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A B S T R A C T   

Novel immune and targeted therapies approved over the past 2 decades have resulted in dramatic improvements 
in cancer-specific outcomes for many cancer patients. However, many of these agents can induce cardiovascular 
toxicity in a subset of patients. The field of cardio-oncology was established based on observations that anti- 
neoplastic chemotherapies and mantle radiation can lead to premature cardiomyopathy in cancer survivors. 
While conventional chemotherapy, targeted therapy, and immune therapies can all result in cardiovascular 
adverse events, the mechanisms, timing, and incidence of these events are inherently different. Many of these 
effects converge upon the coronary microvasculature to involve, through endocardial endothelial cells, a more 
direct effect through close proximity to cardiomyocyte with cellular communication and signaling pathways. In 
this review, we will provide an overview of emerging paradigms in the field of Cardio-Oncology, particularly the 
role of the coronary microvasculature in mediating cardiovascular toxicity of important cancer targeted and 
immune therapies. As the number of cancer patients treated with novel immune and targeted therapies grows 
exponentially and subsequently the number of long-term cancer survivors dramatically increases, it is critical 
that cardiologists and cardiology researchers recognize the unique potential cardiovascular toxicities of these 
agents.   

1. Introduction 

With the development of intensive anti-neoplastic therapies, the 
prognosis of patients with cancer has substantially improved. As a result, 
an increasing number of cancer survivors is seen with premature car-
diomyopathy despite the absence of significant cardiovascular risk fac-
tors, often decades after completion of chemotherapy and/or 
radiotherapy [1,2]. Cancer therapy-induced cardiovascular toxicity was 
almost considered to be exclusively associated with the use of anthra-
cyclines for several decades until it became clear that other chemo-
therapeutic agents and radiotherapy can also have undesirable effects on 
the cardiovascular system, including arterial and pulmonary hyperten-
sion, supraventricular and ventricular arrhythmia, systolic and diastolic 
cardiac dysfunction, and coronary artery disease [2–4]. For example, 
among survivors of cancer, a 1.7 to 2-fold increase in cardiovascular 
death was reported in patients who have undergone radiotherapy [5]. 
Importantly, as survival time increases for patients with cancer, 
cardiovascular-related non-cancer mortality was shown to gradually 

overtake cancer-related mortality [6]. 
Over the past decade, there have been significant advances in un-

derstanding the biology of cancers with particular focus on the hetero-
geneity of their molecular drivers as well as understanding of the 
immune response to cancer. This has provided a new foundation to-
wards rationally designed therapeutic regimens that target specific 
genes and proteins [7,8]. Cancer targeted and immune therapies have 
demonstrated considerable clinical efficacy and improved overall sur-
vival rates and have revolutionized the era of personalized medicine [9]. 
Their phenomenal success, however, has come at the cost of potential 
adverse events that can affect a wide variety of systems and organs, 
including the cardiovascular system [10] While both, conventional 
chemotherapy as well as novel cancer targeted and immune therapies 
can result in cardiovascular adverse events, the mechanisms and relative 
incidence of cardiovascular events are inherently different between 
these agents. Understanding their safety profile becomes even more 
complicated by the fact that the novel drugs are sometimes combined, 
concomitantly or sequentially, with conventional chemotherapy 
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[11,12]. As a result, cardiovascular monitoring for earlier detection of 
subclinical myocardial dysfunction in patients on some of these novel 
cancer therapies has been recommended by international guidelines and 
position articles [10]. This further emphasizes the importance of 
recognizing the field of Cardio-Oncology in multidisciplinary patient 
care [13]. 

Cardiovascular toxicity can generally result from direct car-
diomyocyte damage and/or ischemia [14]. While ischemia with non- 
obstructive coronary arteries (INOCA) has been recognized as one un-
derlying etiology for ischemic heart disease, deeper insights into the role 
of the cardiac endothelium have emphasized the role of coronary 
microvascular dysfunction as an important underlying factor in the 
pathogenesis of cardiovascular toxicity [15]. The potential contributing 
role of cancer targeted therapy in promoting coronary microvascular 
dysfunction has been the subject of a variety of studies, thus providing 
novel and deeper insights that extended beyond INOCA [16]. In this 
review, we will provide an overview of emerging paradigms in the field 
of Cardio-Oncology, particularly the role of the coronary microvascu-
lature in mediating cardiovascular toxicity of important cancer targeted 
therapies, namely ERBB-2 monoclonal antibodies and tyrosine kinase 
inhibitors, angiogenesis inhibitors, proteasome inhibitors, BRAF/MEK 
inhibitors, and immune checkpoint inhibitors (ICI) (Table 1). 

2. ERBB-2 targeted therapy 

2.1. ERBB-2 monoclonal antibodies 

The ERBB-2 oncogene, which encodes the HER2/neu receptor tyro-
sine kinase, a member of the epidermal growth factor receptor (EGFR) 
family, is frequently overexpressed in breast cancer (20 % HER-2 posi-
tive), and was historically associated with a poor prognosis [17]. 
However, the introduction of HER-2 directed targeted therapies has 
resulted in dramatic improvements in outcomes in HER-2 + breast 
cancer [18]. The most commonly used targeted therapy drug in HER-2 
+ breast cancer is trastuzumab, a humanized monoclonal antibody that 
recognizes an extracellular domain of HER-2. Combination of trastuzu-
mab with chemotherapy results in substantial improvement in 
progression-free survival and overall survival for both metastatic and 
localized HER-2 + breast cancer [19–21]. In clinically localized HER-2 
+ breast cancer, treatment for 12 months with trastuzumab is there 
standard of care; however, in the metastatic setting, patients are 
continued on treatment until progression which can be many years 
(median PFS 102 months) [22,23] Trastuzumab's efficacy, however, 
comes at the expense of cardiovascular toxicity with an incidence up to 
28 % [20,24,25]. Cardiovascular toxicity was not limited to patients 
who received trastuzumab concurrent with anthracycline, which is a 
known cardiac toxin, but also was seen in patients who received other 
chemotherapeutic agents, such as paclitaxel, with 13 % of patients 
receiving trastuzumab and this microtubule inhibitor developing car-
diac toxicity [24]. Sequential treatment of trastuzumab and chemo-
therapy is associated with lower risk for cardiovascular toxicity as 
compared to concurrent trastuzumab and chemotherapy with concur-
rent trastuzumab and anthracycline carrying the greatest risk among all 
combinations [26–28]. 

With at least 276,000 women worldwide newly diagnosed with HER- 
2 positive breast cancer each year, understanding the mechanisms of 
cardiovascular toxicity of trastuzumab is critical [29]. Subsequent to the 
early clinical trials on trastuzumab, there has been emerging evidence 
that HER-2 not only is an EGFR, but also serves as a co-receptor for 
neuregulin-1 (NRG-1)-activated ERBB-3 (HER3) or ERBB-4 (HER4) re-
ceptor tyrosine kinases [30]. NRG-1 is one of four signaling proteins in 
the neuregulin family that act as EGFR ligands [31]. Studies on mice 
where HER-2 was selectively knocked out in cardiomyocytes showed 
resultant cardiomyopathy and increased sensitivity to pressure overload 
and anthracyclines [32]. On the other hand, infusion of recombinant 
NRG-1 peptide fragment into four different animal models of heart 

Table 1 
Take-home messages on novel insights into cardiovascular toxicity for important 
cancer targeted therapy.  

Targeted drug therapy Postulated mechanisms 

ERBB-2 
Targeted 
Therapy 

ERBB-2 Monoclonal 
Antibodies (e.g. 
Trastuzumab and 
Pertuzumab) 

▪ Inhibition of the protective 
survival-promoting NRG-1 pathway 
▪ Loss of HER-4/HER-4 
homodimerization and HER-4/ 
HER-2 heterodimerization 
▪ NRG-1 inhibition decreases the 
expression of eNOS and increases 
iNOS, thus leading to enhanced 
production of ROS 
▪ Cardiac endothelial cells in the 
myocardial capillaries and the 
endocardial endothelium in close 
proximity to cardiomyocytes 
▪ Inhibition of downstream effectors 
that involve activation of the PI-3-K, 
AKT, and MAPK pathways 
▪ Inhibition of autophagy, which 
usually protects cardiomyocytes 
against stress 

ERBB-2 Receptor Tyrosine 
Kinase Inhibitors (e.g. 
Lapatinib, neratinib, and 
tucatinib) 

▪ Dual inhibition of EGFR1 and 
ERBB-2 
▪ Reduced downstream effectors of 
PI-3-K, AKT, and MAPK pathways 
▪ Impaired autophagy, thus leading 
to accumulation of damaged 
mitochondria, 
autophagolysosomes, and free 
radicals and increased causing 
oxidative stress and cardiomyocytes 
toxicity 
▪ Less cardiovascular toxicity rates 
compared to ERBB-2 monoclonal 
antibodies: (1) Activation of AMPK 
pathway, which inhibits TNF- 
α-induced cardiomyocyte cell 
death, as opposed to trastuzumab, 
which inhibits this pathway (2) 
AMPK is a major regulator of 
metabolic processes in the setting of 
stress and is critical for maintaining 
cardiomyocyte survival 

Angiogenesis Inhibitors (e.g. Bevacizumab, 
sunitinib, sorafenib, and pazopanib) 

▪ VEGF-signaling pathway 
inhibition and myocardial capillary 
rarefaction 
▪ Induction of hypoxia and hypoxia- 
inducible genes in cardiomyocytes 
▪ Destabilization of HIF-α in 
cardiomyocytes 
▪ Increased incidence of 
hypertension: VEGF Inactivation of 
eNOS and production of 
vasoconstrictors, such as 
endothelin-1, and capillary 
rarefaction 
▪ Hypertension, in turn, results in 
increased left ventricular afterload 
and peripheral vascular resistance, 
which can lead to pressure- and 
volume-mediated left ventricular 
remodeling 

Proteasome Inhibitors (e.g. Bortezomib and 
Carfilzomib) 

▪ eNOS uncoupling in myocardial 
endothelial cells 
▪ Reduction in oxygen supply and 
increased reactive ROS 
▪ Ultimate increased oxidative 
stress and functional and structural 
changes in the myocardium 
consistent with hypertrophic- 
restrictive cardiomyopathy 
▪ Abnormal accumulation of 
ubiquitinated proteins thus forming 
higher order protein aggregates that 
are cytotoxic 

(continued on next page) 
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failure, namely rat infarct model, rat anthracycline cardiomyopathy 
model, rat myocarditis model, and dog rapid pacing model, resulted in 
improved hemodynamics and improved survival compared to angio-
tensin inhibitors [33]. Therefore, in vitro experiments have shown that 
recombinant NRG-1 demonstrates protective effect on cardiomyocytes 
from anthracycline-induced myofibrillar disarray [34]. 

NRG-1 triggers HER-4/HER-4 homodimerization and HER-4/HER-2 
heterodimerization on cardiomyocytes to induce protective pathways in 
response to stress [35]. It also stimulates glucose uptake and protein 
synthesis in cardiomyocytes [36]. Preclinical data demonstrated that 
NRG-1 inhibition decreases the expression of endothelial nitric oxide 
synthase (eNOS) and increases inducible nitric oxide synthase (iNOS), 
thus leading to enhanced production of reactive oxygen species (ROS) 
[37]. As a result, NRG-1 has been shown to reduce contraction without 
impairing diastole by upregulating eNOS and reducing the effect of 
β-adrenergic stimulation [38]. In addition, NRG-1 signaling, through 
ERBB2-containing heterodimers, enhances cellular hypertrophy and cell 
survival through downstream effectors that involve activation of the 
phosphoinositide 3-kinase (PI-3-K), protein kinase B (also known as 
AKT), and mitogen-activated protein kinase (MAPK) pathways [39] 
(Fig. 1A). It is postulated that inhibition of these downstream pathways 

results in inhibition of autophagy, which is a catabolic recycling 
pathway triggered by intra- and extra-cellular stimuli to maintain 
cellular homeostasis and protect cardiomyocytes against stress. Conse-
quently, autophagy impairment leads to massive accumulation of 
damaged mitochondria and free radicals, thus increased causing 
oxidative stress and cardiomyocytes toxicity. As such, it is hypothesized 
that trastuzumab can cause cardiac toxicity through inhibition of this 
protective survival-promoting NRG-1 pathway to which HER-2 is a 
coreceptor [40]. 

NRG-1, which acts as a paracrine factor that impacts cardiomyocytes 
survival, is released by cardiac endothelial cells. Preclinical data on the 
protective effect of NRG-1 to which HER-2 is a coreceptor suggest that 
the HER-2 pathway has a survival-promoting signaling pathway in the 
cardiac endothelial cells that can help cardiomyocytes cope with stress 
conditions [41]. It is important to distinguish between the role of cardiac 
endothelial cells in the myocardial capillaries and at the endocardium, 
on one hand, and that of coronary vascular endothelium in the major 
epicardial and smaller intramyocardial coronary arteries, on the other. 
The coronary vascular endothelium in the coronary conduit and resis-
tance vessels controls the coronary artery function similar to other 
vascular beds in the body and contributes indirectly to the cardiac 
function through controlling the coronary blood supply to the myocar-
dium. On the other hand, cardiac endothelial cells in the myocardial 
capillaries and the endocardial endothelium are in close proximity to 
cardiomyocytes, thus exerting a more direct effect through cellular 
communication and signaling pathways between both cell types and 
contributing to anti-HER-2-mediated cardiomyocyte toxicity [42]. 

Pertuzumab is a recombinant humanized monoclonal antibody that 
targets an epitope near the extracellular domain II of ERBB-2 and results 
in the steric inhibition of ERBB-2 dimerization [43–45]. Rates of car-
diovascular toxicity in the setting of pertuzumab treatment have been 
reported to range between 8 and 16 % [46]. Phase II studies on patients 
receiving single-agent pertuzumab for HER2-negative breast cancer 
with prior exposure to anthracycline-containing chemotherapy showed 
that 10 % of patients developed a 10–15 % drop in their left ventricular 
ejection fraction at a median of 100 days [47]. Another study showed 
similar rates of cardiac dysfunction for combination therapy with per-
tuzumab, trastuzumab, and docetaxel, as compared to placebo, trastu-
zumab, and docetaxel [48]. The mechanism of pertuzumab-related 
cardiac toxicity is not yet fully understood. However, it is hypothesized 
that it also exerts this effect through inhibition of the NRG-1 pathway, 
similar to trastuzumab. Alteration in NRG-1 and ERBB signaling path-
ways due to pertuzumab and the association between circulating serum 
NRG-1 levels and the extent of pertuzumab-related cardiovascular 
toxicity are areas of active investigation [16]. 

Several American and European governing societies in cardiology 
and oncology have published guidelines on the cardiovascular moni-
toring for patients receiving ERBB2 monoclonal antibodies and on the 
management of their toxicities. These guidelines recommend a cardio-
logical assessment before treatment initiation, including a physical ex-
amination, electrocardiogram (ECG), and cardiac imaging, preferably 
transthoracic echocardiography [49]. The utility of troponin levels to 
predict cardiac toxicity is equivocal and appears to be more helpful for 
patients who were exposed previously to anthracyclines [50]. Use of 
ERBB2 inhibitors should be avoided in patients with left ventricular 
ejection fraction (LVEF) that is <40 %, unless there are no effective 
alternative cancer therapeutic options. In patients with LVEF between 
40 and 50 %, and in those exposed to prior cardiotoxic cancer treatments 
with a normal LVEF, ERBB2 antibodies can be used with a car-
dioprotective strategy using angiotensin converting enzyme inhibitors 
and/or beta-blockers. There are differences between the international 
societies' guidelines regarding subsequent cardiovascular monitoring. 
While most guidelines recommend cardiac imaging monitoring every 3 
months during treatment, the American Society of Clinical Oncology 
(ASCO) leaves the choice and timing of cardiac imaging to the physi-
cian's discretion. There are also no specific recommendations regarding 

Table 1 (continued ) 

Targeted drug therapy Postulated mechanisms 

▪ These aggregates consist of 
soluble oligomers and aggresomes 
that form inclusion bodies, which, 
in turn, contribute to increased 
expression of ROS, cell injury, and 
caspase-mediated apoptosis 
▪ Enlarged cardiomyocytes 
exhibiting vacuolization, 
mitochondrial dysfunction, and 
fibrosis 

BRAF/MEKI Inhibitors (e.g. encorafenib/ 
binimetinib and dabrafenib/trametinib) 

▪ Inhibition of the Ras-RAF-MEK- 
ERK pathway is a key component in 
cardiomyocyte hypertrophy, 
cardiac remodeling, and 
cardiomyocyte death 
▪ Cardiac hypertrophy results as a 
response to stressful stimuli, 
including mechanical overload and 
oxidative stress 
▪ Inhibition of Ras-RAF-MEK-ERK 
signaling pathway by BRAF/MEK 
inhibitors results in loss of its 
cardioprotective effect 
▪ Loss of ERK1/2 activation by 
phospholipase C, resulting in 
decreased eNOS and prostacyclin- 
mediated PKC, which usually 
promotes vasodilation 

Immune Checkpoint Inhibitors (e.g. 
pembrolizumab, nivolumab, nivolumab- 
relatlimab, and atezolizumab) 

▪ ICI-associated inflammation may 
influence atherosclerotic coronary 
plaques and promote fibrous plaque 
rupture, thus leading to acute 
myocardial infarction 
▪ Significant increase in the ratio of 
T lymphocytes to macrophages 
(CD3/CD68 ratio) 
▪ Interfere with immune checkpoint 
signaling in cardiomyocytes, thus 
causing breakdown of peripheral 
immune tolerance and lowering the 
threshold for T cell activation: 
Autoimmune myocarditis 
▪ Increased cardiac-specific 
antimyosin autoantibodies and 
cardiac antigen-specific T cells 
▪ Clonal expansion of T cells that 
target homologous antigens shared 
by both, the tumor and the 
myocardium  
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post-treatment follow-up in cancer survivors who received ERBB2 
monoclonal antibodies [49,50]. Cardiovascular toxicity from ERBB2 
antibodies is considered to be reversible, and it is recommended with an 
absolute decrease in LVEF of ≥10 % relative to baseline, t treatment be 
withheld for at least 4 weeks. It can be resumed, within 4 to 8 weeks, if 
the LVEF returns to normal limits. If the LVEF decline persists >8 weeks 
or if the treatment required suspension on >3 occasions for cardiovas-
cular toxicity, it is recommended that treatment be permanently dis-
continued [51,52]. 

2.2. ERBB-2 receptor tyrosine kinase inhibitors 

In an attempt to prolong and maintain more potent response and 
overcome resistance to first-generation ERBB2 inhibitors, the second- 
generation ERBB-2 receptor tyrosine kinase inhibitors were developed. 
This generation of drugs blocks the adenosine triphosphate (ATP)- 
binding site and inhibits EGFR kinase activity. Indications for ERBB-2 
receptor tyrosine kinase inhibitors are for treatment of metastatic 
HER-2 positive metastatic breast cancer, both in combination with 
capecitabine in patients who have been heavily pre-treated with prior 
lines of therapy, namely trastuzumab, taxane, and/or anthracycline, and 
in combination with letrozole for postmenopausal patients with hor-
mone receptor positive and HER-2 + breast cancer [53]. Lapatinib, for 
example, is an oral tyrosine kinase dual inhibitor of EGFR1 and ERBB-2 
that competes with ATP for binding to the ATP pocket of the kinase [54]. 
It is clinically efficacious in heavily pre-treated HER-2 positive breast 
cancer and is thought to enhance trastuzumab's effects in a synergistic 
fashion [19]. In fact, dual targeting of HER-2 positive tumors with 
lapatinib and trastuzumab can also be used as an attempt to minimize 
resistance to each agent when used as monotherapy [55]. Lapatinib was 
initially approved by the Food and Drug Administration (FDA) in 2007 
for the treatment of HER-2 + metastatic breast cancer, followed by two 
other tyrosine kinase inhibitors, namely neratinib and tucatinib, in 2017 
and 2020, respectively [56]. 

Although less frequent than trastuzumab, tyrosine kinase inhibitors 

can also be associated with cardiovascular toxicity, including decreased 
left ventricular ejection fraction and prolonged QTc interval requiring 
cardiac monitoring and dose adjustment [57,58]. Updated results of 
ALTERNATIVE, a phase III trial which included patients with advanced 
breast cancer randomized into lapatinib combined with an aromatase 
inhibitor with or without trastuzumab with secondary endpoints 
including safety, showed an incidence of 7 % of cardiac events among 
patients with triple therapy, compared to only 3 % among patients with 
trastuzumab and aromatase inhibitor without lapatinib and to 2 % 
among patients with receiving lapatinib and aromatase inhibitor 
without trastuzumab [59]. 

Lapatinib is considered relatively safer than trastuzumab in terms of 
cardiac toxicity. The proposed mechanism of this lower rate of cardiac 
toxicity of lapatinib is activation of the AMP-Kinase (AMPK) pathway, 
which inhibits TNF-α-induced cardiomyocyte cell death, as opposed to 
trastuzumab, which inhibits this pathway. AMPK is a major regulator of 
metabolic processes in the setting of stress that is critical for maintaining 
cardiomyocyte survival [60,61]. Furthermore, monoclonal anti-HER-2 
antibodies, as opposed to tyrosine kinase inhibitors, initiate antibody- 
dependent cell cytotoxicity and complement-dependent cytotoxicity 
that could further enhance cardiomyocyte cytotoxicity [62]. Recent 
phase II and III clinical trials have demonstrated rates of cardiovascular 
toxicity with lapatinib as low as 1.5 to 2.2 %. It is important, however, to 
interpret these results with caution with respect to cardiac toxicity due 
to their limited generalizability, particularly given that enrollment is 
restricted to patients who do not have prior cardiovascular disease and 
given the variation of definitions of cardiac toxicity among clinical trials 
[63]. Why trastuzumab causes more cardiac toxicity than the newer 
HER-2 pathway inhibitors remains not fully understood, however 
[30,41]. Interestingly, even in published data comparing cardiovascular 
toxicity for lapatinib and trastuzumab, rates reported for trastuzumab 
have even been less than those reported from retrospective analyses 
from non-trial populations [64]. 

Preclinical studies using three-dimensional engineered myocardial 
tissues from neonatal rats treated with tyrosine kinase inhibitors showed 

Fig. 1. Infographic summary of major pathophysiological mechanisms of cardiovascular toxicity from cancer targeted therapies.  
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that declining contractile force was associated with impaired autophagy 
and increased autophagolysosomes upon ultrastructural evaluation 
[65]. Owing to dual inhibition of HER-1 and HER-2 by tyrosine kinase 
inhibitors, including lapatinib, neratinib, and tucatinib, downstream 
signaling of EGFR and ERBB-2 cannot be phosphorylated and thus 
cannot be activated. As a result, downstream targets that promote can-
cer growth and angiogenesis will be blocked, thus contributing to the 
anti-tumor effect of tyrosine kinase inhibitors [66]. In addition to their 
effect on tumor cells, they also result in reduced downstream effectors 
that involve activation of PI-3-K, AKT, and MAPK pathways in host 
tissue [67,68]. Inhibition of these downstream pathways results in in-
hibition of autophagy, thus leading to accumulation of damaged mito-
chondria and free radicals, thus increased causing oxidative stress and 
cardiomyocytes toxicity [40,65] (Fig. 1B). It has been shown that 
lapatinib can synergistically enhance doxorubicin toxicity in a time- and 
dose-dependent manner in human pluripotent stem cell-derived car-
diomyocytes through iNOS signaling [69]. 

3. Angiogenesis inhibitors 

Initially proposed by Folkman et al. >4 decades ago, inhibiting 
angiogenesis by targeting specific pro-angiogenic factors or their re-
ceptors has become a major target for cancer treatment [70,71]. 
Hypoxia-inducible factor-α (HIF-α) is a transcription factor that results 
in transcription of pro-tumorigenic factors, including vascular endo-
thelial growth factor (VEGF) and platelet-derived growth factor (PDGF), 
thus mediating angiogenesis. This has been well described in clear cell 
renal cell carcinoma where sporadic mutations in the gene encoding for 
the von Hippel-Lindau (VHL) protein play a causal role in tumorigenesis. 
VHL protein acts as a substrate recognized by an E3 ubiquitin ligase 
complex that targets HIF-α to enhance its degradation. VHL mutations 
result in inappropriate stabilization, thus activation, of HIF-α, which 
leads to induction of VEGF and other HIF targets [72]. In fact, renal cell 
carcinoma has been the main tumor of interest for FDA approval of 
angiogenesis inhibitors and the only cancer in which angiogenesis are 
approved as single therapy [70,73]. 

Bevacizumab was the first FDA-approved monoclonal antibody that 
targets the soluble VEGF protein. Although it is given intravenously, the 
newer FDA-approved drugs targeting angiogenesis are given orally and 
target the tyrosine kinase receptors of VEGF and PDGF. These include 
sunitinib, sorafenib, and pazopanib. With VEGF inhibition as the com-
mon feature, these drugs are generally referred to as VEGF-signaling 
pathway (VSP) inhibitors. It is worth noting that tyrosine kinase in-
hibitors can target several tyrosine kinase receptors, and are this often 
referred to as “dirty” TKIs. For example, sunitinib targets all 3 VEGF 
receptors, namely VEGFR1, VEGFR2, and VEGFR3, in addition to PDGF 
receptor (PDGFR) α and β, tyrosine-protein kinase Kit, and has been 
approved for several types of cancers, including gastrointestinal stromal 
tumor, advanced renal cell carcinoma, and advanced pancreatic 
neuroendocrine tumors [74]. 

Since clinical trials on angiogenesis inhibitors have generally not 
included screening for heart failure or left ventricular dysfunction, the 
emerging awareness on cardiovascular toxicity associated with this 
group of drugs is largely based on retrospective analyses, which can be 
associated with possible misclassification bias [16]. A meta-analysis that 
included 5 clinical trials with 3784 breast cancer patients showed that 
patients who were treated with bevacizumab had a 1.6 % incidence of 
high-grade congestive heart failure as compared to 0.4 % among the 
control or placebo groups, which translated into a relative risk of 4.74 
for heart failure [73]. In another meta-analysis that included 6935 pa-
tients treated with sunitinib, the incidence of all-grade and high-grade 
heart failure was 4.1 % and 1.5 %, respectively [75]. Moreover, the 
incidence of cardiovascular toxicity involving sunitinib is believed to be 
higher for asymptomatic cardiomyopathy according to data from indi-
vidual trials which did include ejection fraction monitoring. For 
example, in a phase I/II trial that included 75 gastrointestinal stromal 

tumor patients treated with sunitinib, a 10 % decrease in left ventricular 
ejection fraction was reported in 28 % of patients [76]. 

Preclinical mouse models have shown that mice expressing a tunable 
transgene encoding a VEGF trap, thus mimicking the effect of bev-
acizumab, had decreased myocardial capillary density (a finding 
referred to as capillary rarefaction), induction of hypoxia and hypoxia- 
inducible genes in cardiomyocytes, and cardiac dysfunction. Cardiac 
dysfunction was reversible upon removal of the transgene [77]. Similar 
results were reported in mice that had genetically deleted PDGFR-β in 
cardiomyocytes where decreased myocardial capillary density, 
increased myocardial hypoxia, and enhanced heart failure after trans-
verse aortic constriction were observed [78]. Stabilization of HIF-α in 
cardiomyocytes was sufficient to reverse cardiomyopathy in mice 
[79,80]. 

Myocardial capillary rarefaction, coupled with induction of hypoxia 
and hypoxia-inducible genes, and the resulting cardiac dysfunction 
demonstrated in these preclinical studies suggest that inhibition of 
angiogenesis by angiogenesis-inhibitors can lead to cardiomyopathy 
[16] (Fig. 1C). The reversibility of cardiomyopathy in these mouse 
models suggests that angiogenesis inhibitors-associated cardiomyopathy 
leads to myocardial hibernation rather than myocardial death. This is 
further supported by clinical data suggesting that sunitinib and 
sorafenib-induced cardiomyopathy may be reversible [76,81]. Uraizee 
et al. reported a case series of patients to highlight the reversibility of 
cardiomyopathy upon interruption of treatment with sunitinib or sor-
afenib [81]. This was later supported by ECOG 2805, a randomized, 
double blind phase III trial of one year of adjuvant sunitinib, sorafenib, 
or placebo in previously untreated patients with completely resected 
renal cell carcinoma at high risk for recurrence. This study showed that 
left ventricular dysfunction was largely reversible upon dose interrup-
tion and/or reduction of treatment [82]. 

In addition to their effect on myocardial capillaries, angiogenesis 
inhibitors can also induce hypertension in up to 25 % of patients 
[74,83]. There are generally two accepted mechanisms, functional and 
anatomic, through which VEGF signaling inhibition through angiogen-
esis inhibitors can contribute to hypertension: inactivation of eNOS and 
production of vasoconstrictors, such as endothelin-1, and capillary 
rarefaction, respectively [84]. Hypertension, in turn, results in increased 
left ventricular afterload and peripheral vascular resistance, which can 
lead to pressure- and volume-mediated left ventricular remodeling 
[85,86]. In addition to its protective cardiovascular effect by promoting 
left ventricular remodeling, the presence of hypertension, whether pre- 
or during treatment, has been shown to predict improved outcomes with 
VEGF-inhibitors [87]. As for VEGF inhibitor-associated proteinuria, 
while it does seem to be associated with hypertension, it is not clear 
whether hypertension causes proteinuria or vice versa or if this associ-
ation lacks causality [88]. In addition, whether the development of 
proteinuria while on VEGF inhibitors is associated with favorable out-
comes remains controversial. Karachaliou et al. reported that 
bevacizumab-related proteinuria was associated with a favorable 
outcome, while Zee et al. reported that proteinuria was associated with 
poor survival [89,90]. Iwasa et al. showed no correlation between VEGF 
inhibitor-related proteinuria and survival [91]. 

It is recommended that patients who are started on angiogenesis 
inhibitors undergo baseline assessment of their LVEF prior to initiation 
of therapy, followed by 1 month after treatment initiation, and at 2 to 3- 
month intervals during treatment. In case the LVEF decreases by 10 % 
from pre-treatment values to less than the institutional lower limit of 
normal, treatment shall be withheld. In case of symptomatic heart fail-
ure, any absolute decrease in LVEF of >20 % from baseline that is below 
the lower institutional limit of normal, and persistent LVEF reduction of 
at least 10 % from baseline that does not resolve within 4 weeks is an 
indication for permanently discontinuing treatment [92]. Urinary pro-
tein excretion assessment shall be tested before every administration of 
VEGF inhibitors. It is recommended to use serial urinalysis dipstick with 
a urine dipstick ≥2+ warranting further investigation with 24-hour 
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urine collection for protein. If the 24-hour urine protein levels are >2 g, 
VEGF inhibitor administration shall be withheld and then resumed when 
levels become <2 g. In case of nephrotic syndrome whereby the 24-hour 
urine protein is >3.5 g, treatment shall be discontinued. No studies have 
confirmed whether the use of ACE inhibitors or angiotensin II receptor 
blockers is warranted for VEGF inhibitor-associated proteinuria [93,94]. 
In case of development of grade 2 hypertension, defined as persistent 
(≥24 h) or symptomatic rise in the diastolic blood pressure by >20 mm 
Hg or in the blood pressure to over 150/100 if previously within normal 
limits, it is recommended to initiate anti-hypertensive medications and 
continue treatment as long as the blood pressure remains under 160/ 
100. In case the blood pressure could not be controlled on one anti- 
hypertensive agent, this is classified as grade 3 hypertension and re-
quires withholding VEGF inhibitor until blood pressure becomes <160/ 
100. In case of grade 4 hypertension, defined as hypertensive crisis and/ 
or end-organ damage, VEGF inhibitor shall be permanently discontinued 
[95]. 

4. Proteasome inhibitors 

While proteasome inhibitors have led to improvement in overall 
survival, the post-treatment course has frequently been complicated by 
cardiovascular adverse events, which, in turn, contributes to treatment- 
associated morbidity and mortality [96]. Bortezomib received acceler-
ated FDA approval in 2003 for patients with relapsed/refractory mul-
tiple myeloma and later emerged as the treatment of choice after failure 
any prior line of therapy [97,98]. Carfilzomib gained FDA approval in 
2012 for patients with relapsed/refractory multiple myeloma [99]. 
Several studies reported an increased risk of cardiovascular adverse 
events with proteasome inhibitors, including hypertension, arrhythmia, 
heart failure, and cardiomyopathy [99,100]. In a meta-analysis that 
included 2594 patients, all-grade cardiovascular adverse events rate was 
18.1 % [101]. In the ENDEAVOR study, for example, an increased 
incidence of clinically overt heart failure was detected [102]. Preclinical 
rat models showed that carfilzomib accumulated in the heart and 
resulted in strong inhibition of the cardiac proteasome [103,104]. Also, 
proteasome inhibition by bortezomib has been associated with enlarged 
cardiomyocytes exhibiting vacuolization, mitochondrial dysfunction, 
and fibrosis [105–107]. Being non-proliferative and having elevated 
proteasome activity compared to other tissues, cardiomyocytes are 
especially sensitive to proteasome inhibition [108]. In myeloma cells, 
proteasome inhibition leads to accumulation of incompatible regulatory 
proteins in the endoplasmic reticulum, which results in an unfolded 
protein response and enhanced apoptosis [109]. Similarly, proteasome 
inhibition in cardiomyocytes results in imbalance of proteins with 
abnormal accumulation of ubiquitinated proteins that associate with 
each other thus forming higher order protein aggregates that are cyto-
toxic [110]. These aggregates consist of soluble oligomers and aggre-
somes that form inclusion bodies, which, in turn, contribute to increased 
expression of reactive oxygen species, cell injury, and caspase-mediated 
apoptosis [111,112] (Fig. 1D). Pathological examination of human 
cardiomyopathies, including hypertrophic cardiomyopathy, dilated 
cardiomyopathy, and desmin-related cardiomyopathy, and heart fail-
ure, have also demonstrated abnormal protein aggregates [112–115]. 
Transcriptional activation of nuclear factor kappa B (NF-kB) in the 
ischemia/reperfusion model following myocardial infarction can result 
in pathologic remodeling. NF-kB is activated downstream of MAPK 
signaling pathway. While this may be cardioprotective in the short-term 
whereby it prevents apoptosis, prolonged NF-kB activation can be 
detrimental by enhancing chronic inflammation and endoplasmic re-
ticulum stress response, thus contributing to accumulation of reactive 
oxygen species, promoting cardiomyocyte death and heart failure 
[116–118]. 

In addition to their effect on cardiomyocyte unfolded stress response 
and apoptosis, there is supporting evidence that proteasome inhibitors 
also alter signaling in vascular smooth muscle endothelium leading to 

increased vasoconstriction, vascular tone, vasospasms, and decreased 
response to vasodilators such as nitric oxide and acetylcholine 
[119–121]. The ubiquitin-proteasome system plays an important role in 
non-lysosomal protein quality control in order to maintain normal 
cellular homeostasis and adapt to physiologic changes. Its inhibition 
results in increased eNOS expression in endothelial cells [122]. In pig 
models, treatment with MLN 273, a proteasome inhibitor, results in 
eNOS uncoupling in myocardial endothelial cells, which leads to ulti-
mate increased oxidative stress and functional and structural changes in 
the myocardium consistent with hypertrophic-restrictive cardiomyopa-
thy [106,123]. eNOS uncoupling is a phenomenon that has been 
described in several cardiovascular disorders, including diabetes, hy-
pertension, and heart failure. It describes the uncoupling of the enzyme 
from normal NO production due to oxidation of tetrahydrobiopterin, an 
essential cofactor of eNOS [124,125]. eNOS uncoupling is associated 
with reduction in oxygen supply and increased reactive oxygen species 
production [126,127]. The increased reactive oxygen species produc-
tion has been hypothesized to contribute to the synergistic cardiac 
toxicity resulting from the concomitant use of anthracyclines and pro-
teasome inhibitors [128]. In fact, the use of nitric oxide-releasing agents, 
such as nitrates or phosphodiesterase inhibitors, has been suggested for 
carfilzomib-induced cardiac toxicity, and that of nitroglycerine and 
nifedipine for reduction of vasospasms associated with endothelial 
dysfunction, however this was based on preclinical data, and its clinical 
efficacy and safety are yet to be established [129,130]. 

5. BRAF and MEK inhibitors 

V-raf murine sarcoma viral oncogene homolog B1 (BRAF) and 
mitogen-activated extracellular signal-regulated kinase (MEK) in-
hibitors have revolutionized treatment of patients with metastatic mel-
anoma wherein half of patients' tumors harbor a targetable BRAF 
mutation. The effective vertical inhibition of the Ras-RAF-MEK-ERK 
pathway using BRAF and MEK inhibitors has led to the FDA approval 
of this combination treatment for all BRAF V600E mutated solid tumors 
[131]. While targeting this pathway provided considerable improve-
ment in cancer outcomes, adverse events of BRAF and MEK inhibitors 
can include cardiovascular toxicity [132]. For example, left ventricular 
systolic dysfunction in patients treated with this combination has been 
reported in clinical trials with a median follow-up of 9 to 16 months at 
an incidence up to 12 % [133,134]. Reported incidence rates may have 
underestimated the actual cardiovascular toxicity rate of this class of 
targeted therapy, particularly due to inconsistent reporting of heart 
failure and lack of a standardized definition of left ventricular systolic 
dysfunction among clinical trials across the three approved BRAF/MEK 
combinations. As a result, there is difficulty in comparison of results 
from different the different BRAF/MEK inhibitor combinations. 
[135,136]. Therapy with BRAF/MEK inhibitor combination was asso-
ciated with a higher cardiovascular risk compared with BRAF inhibitor 
monotherapy, including decreased left ventricular ejection fraction, 
atrial fibrillation, and QTc prolongation, all of which are often reversible 
[133,137] It is recommended that an ECG be performed before treat-
ment initiation and 1 month after treatment initiation or after dose 
modification. If QTc >500 ms, the BRAF inhibitor shall be withheld. 
Once QTc decreases to <500 ms, treatment can be re-initiated at a lower 
dose. In case QTc is both, >500 ms and >60 ms above pre-treatment 
value, permanent discontinuation of treatment is recommended [138]. 
If LVEF decreases by >10 %, it is recommended to withhold the MEK 
inhibitor for up to 4 weeks with rechallenge at a lower dose if the LVEF 
recovers. In case LVEF decreases by >20 % or if symptomatic heart 
failure develops, treatment with the MEK inhibitor shall be permanently 
discontinued [139]. 

Extracellular signal-regulated kinases (ERKs) 1 and 2, which are 
downstream effectors in the Ras-RAF-MEK-ERK pathway, play an 
important role in cardiac development, particularly through growth 
factor signaling. This pathway is a key component in cardiomyocyte 
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hypertrophy, cardiac remodeling, and cardiomyocyte death [140]. 
Cardiac hypertrophy results as a response to stressful stimuli, including 
mechanical overload and oxidative stress. Although this is a physio-
logical response by the heart to enhance its contractility and cardiac 
output and address the increased demand, it can become pathological 
and lead to heart failure. Constitutive activation of Ras and BRAF in 
mice was associated with cardiomyocyte hypertrophy, and patients with 
Noonan and Leopard syndromes, which are associated with dysregu-
lated Ras-RAF-MEK-ERK pathway, develop hypertrophic cardiomyopa-
thy [141–143]. The MEK-ERK pathway is also needed for the protection 
of the myocardium after ischemic injury induced in heterozygote ERK2 
gene-targeted mice by ligation of the left anterior descending artery as 
compared to wild-type mice [144]. 

Inhibition of Ras-RAF-MEK-ERK signaling pathway by BRAF/MEK 
inhibitors results in loss of this physiologic growth factor signaling 
normally present in host cells, thus resulting in loss of its car-
dioprotective effect of cardiac remodeling in response to stressful stimuli 
[140,145]. This is likely to include interleukin-10 activation of ERK1/2, 
which inhibits tumor necrosis factor-α-induced cardiomyocyte apoptosis 
[146]. In addition to its direct role in cardiomyocyte, the Ras-RAF-MEK- 
ERK pathway also plays a protective role in the coronary vasculature 
through interaction with VEGF. Phosphorylation of VEGF tyrosine ki-
nase receptor 2 in cultured endothelial cells results in activation of 
phospholipase C and subsequent activation of the RAF-MEK-ERK 
pathway, which, in turn, enhances endothelial cell proliferation and 
angiogenesis via interaction with fibroblast growth factor and PDGF 
[147]. In addition, ERK1/2 activation by phospholipase C results in 
increased expression of eNOS and release of prostacyclin-mediated 
protein kinase C, which promotes vasodilation [148,149] (Fig. 1E). 

6. Immune checkpoint inhibitors 

ICI have revolutionized the treatment of a wide variety of malig-
nancies and have gained a myriad of FDA approvals with demonstrated 
clinical efficacy and improved overall survival [7]. In fact, the per-
centage of patients eligible for treatment by ICI has increased from 1.5 % 
in 2011 when Ipilimumab was first approved in melanoma to 43.6 % in 
2018 [150]. ICIs target the intrinsic immune inhibitory pathways, 
namely immune checkpoints that serve as “gate-keepers”, including 
cytotoxic lymphocyte-associated antigen-4 (CTLA-4), programmed cell 
death 1 (PD-1), its ligand (PD-L1), and lymphocyte activation gene-3 
(LAG-3). Immune checkpoint inhibition essentially “takes the brakes” 
off of the immune system, allowing the immune system to recognize and 
eliminate tumors. However, activated immune cells can also attack 
normal host tissue, i.e. autoimmunity [151]. ICI-induced myocarditis is 
a rare event (1.14 %) but has a very high mortality rate of 35 to 50 % 
[152–156] (Fig. 1F). 

There are a number of mechanisms that have been described, 
including T cell and B cell-mediated, with increased cardiac-specific 
antimyosin autoantibodies and cardiac antigen-specific T cells 
[157–159]. Impaired negative selection of CD4+ T cells specific for 
alpha myosin heavy chain has been described in the thymus of and 
abundance of autoreactive T cells in myocarditis of both mice and pa-
tients [159]. Immune checkpoints, such as CTLA-4 and PD-1, play an 
important role in promoting immune tolerance to the myocardium and 
prevention of autoimmune myocarditis [160]. Murine models have 
shown spontaneous development of myocarditis after inhibition of 
CTLA-4 checkpoint [161–163]. Similarly, mice deficient in CTLA-4 
developed severe myocarditis and pancreatitis with multiorgan lym-
phocytic infiltration in another study [163]. On the other hand, Lucas 
et al. reported the development of lethal lymphocytic myocarditis in PD- 
L1-deficient mice characterized by massive CD8+ and CD4+ T cell in-
filtrates in the myocardium [164]. 

It is postulated that ICI interfere with immune checkpoint signaling 
in cardiomyocytes, thus causing breakdown of peripheral immune 
tolerance and lowering the threshold for T cell activation. In addition, 

ICI lead to substantial reduction of regulatory T cells, which enhances 
activation of cardiac-reactive T cells [156]. Another proposed mecha-
nism of ICI-associated myocarditis is the clonal expansion of T cells that 
target homologous antigens shared by both, the tumor and the 
myocardium [165]. This was based on a report of two cases of patients 
with fulminant myocarditis and synchronous myositis treated with 
nivolumab and ipilimumab combination. Next generation sequencing of 
T cell receptors from myocardial T cells and tumor T cells showed that 
selective clonal T cell populations infiltrating the myocardium were 
identical to those detected in tumors and skeletal muscles [165]. 

ICI may also increase the risk of atherosclerosis. In a matched cohort 
study by Drobni et al., there was a three-fold higher risk for cardiovas-
cular events after starting an ICI. Development of myocardial infarction 
in trials of pembrolizumab and atezolizumab for patients with meta-
static lung cancer and urothelial cancer has also been reported 
[166,167]. A meta-analysis of 22 clinical trials on ICI in patients with 
lung cancer demonstrated an incidence of 1 % of ICI-associated 
myocardial infarction [168]. This association between ICI and athero-
sclerosis is still under current investigation. It is postulated that ICI- 
associated increased risk for atherosclerosis is related to chronic 
inflammation. The relative risk is not well-established, however, given 
that cancer patients often have underlying cardiovascular risk factors 
and, thus, comparison of rates of major adverse case events requires 
rigorous controls [169]. Although cardiovascular events were higher 
after initiation of ICI, causality has not been established, but it is rather 
believed that ICI might have potentially accelerated progression of pre- 
existing atherosclerosis. As such, optimization of cardiovascular risk 
factors and increased awareness of cardiovascular risk, prior to, during, 
and after treatment is recommended among patients on ICI [170]. 

In PD-1-deficient low-density lipoprotein receptor knockout mice, 
enhanced formation of atherosclerotic lesions was reported, thus sug-
gesting a role of anti-PD-1 ICI in promoting the development of 
atherosclerosis [171]. While the exact pathophysiology of ICI-associated 
acute coronary syndrome is not yet fully understood, it is hypothesized 
that ICI-associated inflammation may influence atherosclerotic coro-
nary plaques and promote fibrous plaque rupture, thus leading to acute 
myocardial infarction. This is supported by the observation that in-
flammatory conditions such as systemic lupus erythematosus, rheuma-
toid arthritis, and psoriasis have been associated with accelerated 
atherosclerosis and acute coronary events [172]. 

Patients with active cancer generally have an increased risk for 
development of thrombotic events [173]. Regulatory T cells have been 
shown to induce anti-inflammatory macrophages and inhibition of foam 
cell formation, thus exerting an atheroprotective effect [174]. Analysis 
of the composition of immune cells in coronary artery atherosclerotic 
plaques of ICI-treated patients revealed a significant increase in the ratio 
of T lymphocytes to macrophages (CD3/CD68 ratio) as compared to 
plaques of cancer patients who did not receive ICI treatment [175]. As 
such, it is postulated that ICI alter the inflammatory composition of 
atherosclerosis from macrophage-predominant, which is the typical 
composition in stable atherosclerotic plaques, to lymphocyte- 
predominant, which promotes plaque instability. Activation of ICI- 
associated inflammation triggers destabilization of pre-existing athero-
sclerotic plaque and plaque rupture [156]. Another possible mechanism 
of ICI-associated acute coronary syndrome is coronary vasospasm with 
several reports of transient ST segment elevation secondary to pem-
brolizumab used in treatment of bronchogenic adenocarcinoma. This 
observation, which is hypothesized to be related to systemic inflam-
matory response syndrome, was characterized by a normal coronary 
angiography, lack of cardiomarkers dynamics, and normalization of 
EKG changes within a few hours [176]. 

7. Conclusions and future directions 

With the continuously evolving field of oncology, the development of 
cancer targeted and immune therapies has revolutionized the treatment 
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of a wide variety of cancers; however, these treatments also have po-
tential toxicities, including cardiovascular toxicities. As such, it is crit-
ical to enhance our understanding of the pathophysiology and 
mechanisms of such toxicities The to optimize patient cancer and car-
diovascular care. This includes understanding indications for cardiac 
monitoring, developing strategies to mitigate cardiac toxicity and 
developing predictive biomarkers of cardiovascular toxicity. The use of 
personalized approaches, i.e. patient-centered care that addresses the 
clinical risk scores, genomics, and biomarkers, is needed to appropri-
ately identify high-risk patients who would benefit the most from car-
diovascular protection [177]. There is a growing body of evidence that 
the coronary microvasculature exceeds its long-attributed role as 
conduit and resistance vessels to involve, through endocardial endo-
thelial cells, a more direct effect through their close proximity to car-
diomyocyte with cellular communication and signaling pathways. 
Clinical trials need to include more standardized definitions of left 
ventricular systolic dysfunction in order to better characterize the car-
diovascular toxicity profiles of cancer targeted therapies and enhance 
their optimal utility. In addition to adequately designed clinical trials 
targeting the at-risk patient population, there remains an imperative 
need for implementing a continued multidisciplinary approach between 
cardiologists and oncologists. 
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