actions.

Our social contagion model can be seen as an extension of
Watts’s model (22), with the following key distinctions: 1) Watts’s
dynamics are irreversible—once an individual contracts the con-
tagion (e.g., wears a mask), the adoption is permanent throughout
the entire course of the dynamics. In contrast, the mask-wearing
states are reversible under our model, such that a person chooses
not to wear a mask at a time step if none of the three conditions
above are satisfied. 2) Individuals update states in random asyn-
chronous order under Watts’s model, whereas our model considers
a synchronous update scheme. 3) Our model further intertwines
the social dynamics with the disease dynamics. Note that the first
distinction already implies a significant difference between the two

†In addition to relaxation of NPIs, there are multiple possible explanations for the
increasing cases mentioned here, including the spread of the delta variant and waning
immunity. Improper enforcement of NPIs is just one of the factors contributing to the
resurgence of COVID-19 cases.
‡Data from CDC: https://covid.cdc.gov/covid-data-tracker//#trends dailytrendscases.
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Fig. 2. Dueling dynamics of the behavioral model. (A) Contrasting the behavioral model with the SIR model. Shown is the attack rate as a function of the disease
baseline transmission probability (p) for the behavioral model (blue line) and for the SIR model (orange line). (B) Social dynamics of the behavioral model. Shown
is the mask acceptance rate as a function of p. The variances are shown as shaded regions, with one SD above and below the mean. The two tipping points for
the behavioral model are highlighted in red. All parameters are set to their baseline values shown in Table 1.
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Fig. 3. The coevolution of disease and mask adoption at the tipping points. Shown are the disease and mask-wearing time-series dynamics, respectively. The
baseline transmission probability is fixed to the value at the first/second tipping point. All other parameters are set to their baseline values shown in Table 1.
(A) Disease dynamics at the first tipping point. (B) Disease dynamics at the second tipping point. (C) Mask dynamics at the first tipping point. (D) Mask dynamics
at the second tipping point.

models. For example, the oscillation of mask wearing shown in
Fig. 3 will not be observed if the dynamics are irreversible.

The disease dynamics combine the SIR model with the
aforementioned social dynamics (Fig. 4). At the individual
level, wearing masks dampens the probability of pairwise disease
transmission, where the reduction factor depends on the mask-
wearing states of both individuals. Further, a recovered individual
gains permanent immunity. Our model accounts for both
competing (i.e., wearing masks restrains the disease spread) and
complementary (i.e., disease incentivizes mask wearing) dynamics
between the contagions. We provide detailed model formulations
in SI Appendix.

Baseline Parameters. The baseline values of our parameters are
listed in Table 1. In general, the behavioral thresholds are het-
erogeneous. Peer pressure and fear thresholds are chosen from
a uniform distribution in the range specified in Table 1. The
detailed methodology for choosing these baseline values is given
in SI Appendix.

Experimental Design. We numerically explore the dueling dy-
namics of the social and biological contagions. Let the disease
baseline transmission probability p be the probability of infection

for a susceptible individual in contact with an infected neighbor
(per pairwise interaction), when both individuals do not wear
masks. Note that p decreases if either the susceptible individual or
the infected neighbor wears a mask. We focus on the attack rate
as a measure of the disease’s impact on the susceptible population.
Further, we use the average fraction of people wearing masks per
day to describe the strength of the behavioral response. Specif-
ically, for each epidemic process, we record the following two
results: 1) attack rateκ, the fraction of the population that was ever
infected during the epidemic (45), and 2) the mask acceptance rate
η =

∑d
i xi/d , where d is the number of time steps (e.g., days) a

disease spreads in the population, and xi is the random variable
representing the fraction of the population wearing masks on the
i th day.

Our numerical experiments investigate how the attack rate and
the mask acceptance rate vary for diseases with different transmis-
sion probabilities. Each data point of a testing scenario is averaged
over 100 initializations, where each initialization consists of 10
randomly selected individuals infected on day 1 and a new random
two-layer network. We first conducted experiments on random
scale-free networks of 30,000 vertices with average degrees of 10,
generated using the Barabasi–Albert model (46). The two network

Table 1. Baseline parameters
Parameter Description Baseline value Ref.
ps Fraction of prosocial population 0.01 Assumed
pi Fraction of population wearing masks on day 1 (i.e., zero infection) 0.00 Assumed
lf A lower bound of the threshold for fear 0.001 Assumed
uf An upper bound of the threshold for fear 0.15 Assumed
lp A lower bound of the threshold for peer pressure 0.3 (28, 38, 39)
up An upper bound of the threshold for peer pressure 1.0 (40–42)
α Discounting factor for a susceptible individual wearing a mask 0.3 (1, 9, 10, 43)
β Discounting factor for an infected individual wearing a mask 0.1 (1, 9, 10, 43)
r Recovery rate 1/9 (44)
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Fig. 4. Causation diagram for the dueling dynamics. The arrows indicate
direct influences. The positive (+) and negative (–) signs imply positive and
negative correlations, respectively.

layers are constructed under the same baseline scale-free network,
where each layer undergoes random edge perturbations without
altering the degree distributions (47).

To further study the robustness of our results, we perform
simulations over a wide range of model parameters and network
structures. In particular, we conducted experiments on Erdös–
Rényi random graphs (48) of sizes up to 100,000 with different
average degrees and scale-free networks with exponents from
2.35 to 3.39. We also vary the social and disease parameters
(e.g., fraction of the prosocial population, ranges of peer pressure
thresholds and fear thresholds, etc.) to investigate their influences
on the dueling dynamics.

Results

Dueling Social and Biological Dynamics Induce a Critical Tran-
sition. We begin by contrasting the disease dynamics between
our behavioral model and the SIR model shown in Fig. 2A. For
the SIR model, we observe a monotonic increase of the attack
rate as the disease baseline transmission probability p increases.
In contrast, the attack rate under the behavioral model exhibits a
critical transition characterized by tipping points. Specifically, in
phase one, the attack rate increases as the disease becomes more
infectious, peaking at the first tipping point. As p exceeds the first
tipping point, the attack rate reduces sharply and enters the second
phase. For clearness of demonstration, we refer to the point where
the second phase begins as the second tipping point. Numerically,
we can capture the two tipping points with a finer granularity
such that the critical transition happens abruptly and the function
exhibits a discontinuity.

We further investigate the sensitivity of the results to the initial
conditions and the randomness of the networks. Overall, we
observe a low variance in the simulation results for the behavioral
model. More importantly, the shape of the variance region displays
a similar critical transition to that of the mean data line, as shown
in Fig. 2A.§

The critical transition on the attack rate in the behavioral model
suggests that a less transmissible disease could infect a broader
range of the population than some more infectious diseases. To
better understand this phenomenon, Fig. 2B depicts the popu-
lation’s behavioral responses during the epidemic period, given
by the mask acceptance rate, as a function of p. Specifically, the
social dynamics also exhibit a critical transition with two tipping

§We omit the variance region in some of the future plots for the cleanness of the
demonstration.

points. Further, the transmission probabilities that determine the
two tipping points for the disease dynamics correspond to those
for the social dynamics. Intuitively, the high attack rate at the
first tipping point induces a steep increase in mask acceptance
rate, which in turn triggers a sharp decrease in the attack rate to
the second tipping point. Overall, the two critical transitions are
intertwined.

We further study the robustness of the critical transition with
respect to 1) model parameters, a) fear and peer pressure thresh-
olds, b) mask effectiveness, and c) the fraction of prosocial in-
dividuals; 2) network topology, a) Erdös–Rényi, b) power law,
and c) real-world networks; and 3) model extensions, a) habit
formation around mask wearing and b) presence of asymptomatic
infections. Overall, the critical transition occurs under a wide
spectrum of system and parameter settings. See SI Appendix for
a detailed analysis.

The observed critical transitions can classify a disease’s baseline
transmission probability into two regimes: 1) up to the first
tipping point (i.e., the first regime) and 2) at the second tipping
point and onward (i.e., the second regime). For simplicity, we refer
to a disease as a first- (second-)regime disease if its transmission
probability falls in the first (second) regime. The subsequent
sections explore the nature of critical transitions based on the two
regimes.

Causes of the Critical Transition: The Trade-off between Preva-
lence Peak and Disease Persistence. We show that under the
behavioral model, a first-regime disease survives longer than a
second-regime disease, thereby infecting more total people and
producing a higher attack rate than some diseases in the second
regime. Following the literature (49, 50), we define the duration
of the epidemic to be the number of time steps (e.g., days)
between the first infection and a complete absence of the disease
in the population. Note that the duration of an epidemic is a
random variable whose probability distribution depends on the
population size.¶ Let the disease prevalence peak denote the
largest population share of infected individuals on a single day over
the epidemic period. The duration and the disease prevalence peak
capture the persistence and infectiousness of disease, respectively.

Fig. 5A shows the epidemic duration and the disease prevalence
peak as functions of the baseline transmission probability p. In
Fig. 5A, the duration exhibits a critical transition as p increases,
characterized by the same tipping points as those in Fig. 2.
Specifically, we see a sharp decrease in the duration as p exceeds the
first tipping point. This result is consistent with the simulations
reported in Fig. 2 such that before the first tipping point, mask-
wearing rates remain low, thus allowing the disease to propagate
for long periods. In contrast, after the second tipping point, mask-
wearing rates become high, quickly eradicating the epidemic.

Fig. 5B shows a positive monotonic correlation between the
disease prevalence peak and p. Combined with Fig. 2, our sim-
ulations highlight the critical role of the population’s behavioral
response on the disease dynamics. In general, a disease in the
second regime can infect a high fraction of the population in
a short period, but it also diminishes quickly due to large and
sustained mask-wearing responses. In contrast, a disease in the
first regime produces a relatively low prevalence peak, which does
not trigger sustained large-scale mask adoption. Therefore, by

¶Alternatively, we can define the duration as the length of the shortest random time span
of the disease after which the population share remains below a given threshold ε > 0.
Observe that the two definitions coincide when ε < 1/n, where n is the population size.
We remark that the critical transition shown in Fig. 5 will persist under this alternative
definition of duration for low ε values.
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Fig. 5. Epidemic duration and the disease prevalence peak as functions of the baseline transmission probability p. (A) Epidemic duration as a function of p.
Shown is a critical transition of the epidemic duration as the disease becomes more infectious. (B) Disease prevalence peak sizes as a function of p. Shown is a
monotonic increase of the disease prevalence peak as p increases. The tipping points of the critical transition are highlighted in red in A. The variance is shown
as a shaded region. All parameters are set to their baseline values shown in Table 1.

surviving for a much longer time, a first-regime disease could
infect more people in the long run and thus produces a higher
attack rate than some diseases in the second regime. The results
provide key insights into the critical transition and illustrate the
trade-off between the disease prevalence peak and persistence.
We further highlight that when the transmission probability of
a second-regime disease is high enough, even if it has a short
duration, it can still produce an attack rate higher than under any
diseases in the first regime. This can be seen in the upper half of
the second regime in Fig. 2, which bypasses the attack rates in the
first regime.

A Further Look at the Causes of the Critical Transition: Waves
of Infections and Mask Adoptions. We further investigate the
mechanisms driving the critical transition where we analyze the
time-series dynamics of infections and mask adoptions under
transmission probabilities p in the two regimes. We show that
when p is in the first regime, the dueling dynamics incur mul-
tiple waves of infection and mask adoptions, resulting in a long
epidemic duration. In contrast, when p surpasses the first tipping
point, the disease prevalence peak exceeds a critical threshold that
results in a sustained mask adoption, and the dueling dynamics
exhibit single waves with short duration.

At each time step of our simulations, we record the fraction
(normalized over the population size) of 1) currently active infec-
tions, 2) infected individuals with masks, and 3) infected indi-
viduals without masks. Moreover, we track the fraction of 1) the
population wearing masks, 2) mask-wearing people incentivized
by fear, and 3) mask-wearing people incentivized by peer pressure.
Multiple infection waves in the first regime. We set p to a value in
the first regime and study how the fraction of infection and mask
usage changes as the epidemic evolves. Fig. 3 A and C illustrates
the joint dynamics that exhibit multiple waves of infection and
mask adoption when p is at the first tipping point. Specifically,
an initial rise in the disease prevalence sets off a drastic increase
in mask usage due to fear. Since wearing masks decreases the
pairwise transmission probability, this surge in mask wearing then
triggers the disease curve to go down, resulting in a decrease of
fear in the population. When p is in the first regime, however,
the mask-wearing group cannot be sustained by peer pressure
alone because the peer pressure thresholds of many mask-wearing
individuals are not satisfied (i.e., wearing masks only because of
fear). Consequently, mask prevalence drops due to the decrease
in the level of fear as the risk of infection dissipates, resulting in
a resurgence of the disease that infects the susceptible individuals
who were previously protected by masks.

We observe that the decline in mask prevalence is smoother
than the decline in the disease prevalence. This is due to peer

pressure being a local mechanism; thus, it takes time for the aban-
donment of mask wearing to propagate across the network. Also,
each infection wave is less pronounced than the preceding wave.
This diminishing magnitude can be explained by the progressive
recovery process and our assumption of permanent immunity: As
time passes, more people are infected and recover, and there fewer
susceptibles. It is essential to recognize that the usage or nonusage
of masks may have causations devoid of the ground realities of the
disease prevalence. When many people wear masks, the stigma for
not wearing masks becomes high, triggering an increase in mask
prevalence. When few wear masks, however, the stigma tends to
be low, reinforcing the low incidence of mask wearing.

We further explore the joint dynamics under varying transmis-
sion probabilities sampled in the first regime where we observe
qualitatively similar multiwaves of infection and mask adoption
for all samples. Note that the oscillating dynamics in the first
regime elaborate on the result shown in Fig. 5A, such that a
disease in the first regime is more persistent because the epidemic
undergoes multiple revivals. This contrasts to diseases in the
second regime that die out after a single wave of infection, as
shown in the next section.
Single infection waves in the second regime. We explore the time-
series dynamics when p falls in the second regime. In the example
shown in Fig. 3 B and D where p is at the second tipping point,
we observed only a single wave of infection and mask adoption.
In particular, as the disease initially spreads, its prevalence level
crosses a critical threshold that triggers a large mask-wearing
group such that peer pressure can then sustain mask wearing, as
shown in Fig. 3D. This saturated behavioral response prevents the
disease from resuscitating. As a result, the disease diminishes in
a short time relative to disease duration in the first regime. We
consistently observed qualitatively similar single-wave dynamics
for all sampled transmission probabilities in the second regime.

In general, the contrast in the dueling dynamics of the two
regimes (i.e., multiwave vs. single wave) occurs as a consequence
of the distinctive behaviors at the peak of the mask dynamics,
shown in Fig. 3 C and D, respectively. Notably, when p is in the
first regime, mask usage deviates from the peak, allowing disease
revival. On the other hand, mask usage converges at the peak when
p is in the second regime. Our numerical experiments suggest
that as p exceeds the first tipping point, the corresponding disease
prevalence peak crosses a critical threshold, such that the number
of the resulting mask-wearing people is large enough (i.e., also
crosses a critical threshold) to be sustained by peer pressure (in the
example in Fig. 3D, 100% of the population wear masks at the
peak), resulting in a convergence of mask dynamics at the peak
that averts future epidemic waves. Inversely, such a prevalence
threshold is not met when p is in the first regime, thereby allowing
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Fig. 6. The time-series dynamics at the second tipping point under varying ranges of peer pressure. (A) Disease dynamics at the second tipping point. (B) Mask
dynamics at the second tipping point. A and B depict the infection and mask-wearing dynamics, respectively, for p fixed at the second tipping point, where the
range of peer thresholds varies. The upper bound on the fear threshold is indicated in A with a dashed line.

mask usage to diminish from the peak, leading to multiwave infec-
tion.|| Critical phenomena are not uncommon in complex systems
One classic example is Watts’s model (22) (where adoption of
contagion is irreversible) where the system incurs either minuscule
or large cascades, with no middle-sized cascades. Nevertheless,
given the difference between our social dynamics and Watts’s
dynamics, the existence of a similar critical phenomenon also in
our model is interesting, as our social dynamics are reversible.
We plan to further investigate this in future work. We highlight
that the exact value at the convergence depends on the parameter
setting, and the mask dynamics do not always anchor at 100%, as
shown in Fig. 6.

The combined effect of these mechanisms explains the dras-
tic difference in duration between a first-regime disease and a
second-regime disease, which then produces the observed critical
transition. We further demonstrate the robustness of the contrast-
ing dynamics between the two regimes with respect to parameter
settings in SI Appendix.

Enforcement of Mask Wearing Tames Epidemic Waves. In our
model, the primary cause of multiwave infections is people’s
negligence after disease prevalence decreases, which then allows
for the revival of the disease. Specifically, we observe diminishing
mask wearing in the population after each reduction in the
disease prevalence. We further explore the infection dynamics
under a simple setting of public mask-wearing mandates: When
the disease prevalence starts to lessen, we enforce mask-wearing
individuals to continue wearing masks despite the reduction in
peer pressure and fear. Subsequently, as shown in SI Appendix,
Fig. S18, we can effectively suppress the revival of the disease and
bring the anticipated oscillation of infection down to only a single
wave. This observation highlights the importance of continuing
mask mandates even under low disease prevalence and social
stigma.

Mean-Field Model Analogy. Beyond exploring the critical transi-
tion on different network structures, we also investigate the emer-
gence of the critical transition on an analogous mean-field model.
In particular, mask wearing is incentivized by 1) peer pressure as a
contagion process and 2) fear as a prevalence threshold condition
(τ ). Our mean-field model assumes a population composed
of two risk groups: those who comply with public health
recommendations and those who do not. We do not explicitly
model prosociality, since individuals can switch across risk groups.
Our model assumes that at an early stage, the epidemic evolves

||In Fig. 3, the percentage of mask adoption at the peak is 99.53%, with roughly 140 people
not wearing masks. However, note that the exact number is not of interest.

in the absence of behavioral responses; that is, at the beginning of
the epidemic, the majority of the population does not comply
with control policies. After the epidemic hits the prevalence
threshold condition, the behavioral responses begin. In particular,
people from the noncompliant group start to adopt precautionary
behaviors, moving to the compliant group at a rate ϕ.

For simplicity, we assume the compliance adoption to be the
same regardless of an individual’s health status. We found that
the qualitative behavior observed on the attack rate is sensitive,
but remains robust to changes in the behavioral response strength.
The detailed formulation of the mean-field model can be found in
SI Appendix. Our results show the emergence of a similar critical
transition on the attack rate as a function of the disease baseline
transmission probability (p). In contrast to the network model, we
note that for the mean-field model, the fear threshold condition
alone is capable of producing the critical transition phenomena,
whereas peer pressure alone is not capable of producing the
critical transition. In Fig. 7, we show the attack rate as a function
of the disease baseline transmission probability (p), for varying
prevalence thresholds (τ ). Note that in the selected simulations,
the mean-field model exhibits only the first tipping point, which
is produced by individuals moving from the noncompliant group
to the compliant one.

Moreover, it is possible to formally incorporate individualized
behavioral mechanisms—peer pressure and fear thresholds—on
a mean-field model. To do so, the model formulation assumes
individuals’ randomly distributed independent peer pressure and
fear thresholds. Consequently, the proposed mean-field model
is equivalent to assuming a complete network. By tracking the
corresponding cumulative distributions, we can track the fraction
of mask wearers in the population [m∗(I )]. Consistent with the
network model dynamics, we show that by explicitly incorporat-
ing individuals’ behavioral thresholds, it is possible to characterize
mask adoption dynamics. Particularly, we show the conditions
under which the fraction of mask wearers in the population con-
verges to a boundary limit state [m∗(I ) = 0 or m∗(I ) = 1] and
the conditions under which mask adoption undergoes hysteresis,
assuming timescales separation. The detailed model formulation
and additional results appear in SI Appendix.

Discussion

Intuitively, a disease with a lower transmission probability should
produce a lower attack rate relative to a more infectious disease. In
this work, however, we show that under the concurrent dynamics
of mask-wearing behavior, a less infectious disease could cause
a higher attack rate than its more infectious counterparts. This
observation is captured by a critical transition of the attack rate
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Fig. 7. Mean-field model critical transition. Unlike the network model, the global condition of fear, triggered at a prevalence threshold, produces the critical
transition. (A) Mean-field model attack rate as a function of the disease baseline transmission probability (p), and the fear prevalence threshold (τ ), for behavioral
response ϕ = 0.3. (B) Selected simulations of the attack rate as a function of the disease baseline transmission probability (p), for fear prevalence threshold
values τ = 0.1, 0.15, 0.2, and 0.25 and behavioral response ϕ = 0.3.

as the disease transmission probability p increases, such that the
attack rate abruptly reduces when p exceeds a tipping point. This
finding points out that the pervasiveness of a disease is some-
times not reducible to its infectiousness. Thus, one should take
precautions and use NPIs even when a disease is seemingly not
too infectious. From a public health perspective, our simulations
suggest that reducing the infection rate through control policies
poses a paradox. In particular, interventions (e.g., vaccination)
that decrease the disease’s transmission probability are expected
to lessen the epidemic burden. However, when there are adaptive
behavioral responses, our simulations suggest that containment
efforts may result in a larger final epidemic size if mask wearing
is not continuously reinforced. Our results point to two distinct
regimes of disease control: 1) Up to the first tipping point, any
reduction of the infection probability leads to a reduction in the
attack rate, and 2) from the second tipping point onward, there is
an interval during which control policies may increase the attack
rate if NPIs are not continuously enforced. An example of such
an interval is shown in Fig. 8. Our findings have implications
for public health policy by showing the importance of a sustained
mask mandate to prevent a resurgence in disease prevalence.

Throughout the pandemic conflicting information has influ-
enced peoples’ decisions to wear (or not wear) masks. For example,
an individual may internalize public health messages about the im-
portance of wearing masks but live in a region where mask wearing
has become politicized. In these instances, mandatory policies may
be an essential avenue for ensuring widespread mask wearing in

Fig. 8. The interval in the second regime. The shaded region depicts the
interval of the transmission probability p where a reduction of p may lead
to an increased attack rate. Specifically, p1 denotes the baseline transmission
of a disease (highlighted in yellow), and its reduced transmission probability is
highlighted in green. Clearly, the reduction of p1 leads to a higher attack rate.

the face of countervailing social forces. Our model could serve as
a basic framework to further investigate the effectiveness of NPI
policies under the dueling dynamics of the population’s behavioral
response and disease. Finally, studies of complex systems have
repeatedly shown our intuition is often incorrect. Particularly,
understanding the effect of control policies also requires us to
address potential unintended consequences.

Data Availability. Anonymized network files and source code data have
been deposited in GitHub (https://github.com/BridgelessAlexQiu/Mask-Disease-
Multilayer) and Zenodo (https://zenodo.org/record/6505964#.Yo mPZPMJq8).
All study data are included in this article and/or SI Appendix.
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