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Strabismus is one of the most common vision diseases that would cause amblyopia and even permanent vision loss. Timely
diagnosis is crucial for well treating strabismus. In contrast to manual diagnosis, automatic recognition can significantly reduce
labor cost and increase diagnosis efficiency. In this paper, we propose to recognize strabismus using eye-tracking data and
convolutional neural networks. In particular, an eye tracker is first exploited to record a subject’s eye movements. A gaze
deviation (GaDe) image is then proposed to characterize the subject’s eye-tracking data according to the accuracies of gaze
points. The GaDe image is fed to a convolutional neural network (CNN) that has been trained on a large image database called
ImageNet. The outputs of the full connection layers of the CNN are used as the GaDe image’s features for strabismus
recognition. A dataset containing eye-tracking data of both strabismic subjects and normal subjects is established for
experiments. Experimental results demonstrate that the natural image features can be well transferred to represent eye-tracking

data, and strabismus can be effectively recognized by our proposed method.

1. Introduction

Strabismus is a common ophthalmic disease that can lead to
weak 3D perception, amblyopia (termed lazy eye as well), or
even blindness if it is not timely diagnosed and well treated
[1, 2]. More importantly, it has been shown that strabismus
would cause serious psychosocial consequences in both
children and adults [3-12]. These adverse consequences
include education [5], employment [6], and dating [8]. Many
young strabismic patients could be well treated if diagnosis
and treatment were taken at their early ages. A preschool
child’s strabismus has a much larger chance to be cured than
that of an adult. Timely diagnosis is thus essential. Tradi-
tional strabismus diagnosis methods, for example, cover
test, Hirschberg test, and Maddox rod, are manually con-
ducted by professional ophthalmologists. This would make
the diagnosis expensive and drive people out of professional
examinations consequently. Furthermore, ophthalmologists
make decisions according to their experiences, and thus the
diagnosis results are subjective. In view of that, we propose

automatic recognition of strabismus in this paper. Automatic
recognition of strabismus, which can be termed strabismus
recognition as well, would perform strabismus diagnosis
without ophthalmologists. As a result, the diagnosis results
would be objective, and the diagnosis cost can be significantly
reduced. We realize strabismus recognition by exploiting
eye-tracking data, which are acquired using an eye tracker.
The proposed eye-tracking-based strabismus recognition
method allows us to build an objective, noninvasive, and
automatic diagnosis system that could be used to carry out
strabismus examination in large communities. For instance,
we can place the system in a primary school such that the
students can take their examinations at any time.

An eye-tracking technique has been successfully applied
to solve various problems, for example, object recognition
[13], content-based image retrieval [14], attention modeling
[15], and image quality assessment [16]. But very little
research on the eye-tracking technique for strabismus diag-
nosis has been reported. People have also proposed to lever-
age eye-tracking methodology for strabismus examination
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[17-20]. Pulido [17] employed the Tobii eye tracker to
acquire gaze data to conduct ophthalmic examination
including strabismus by calculating the deviation of gaze
data. But Pulido proposed a method prototype only in [17].
The author had no real strabismic gaze data to demonstrate
the prototype’s performance. Model and Eizenman [18] pro-
posed an eye-tracking-based approach for performing the
Hirschberg test, a classical method to measure binocular ocu-
lar misalignment. But the performance of their approach was
studied with five healthy infants only. The method’s effective-
ness for strabismus examination had not been tested. Bakker
et al. [19] developed a gaze direction measurement instru-
ment to estimate the strabismus angle. The instrument allows
for unrestrained head movements. But only three subjects
participated in the experiment. The number of subjects is rel-
atively too small. Furthermore, there is no ground truth
available for strabismic subjects. It is hence impossible to
comprehensively evaluate the instrument’s performance. In
our previous work [20], we developed a system based on
the eye-tracking technique to acquire gaze data for strabis-
mus diagnosis. The diagnosis is performed by intuitively
analyzing gaze deviations. But the system’s effectiveness is
verified by a strabismic subject and a normal subject only.
In this paper, we developed a more effective eye-tracking
system than that of [20] to acquire gaze data for strabismus
classification. Instead of examining strabismus by directly
analyzing gaze deviations in previous methods, we explore
a machine learning method to realize strabismus classifica-
tion. One big disadvantage of previous methods is that their
accuracy is dramatically affected by every single gaze point.
A noisy gaze point would cause an inaccurate examination
result. By contrast, a learning method can eliminate the
effect of a small number of noisy gaze points by using a large
amount of data, so as to generate a more accurate result. Par-
ticularly, we leverage convolutional neural networks (CNNs),
a powerful deep learning algorithm, to extract features from
gaze data for strabismus recognition.

With the rapid developments of deep learning in recent
years, the CNN has achieved numerous successes in com-
puter vision and pattern recognition, for example, image
classification [21], scene labeling [22], action recognition
[23], and speech recognition [24]. With a hierarchical struc-
ture of multiple convolution-pooling layers, CNNs can
encode abstract features from raw multimedia data. Espe-
cially for learning image features, CNNs have shown impres-
sive performances. In our work, CNNs are exploited to
generate useful features to characterize eye-tracking data for
strabismus recognition. Concretely, a subject is asked to suc-
cessively fixate on nine points. Meanwhile, the subject’s eye
movements are captured by an eye tracker. The eye-
tracking data are then represented by a gaze deviation
(GaDe) image which is produced according to the fixation
accuracies of the subject’s gaze points. After that, the GaDe
image is fed to a CNN that has been trained on a large image
database called ImageNet [25]. The output vectors of the full
connection (FC) layers of a CNN are used as features for
representing the GaDe image. Finally, the features are input
to a support vector machine (SVM) for strabismus classifica-
tion. It is expected that the image features of ImageNet learnt
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by CNNs would be well transferred to represent eye-tracking
data for strabismus recognition. We build a gaze dataset
using our eye-tracking system to demonstrate the proposed
method’s performance. The dataset is much larger than pre-
viously published strabismus datasets.

The rest of this paper is organized as follows. Section 2
describes the methods exploited for strabismus recognition.
Section 3 introduces the dataset for experiments and reports
experimental results. Section 4 concludes this paper with
final remarks. Before ending this introductory section, it is
worth mentioning the contributions of this paper as follows:

(i) We develop an effective eye-tracking system to
acquire gaze data for strabismus recognition.

(ii) We propose a gaze deviation image to characterize
eye-tracking data.

(iii) We exploit convolutional neural networks to gener-
ate features for gaze deviation image representation.

(iv) We demonstrate that natural image features learnt
by convolutional neural networks can be well trans-
ferred to represent eye-tracking data, and strabismus
can be effectively recognized by our method.

2. Methodology

2.1. The Proposed Strabismus Recognition Framework.
Figure 1 shows our proposed framework for strabismus rec-
ognition. The recognition procedure is conducted as follows.
First of all, the subject is asked to look at nine points respec-
tively shown at different positions on a screen. Meanwhile, an
eye tracker mounted below the screen detects the subject’s
eye movements and records his or her gaze points. The gaze
data recorded by an eye tracker are then exploited to generate
three gaze deviation (GaDe) maps, based on the fixation
accuracies of left-eye gaze points, right-eye gaze points, and
center points of two eyes, respectively. The three maps are
combined to form a GaDe image with three maps denoting
R, G, and B channels of the image. After that, the GaDe image
is fed to a CNN which has been trained on ImageNet, so as to
produce a feature vector for representing the GaDe image.
Finally, the feature vector is fed to a SVM for classification,
and the subject will be classified as strabismic or normal.

It is worth to present the motivations for the use of a
CNN and GaDe image in our method before digging into
the implementation details. We use the CNN to tackle our
problems for two reasons. Firstly, eye-tracking gaze data are
difficult to characterize. Up to now, there is still no standard
feature for eye-tracking data representation. People have pro-
posed some features such as fixation time and saccade path.
But these features are designed for specific tasks. They are
not suited for our strabismus recognition problem. Secondly,
the CNN is powerful for learning discriminative features
from raw images. It has shown state-of-the-art performance
for various pattern recognition and image classification prob-
lems. We thus expect that the CNN can extract effective fea-
tures for eye-tracking data representation. Since the CNN is
good at extracting image features, we need to convert the
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FIGURE 1: The proposed strabismus recognition framework.

raw gaze data to images before feature extraction by the
CNN. That is why we propose GaDe images to represent
the gaze data. The principle for us to design GaDe images is
that the images should be able to well describe the difference
between normal data and strabismic data. The details of eye-
tracking data acquisition, GaDe image generation, and CNN
models used will be presented in the following subsections.

2.2. Eye-Tracking Data Acquisition. We use the eye tracker
Tobii X2-60 (shown in Figure 1) to acquire eye-tracking gaze
data. Tobii X2-60 has a sampling rate of 60 Hz and tracking
accuracy of 0.4 degree. Both of the sampling rate and tracking
accuracy are high enough to precisely capture strabismic gaze
data in our experiments. The eye tracker is adhered below
the monitor of a laptop to build our eye-tracking system.
The laptop is Lenovo ThinkPad T540p with a 1920 x 1080
screen resolution. The main reason for us to choose a laptop
rather than a desktop for building the system is that it is
convenient to carry the system in different environments
for data acquisition. In order to position gaze points on
the screen digitally, we need to define a coordinate system
for the screen. The upper-left corner of the screen is set as
the origin, the position value of which is (0,0), with hori-
zontal line denoting x-coordinate and vertical line denot-
ing y-coordinate. The values of the lower-right corner,
upper-right corner, and lower-left corner are (1,1), (1,0),
and (0,1), respectively. In other words, both x and y lie in
interval (0,1) on the screen. We exploit Tobii Matlab SDK
to develop our data acquisition interface.

Calibration needs to be performed before using the eye
tracker to acquire gaze data. The purpose of calibration is
to teach the eye tracking system the characteristics of the
subject, such that the eye tracker can precisely detect the
subject’s eye movements. During the calibration, the subject
is asked to fixate on a number of points displayed on the
screen. In terms of the number of points used, we can have

different calibration schemes, for example, one-point, three-
point, or nine-point. We adopt a nine-point calibration
scheme, as it can provide a high-tracking accuracy. The posi-
tions of the nine points on the screen are (0.1,0.1), (0.5,0.1),
(0.9,0.1), (0.1,0.5), (0.5,0.5), (0.9,0.5), (0.1,0.9), (0.5,0.9), and
(0.9,0.9). The result would be shown after each calibration.
We can start real tracking tests if the calibration accuracy is
acceptable. Otherwise, we should recalibrate.

A traditional method for ophthalmologists to examine
strabismus is a nine-point method. The nine-point method
is to ask the patient to fixate on nine target points at a certain
distance in front sequentially. Meanwhile, the ophthalmolo-
gist observes the patient’s eye movements. This method is
able to comprehensively examine the patient’s eye move-
ments with rotations at different angles. Therefore, we adopt
the same method to develop a gaze data acquisition interface.
The nine points’ positions are the same to the nine calibra-
tion points. Figure 2 shows the nine-point interface. We use
a black background, as it helps the subject to concentrate
on the target points. A point is comprised by a red inner cir-
cle and a white outer circle. The radiuses of the inner circle
and outer circle are 15 and 30 pixels, respectively. The points
are displayed one by one orderly. The white arrows point out
the display order. In a real test, the subject’s position is
adjusted to make sure that the subject is at a fixed distance
(50 cm in our test) from the screen, and the subject’s eye level
and the screen center are in the same horizontal line. A dis-
tance of 50 cm is an optimal distance for the eye tracker Tobii
X2-60 to track the subject’s eye movements.

Figure 3 shows the procedure of gaze data acquisition.
Each time one target point is displayed, the eye tracker
records the subject’s gaze points of both eyes simultaneously.
The next target point would be displayed, if the number of
effective gaze pairs acquired exceeds 100, where a gaze pair
is defined as the two gaze points of two eyes captured by an
eye tracker at one sampling moment and “effective” indicates
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F1GURE 2: The nine-point gaze data acquisition interface.
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FIGURE 3: The gaze data acquisition procedure.

that at least one gaze point of a gaze pair is located close
enough to the target point. That is, the distance between
the target point and either gaze point of a gaze pair must be
smaller than a threshold (0.05 in this paper) predefined
empirically. The distance is defined as Euclidean distance

shown in Section 2.3. It is worth mentioning that for some
serious strabismic subjects, it would be sometimes difficult
to capture effective gaze points at some target points, in
particular the points located at the four corners of the
screen, because the strabismic subjects need to rotate the eye-
balls to their extreme. In view of that, we let each target point
display for at most 10 seconds for gaze data acquisition. The
next target point would be displayed after 10 seconds no
matter whether or not the system has collected 100 pairs of
effective gaze points. Since the sampling rate of our eye
tracker is 60 Hz, it would take only two seconds for collecting
100 gaze pairs from normal subjects. Hence, 10 seconds are
long enough to capture gaze data for each point.

2.3. Gaze Deviation Image. The next step after gaze data
acquisition is to generate a GaDe image to characterize the
gaze data. To realize that, we need to first calculate three
GaDe maps, which will serve as R, G, and B channels of the
GaDe image, based on the fixation accuracies of two eyes’
gaze points. Let g;; denote the ith gaze pair for the jth target
point and pl.j = (xij,yij) and pl; = (x};, yj;) denote the values of
the left-eye gaze point and right-eye gaze point of gaze pair
g;j where 1<j<9 and 1<i<100, and superscripts | and r
indicate left and right. Let pj; = (x}, yj) denote the jth target
point’s value. Then, we can have the fixation accuracies in
terms of Euclidean distance for left-eye gaze point p! j as

o[l ). o

and for right-eye gaze point pj; as

a=\(g-0) )@

We defined the center of the gaze pair p'ij and pj; as

p§j = (x§ yj;)> which can be simply formulated as follows:

1 r 1 r

X+ X5 VitV

c _ Yy y o7y Yy
pij_ ( 2 > 2 ) (3)
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Then, similar to (1) and (2), the fixation accuracy of the
center pj; is calculated as

2 2
c _ t t_
dij—\/(xj xf]) + (yj yf]) . (4)
For one subject, we calculate the fixation accuracies
1
d,‘j; d;)
three types of fixation accuracies, three GaDe maps M', M",
and M® can be computed, respectively. The map size is
equivalent to the input size of a CNN. In this paper, two
map sizes (224224 and 227%227) are adopted. The ele-

ment values of the three maps are derived from three fixation
. 1 r c . .
accuracies d;, dj, and dj; of all the gaze pairs. One gaze pair

and dfj for all of his or her gaze pairs. Based on the

represents one element in the three maps. In particular, the
values of the gaze pair g,; in the three GaDe maps M, M,
and M¢ are respectively calculated as

4
1 _ ij
vi; = round <—1> * 255,
max(i)j)dij

4.
vj;=round | ——— | %255, (5)
max(i’j)dij

&
vfj =round [ —L— | %255,
maxiid;

where max( -) finds out the maximum value over all gaze
pairs and round(-) rounds a value to its nearest integer.
Equation (5) guarantees that the element values of the three
GaDe maps are integers lying in interval (0,255), which is
also the value interval of a real digital image. The positions
of v, vj, and vj; in maps M', M, and M¢ are specified
by (xi-j, yﬁj), (xij» 1;)» and (x5, 5;), respectively. The elements
that are not associated with any gaze points in the three maps
are assigned a value of 0. In the GaDe maps, big fixation devi-
ations (far from the target point) possess big values. In other
words, inaccurate gaze points play more important roles in a
GaDe map. This makes sense, as the prominent difference
between strabismic people and normal people is that strabis-
mic people’s one eye or even two eyes cannot well fixate on
target objects. The three GaDe maps can thus effectively
characterize the properties of strabismic gaze data. Generally,
normal people’s GaDe maps would have only a few bright
(large intensity) points far from nine target points, and most
relatively dark points are around the target points, while stra-
bismic people’s GaDe images usually have a large number of
bright points located far from the target points. We combine
three GaDe maps to form a GaDe image, with each map
representing a color channel of the GaDe image. The GaDe
image is then fed to a CNN for feature extraction.

2.4. Convolutional Neural Networks. A CNN is a hierarchi-
cal architecture that consists of a number of convolution
layers and pooling layers. CNNs usually receive raw data,
for example, image’s pixels, as input and extract increasingly
abstract features through hierarchical convolution-pooling

layers. Take color image feature extraction as an example.
An image’s three-color channels are fed to the first convo-
lution layer of the CNN. The convolution results, called
convolution feature maps as well, are then downsampled in
the pooling (e.g., max-pooling) layer following the first
convolution layer, to generate pooling-feature maps. The
pooling-feature maps are further passed to the next convolu-
tion layer and then to the pooling layer for processing. After a
number of convolution and pooling operations, the feature
maps are connected to an output layer through one or more
FC layers. The FC layers can be used for classification like a
multilayer perceptron, with the output vector representing
different classes, or we can employ the outputs of FC layers
as a feature vector of the input image and then use a classifier,
for example, SVM, to perform classification on the feature
vector. The hierarchical convolution and pooling operations
make the features extracted by a CNN insensitive to transfor-
mation, rotation, and scaling.

We adopt six different CNN models that have been
trained on ImageNet to generate features for representing
eye-tracking gaze data. We use pretrained CNN models as
feature extractors and do not train them using eye-tracking
data in our work. There are two main reasons for us to do
this. Firstly, we do not have enough eye-tracking data to well
train a complicated CNN model. A CNN model may have
thousands or even hundreds of thousands of weights that
need to be trained. A large dataset is hence necessary to effec-
tively tune so many weights. For instance, the CNN models
we adopted have been trained on ImageNet, an image data-
base that contains more than one million training images
associated with 1000 classes. For strabismus classification
problem, it is difficult to build a large dataset, since not so
many strabismic people can be found to participate in the
experiments. Actually, only 17 strabismic people participate
in our experiments. It is, therefore, impractical to train a
CNN model using such a few strabismic gaze data. However,
it would be a good idea to employ a pretrained CNN as a fea-
ture extractor to generate features for gaze data representa-
tion. This will be demonstrated in Section 3. Secondly, the
weights of CNN models are tuned using natural images
rather than eye-tracking gaze data. We would like to investi-
gate whether or not the information extracted from the nat-
ural image domain is applicable to the eye-tracking data
domain. It would be meaningful if the features of natural
images can be well transferred to represent eye-tracking data,
since we would be able to make use of large quantities of nat-
ural images in the internet to help generate features, rather
than to manually design complicated algorithms to extract
features, for eye-tracking data representation. The six CNN
models we adopted are named AlexNet [21], VGG-F,
VGG-M, VGG-S [26], VGG-16, and VGG-19 [27]. All of
them have three FC layers but different numbers of convolu-
tion layers. Their differences also lie in input size, number of
convolution filters in each layer, max-pooling size, and so on.
People can refer to [21, 26, 27] for the architecture details of
the six models. The six models have the same three FC layers.
The first two FC layers use ReLU [28] transfer function, and
the final FC layer adopts Softmax transfer function. For each
EC layer, we employ the input vector and output vector of the



transfer function as feature vectors of GaDe images. Then, we
can extract in total six feature vectors from three FC layers.
The six feature vectors are denoted by 1, 1,, 1;, 1, L5, and 1,
and their dimension sizes are 4096, 4096, 4096, 4096, 1000,
and 1000, respectively. We will compare the performances
of six feature vectors for six CNN models in Section 3. Note
that the input size of AlexNet is 227 x 227, while the input
sizes of the other five models are all 224 x 224. Therefore,
the GaDe images need to be resized to 227 x 227 for AlexNet
and 224 x 224 for the other five models.

2.5. Baseline Method. In order to demonstrate the effec-
tiveness of CNNs for extracting features from gaze data
for strabismus recognition, we propose a baseline method
for a comparison. The baseline method models the normal
gaze points of each target point as a multivariate Gaussian
distribution. The parameters (mean vector and covariance
matrix) of each Gaussian distribution are calculated using
the normal training data. To construct the Gaussian distribu-
tion, we represent a gaze pair g,; by the x-coordinate differ-
ences and y-coordinate differences between the target point
p;. and the pair’s two gaze points pij and pj; as follows:

T
_ t t t r t T
uij_[xj_jeij’yj_ ij’xj_xij’yj_yij] . (6)

Then, we can have the Gaussian probability density func-
tion for the gaze pair g;; as

P(u,-j;llf%) = Mexp(—; (uij - pj) %(uij—pj)>,

where y; and X; are the mean vector and covariance matrix of

the Gaussian distribution for the jth target point, respec-
tively. u; and %, are calculated using the normal training gaze
pairs that belong to the jth target point. [X;| computes the
determinant of ;.

The baseline method performs classification as follows.
Given the gaze pair g,;, if its density value in (7) is larger than
the threshold «j, the gaze pair is classified as normal. If the
proportion of normal gaze pairs is larger than the threshold
B;» then the target point is classified as normal for the subject.
Otherwise, the target point is classified as strabismic for the
subject. If one of the right target points is classified as strabis-
mic, the subject will be finally classified as strabismic. In
other words, a normal subject should possess normal fixa-
tions on all nine different directions. Once the fixation on
one direction is abnormal, the subject will be diagnosed as
strabismic. This is reasonable, since some types of strabis-
mus such as incomitant strabismus may fixate poorly on a
specific direction only. In medical examination, a subject
may be also diagnosed to have strabismus once the ophthal-
mologist observes that the subject’s two eyes do not align at a
specific direction. Thresholds «; and f3; are learnt using grid
search, such that the classification accuracy on the training
data is maximized.
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3. Experiments

3.1. Eye-Tracking Gaze Data. We cooperated with Hong
Kong Association of Squint and Double Vision Sufferers
to collect strabismic data. In total, 17 members of the asso-
ciation suffering from strabismus consented to participate
in our experiments. In addition to the 17 strabismic sub-
jects, we invited 25 normal subjects to join in our study.
All subjects are adults, with age ranging from 25 to 63,
including both male and female. They have been diagnosed
by a professional ophthalmologist, and the diagnosis results
are used as ground truth in this paper. After ethics approval
and informed consent, the 42 subjects followed the data
acquisition procedure introduced in Section 2.2 to partici-
pate in our experiments, and finally, we collected 42 eye-
tracking samples. The 17 strabismic subjects suffer from dif-
ferent types of strabismus (e.g., recessive, intermittent, and
manifest) in various severities (e.g., mild, moderate, and
severe). Recessive strabismus is only present when binocu-
lar vision has been interrupted, such as covering one eye.
This type of patients can still maintain fusion. The patients
are usually aware of having recessive strabismus after taking
examination by an ophthalmologist. Manifest strabismus
can be observed while a patient looks at an object binocu-
larly. Intermittent strabismus is a combination of recessive
strabismus and manifest strabismus. People suffering from
recessive strabismus, intermittent strabismus, and mild
manifest strabismus are sometimes difficult to be distin-
guished from normal people apparently, as their fixation
deviations are small, especially for recessive strabismus
and intermittent strabismus.

Figure 4 shows some examples of gaze data and GaDe
images. The first row displays all gaze points for nine target
points in a map, with red * denoting left gaze points and
blue x denoting right gaze points. The second row shows
the corresponding GaDe images for the gaze data of the first
row. For a better visualization, the GaDe images have been
brightened by adding a number (50) to the gaze points’
values in the images. The first two columns are two normal
samples, one with good fixation (small deviation) and one
with relatively poor fixation (large deviation). The other three
columns from left to right represent strabismic samples of
recessive strabismus, intermittent strabismus, and manifest
strabismus, respectively. Note that the colors in the first
row represent the left and right gaze points, and the colors
in the second row represent the R, G, and B channels of GaDe
images. The two main observations can be drawn from
Figure 4. Firstly, gaze points with large deviations shown in
the first row are highlighted in the corresponding GaDe
images, and those with small deviations are inhibited. There-
fore, inaccurate gaze points would contribute more in recog-
nizing strabismus using GaDe images. Secondly, the data
distributions of normal sample with small deviation and
manifest sample are distinctive. They are easy to distinguish.
By contrast, the data distributions of normal sample with
large deviation and recessive or intermittent sample look
similar. It is difficult to distinguish them intuitively. That is
why we exploit CNNs to solve the problem. We expect that
CNNs as a powerful abstract feature extractor can extract
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strabismus, respectively.

distinctive features from different samples, so as to effec-
tively classify normal data and strabismic data. It is worth
mentioning that we focus on binary strabismus classification
rather than recognizing different types of strabismus in this
paper. The major reason is that we do not have enough data
for each strabismus type at this moment. However, we con-
sider that CNNs could extract useful features from GaDe
images of different strabismus types in case that sufficient
data are provided, and then the proposed method would
be well applied to recognizing strabismus types. We leave
this task for future work when we acquire sufficient data
for different strabismus types.

3.2. Experimental Results. We have in total 42 samples, with
25 normal samples and 17 strabismic samples. A leave-one-
out evaluation scheme is adopted. That is, each time one
sample is used for testing, and the rest 41 samples are for
training. We can thus have 42 different results. The 42 results
are averaged to get the final performance. LIBSVM [29] is
employed to implement SVM classification. A linear kernel
of a SVM is used for both the CNN method and baseline
method, and the SVM classifiers are trained using a two-
fold cross validation scheme. Table 1 tabulates the classifica-
tion accuracies of six CNN models (by row) using different
feature vectors (by column) extracted from three FC layers.
The final column represents the concatenation of all the six
feature vectors as a one feature vector. The accuracy of the
baseline method is 69.1. As can be seen from Table 1, the fea-
tures extracted from VGG-S overall perform the best. The
highest accuracy (95.2%) is achieved when the feature vector
L, of VGG-S is used. Feature vectors 1;, 1, 1;, and 1, outper-
form feature vectors 1; and I for most of the cases. One pos-
sible reason is that1;,1,,1;, and 1, extracted from the first two
FC layers contain richer features than 1. and l,. Note that
the concatenation of all feature vectors sometimes obtains
lower accuracy than that of some individual feature vec-
tors, as shown in the final column. The most important

TaBLE 1: Accuracies (%) of different CNN models. The accuracy of
the baseline method is 69.1.

Feature L L L 1, I I All
AlexNet 786 786 762 762 738 767 762
VGG-F 762 762 762 762 78,6 651 810
VGG-M 881 8.7 8.7 857 786 571 786
VGG-§ 857 810 786 952 762 791 833
VGG-16 833 810 762 810 762 674 833
VGG-19 810 786 81.0 810 714 628 833

finding from Table 1 is that the features extracted from six
CNN models perform much better than the baseline method,
except for some cases when the feature vector 1, is used. This
indicates that the CNN features can effectively characterize
the GaDe images derived from eye-tracking data. CNN fea-
tures can be a promising representation of eye-tracking data.

Specificity and sensitivity are two important metrics
to measure the performance of a medical classification
method. A good method should have high values for both
specificity and sensitivity. For our strabismus recognition
problem, specificity is defined as the percentage of normal
subjects who are correctly classified as normal and sensitivity
is defined as the percentage of strabismic subjects who are
correctly classified as strabismic. In order to study the spec-
ificity and sensitivity of our method, for each CNN model,
we select the result with the highest classification accuracy.
According to Table 1, the highest accuracies for AlexNet,
VGG-F, VGG-M, VGG-S, VGG-16, and VGG-19 are 78.6
(1,), 81.0 (column “All”), 88.1 (1), 95.2 (1), 83.3 (1,), and
83.3 (column “All”), respectively. We show the specificity
and sensitivity of the six CNN results as well as the baseline
method in Figure 5. Evidently, VGG-S possesses the best
specificity and sensitivity. Only one normal subject and
one strabismic subject are misclassified by VGG-S. The
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FIGURE 5: Specificity and sensitivity of different methods.

baseline method has a high specificity (84%) but a very
low sensitivity (47.1%). This means that the baseline
method is insensitive to strabismic data. It tends to classify
the data as normal. By contrast, the difference between spec-
ificity and sensitivity of CNN features is relatively small,
especially for VGG-S. This substantiates two things. Firstly,
the proposed GaDe images are able to effectively characterize
both normal gaze data and strabismic gaze data. The two
types of eye-tracking data can be well separated by GaDe
images. Secondly, the natural image features learnt by CNNs
can be well transferred to represent GaDe images.

Overall, the experimental results have demonstrated
that the proposed method is a promising alternative for
strabismus recognition. In the future, the accuracy can be
improved in two major ways. One way is to employ more
advanced pretrained CNN models for better feature extrac-
tion. The other way is to collect more gaze data, especially
data of different strabismus types. With sufficient data, we
would then be able to fine-tune CNN models, as a result
of which CNN models could learn more discriminative fea-
tures to boost the classification accuracy.

4. Conclusion

In this paper, we first design an eye-tracking system to
acquire gaze data from both normal and strabismic people
and then propose a GaDe image based on gaze points’ fixa-
tion deviation to characterize eye-tracking data. Finally, we
exploit CNNs that have been trained on a large real image
database to extract features from GaDe images for strabismus
recognition. Experimental results show that GaDe images are
effective for characterizing strabismic gaze data, and CNNs
can be a powerful alternative in feature extraction of eye-
tracking data. The effectiveness of our proposed method for
strabismus recognition has been demonstrated.
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