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Abstract: This review article is addressed to a broad community of polymer scientists. We outline
and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from
the point of view of polymer physics and review the articles on polymer systems published in
approximately the last two decades, focusing on their impact on macromolecular science. Special
attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation
and to the problems connected with the implementation of explicit electrostatics in DPD numerical
machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer
systems published recently documents the importance and suitability of this coarse-grained method
for studying polymer systems.
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1. Introduction

The self-assembly of amphiphilic block copolymers and the co-assembly of dou-
ble hydrophilic block polyelectrolytes are important phenomena that have been stud-
ied by experimentalists, theoreticians and computer scientists for several decades [1–14].
Self- and co-assembled nanoparticles find numerous applications in biomedical fields,
e.g., as carriers in the targeted delivery of drugs or genes in living organisms, as impor-
tant agents in radiotherapy and photodynamic therapy and as promising biomarkers and
biosensors [14–25]. Simultaneously, their applications are increasing exponentially in other
fields comprising various technologies and environmental applications. They find use in
catalytic systems [26–30], in the preparation of inorganic nanoparticles, where they serve
as templates for their self-assembly [31], in the fabrication of integrated circuits, photocon-
ductive devices and more [24,32–34]. The number of relevant experimental studies aiming
at either the basic principles and trends of polymer self-assembly or at their important
applications is so vast that it is impossible to cite all important studies, and we mention
above only a small fraction of the papers published.

In spite of the fact that high-molar-mass copolymers containing a long and strongly
hydrophobic block, such as a polystyrene, poly(methyl methacrylate), poly(1,4-butadiene)
or polyisoprene block, and a comparably long water-soluble poly(acrylic or methacrylic
acid), poly(2- or 4-vinylpyridine), poly(ethylene oxide) or polyoxazoline block are insoluble
in aqueous media, experimentalists soon revealed that the stable aqueous dispersions of
their self-assembled nanoparticles can be prepared indirectly [4,5,35–40] if the copolymer
is first dissolved in a common solvent for both blocks, i.e., in an aqueous mixture rich in
a suitable organic solvent. The second step assumes either (i) dialysis against aqueous
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buffers or (ii) selective evaporation of the organic solvent. A third method (iii) proposed a
few years later (called ‘quenching’) consists of the fast injection of the copolymer dissolved
in an organic solvent-rich mixture into an excess of the aqueous phase (water or an aqueous
buffer) under vigorous stirring [5,36,37]. We purposely discuss the methods of preparation
of aqueous micellar dispersions to remind readers that a high percentage of seminal
experimental studies on copolymer micelles with cores formed by hydrophobic high-molar-
mass and high-TG (glass transition temperature) blocks, such as polystyrene or poly(methyl
methacrylate), concern the kinetically arrested systems, the properties of which do not
correspond to reversible associates in aqueous media.

The decisive force driving the formation of polymeric micelles derives from the appre-
ciable decrease in enthalpy upon the minimisation of unfavourable interactions of insoluble
blocks with solvent molecules. However, this contribution does not control the associa-
tion number, shape or inner structure of the associates [41–47]. The ‘stop-growth’ factor
controlling the structural characteristics is the entropy aiming at the maximum disorder,
i.e., at associated structures enabling the maximum numbers of chain conformations in
cores and in shells. Because the enthalpy drives the process but the intricate entropy-
to-enthalpy interplay (dominated by entropy) controls the structural characteristics, the
self-assembly should be classified as the enthalpy-driven and entropy-controlled process.

The double-hydrophilic block copolymers containing a long polyelectrolyte (PE) and
a long neutral water-soluble block are the other class of application-promising materials
exploitable in medicine and in various nanotechnology fields [48–53]. In aqueous solutions,
they assemble into nanoparticles that contain one or a few insoluble inter-polyelectrolyte
complex (IPEC) domains stabilised by hydrated domains formed by the water-soluble
blocks [54–62]. The association proceeds spontaneously upon mixing the solutions of
oppositely charged double-hydrophilic copolymers or upon mixing the solutions of double-
hydrophilic copolymers with oppositely charged homopolymers.

Even though the electrostatic interactions are the prerequisite of the co-assembly, the
driving forces of the process do not derive from electrostatics. First, the Coulomb force
between two charges, q1 and q2, kept at a certain distance r from each other, is proportional
to q1q2/r2 and depends on the electric permittivity of the medium ε, but it does not
depend on whether the charged species are counterions or pendant groups on the PE
chain. Second, the electric charges on PE chains are fairly well compensated by the cloud of
counterions, which, depending on the density of PE charges, either move in the immediate
vicinity of chains or partly condense on PE chains [63] (the Manning condensation). The
cooperative effect of multiple interactions between oppositely charged PE chains and a
relatively low local ε in proximity to nonpolar chains promote the association process, but
the change in the electrostatic interaction energy is small and a considerable increase in
entropy [64] upon the formation of IPEC domains and the release of mobile counterions
into the bulk solvent drives the association. Contrary to intuitive expectation, the structural
characteristics of associates are neither controlled by electrostatics nor by the entropy
increase. The association number, size, shape and their inner structure depend mainly
on the hydrophobicity/hydrophilicity of PE blocks, on their compatibility with neutral
water-soluble blocks and further on their lengths, flexibility and interactions with small
ions [65–69].

In the last two decades, various composite nanostructured materials and multicompart-
ment micelles have been prepared by the simultaneous or sequential application of several
self- and/or co-assembling steps discussed above, their structure and properties have been
studied experimentally, theoretically and by computer simulations, and the most important
trends of their behaviour have been described in the literature [3,5,7,8,12,14,70–83].

In this review article, we describe the general principles and important results of the
coarse-grained computer modelling of the self- and co-assembly of block copolymers and
PEs in aqueous media, focusing on the recent progress achieved with this method and
on its impact on polymer science. We discuss the most important papers on the polymer
and PE self-assembly published in recent decades both with and without the explicit
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electrostatics. Our aim is to show the parallels between the assumptions used in DPD
and those used in polymer physics. In contrast to an excellent methodology-orientated
recent review by Neimark [84], we focus on DPD results elucidating intrigue and problems
of polymer chemistry that are not yet fully understood. The main goal is to inform a
broad community of polymer scientists on the advantages and benefits of coarse-grained
computer modelling.

2. Coarse-Grained Computer Modelling of Polymer Chains

Since the early application of Monte Carlo simulations by Ulam and his colleagues
in the Manhattan Project more than 70 years ago, computer modelling and computer sim-
ulations in particular have become important tools of physical, chemical, biological and
material research [85–89]. They enable checking of the correctness of theoretical hypothe-
ses and predictions and provide data that are either inaccessible or barely accessible by
experiments. Furthermore, in combined experimental and theoretical research, they offer a
relatively fast and cheap substitute for a substantial part of the tedious and expensive ex-
perimental work [90–94]. Thanks to enormous progress in computer technology, atomistic
simulations (even quantum simulations) of relatively large systems, such as enzymes and
catalytic or biocatalytic centres, have become feasible in recent decades [95–99].

The huge size and complexity of self-assembling polymer systems exceed the limits
of up-to-date atomistic simulations. A reasonable computer study of systems of interest
assumes simulations of hundreds of relatively long chains immersed in a pool of thousands
of solvent molecules. Moreover, the time and length scales of the dynamic processes con-
trolling the behaviour of self-assembling systems, which cannot be neglected in atomistic
simulations, span more than ten orders of magnitude. Successful research on associating
polymer systems thus calls for the use of gross coarse-grained simulation methods [100]. In
this review, we focus on one particular coarse-grained variant of molecular dynamics (MD)
called dissipative particle dynamics (DPD). The principle of DPD and all necessary details
of the computational machinery, including the parameter setting, are outlined in seminal
papers by Groot, Warren, Español and others [101–104] and in several reviews [84,105–107],
and in the papers cited therein. Another review on the coarse-grained modelling of soft-
matter systems, including DPD simulations, was presented by Holm and his collaborators;
see, e.g., Refs. [108–111]. Practically, DPD simulations can be carried out within popular
particle-based simulation packages such as LAMMPS [112] or with coarse-grained sim-
ulation packages such as DL_MESO [113], ESPResSo [114] or HOOMD-blue [115]. Here,
we focus on the simulation results contributing to the deepening of the knowledge of the
polymer self-organisation and self-assembly and on results indicating novel promising
applications. Nevertheless, in the following paragraphs, we briefly outline and discuss the
basic technical features of DPD simulations necessary for understanding the text.

In contrast to atomistic simulations and to fine coarse-grained methods, which study
the assemblies of molecules, DPD focuses on the behaviour of larger lumps of studied
systems, i.e., on clusters of several solvent molecules, polymer segments, solvated ions, etc.,
capitalising on the fact that larger parts of studied systems (called DPD beads) behave as soft
and mutually (more or less) interpenetrating objects that facilitate the numerical treatment.
DPD addresses the global behaviour on relatively large (mesoscopic) length scales and on
slow time scales, which means that a number of fast motions and short-range interactions
have been sacrificed for the sake of fast and smooth computations. However, their effect
cannot be neglected and is accounted for by the dissipative and random forces linked with
the fluctuation–dissipation theorem (FDT), which reflects the interplay of the ensemble-
average friction (which slows down the motion of DPD beads) versus the overall thermal
agitation (which accelerates the beads). The balance of dissipative and random forces then
serves as thermostat in DPD systems [116]. Analogously to other MD methods, the DPD
computational machinery consists of a numerical solution of the Newtonian equations of
motion for a system of DPD beads (i, j, k, ...) that mutually interact by conservative forces
Fc(rij) derived from the soft repulsive distance-dependent pair interaction potential Uc(rij).
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The DPD equations of motion are typically integrated by modified Verlet algorithms [117].
They allow the employment of values of the integration timestep ∆t of around 0.5 in reduced
units for DPD fluids, which are approximately an order of magnitude larger than those for
fluids modelled by hard-core potentials such as the Lennard-Jones potential. The values of
∆t need to be slightly reduced, typically to 0.01, when polymer models involve additional
rigidities such as stiff bonds or stiff bendings [118]. Larger values of ∆t can be adopted
when advanced integration algorithms, such as Shardlow splitting algorithms [119], are
used. However, the advanced integration algorithms are more computationally intensive
with respect to the modified Verlet algorithms. The stronghold and practical computational
advantage of DPD lie in the fact that the soft interparticle forces neither change abruptly nor
diverge at short distances, which permits long integration steps as compared to atomistic
simulations. This fact appreciably accelerates the simulations and, together with the gross
coarse-graining, allows for the study of mesoscale systems. The disadvantage of the coarse-
graining and high simulation speed is a loss of detail and a slightly foggy picture of the
behaviour. Nevertheless, if the model reproduces the essential features of the system
well and the forces are set correctly, DPD enables physically sound studies of complex
systems, which cannot be reasonably performed by any other simulation method. Another
stronghold of DPD consists in the fact that the short-range friction effect is treated explicitly
at the molecular level. In short, DPD is a powerful and versatile method for studying large
systems but its use covers non-negligible risks that have to be avoided. Before attempting a
DPD study, it is necessary to identify the properties that can be studied safely by the coarse-
grained method. Bearing the above message in mind, one has to analyse the simulation
results carefully with all due prudence and withstand the temptation to interpret unsafe,
tiny details.

Polymers are modelled in DPD as flexible, freely jointed chains or semiflexible chains,
e.g., worm-like chains [120], formed by DPD beads interconnected by ‘springs’ emulating
the covalent bonds (bead-spring model). The bonds connecting two neighbouring beads in
polymer chains are described by a combination of the stretching potential, e.g., the harmonic
(Hookean) potential [121,122], FENE (finitely extendible non-linear elastic) [123] or Morse
potential [124] and a soft repulsion potential. In studies of semiflexible chains, bond angles
(harmonic, harmonic cosine or cosine) [125–128] and/or dihedral bond potentials are also
used. The choice used most often is the combination of the harmonic bond stretching
potential, soft repulsion potential and the bond angle potential. An interesting alternative
approach for modelling the restricted chain flexibility was used recently by the Neimark
group and will be discussed later in more detail [121].

The optimum setting of interaction and bond parameters is the key condition for any
successful DPD simulation; therefore, it was investigated in several papers [123,125,129–133]
At first glance, it is surprising that simulations using fairly different values of bond and
interaction parameters provide almost identical descriptions of the behaviour of polymer
systems. We will discuss and explain this apparent ‘paradox’ in the following sections. First,
we focus on the construction of covalent bonds. Some authors use harmonic potentials with
a low spring constant and zero equilibrium distance, which they combine with a relatively
weak repulsion (comparable with other forces), i.e., the springs are fairly stretched [134].
Other authors prefer the spring potential with nonzero equilibrium distance and a high
spring constant between the mutually bonded beads [125,129]. As the average bond
stretching is similar in both cases and the local flexibility and conformational behaviour
of the chain are predominantly controlled by other parameters (e.g., by the bond angle
potential), the approaches differing in the modelling of the bond stretching provide highly
comparable simulation results. Strictly speaking, the former choice generates a chain that
is slightly more deformable than that based on the latter setting, but the difference in the
conformational behaviour is negligible at the coarse-grained level.



Polymers 2022, 14, 404 5 of 34

This review addresses a broad community of polymer scientists, the overwhelming
majority of whom are not experts in coarse-grained computer simulations. Therefore, we
feel obliged to explain three important facts, two arising from the definition and treatment
of non-electrostatic DPD forces and the third from the stability of numeric computations.

First, the original DPD method developed for nonpolar systems without electrostatics
and without specific interactions employs only two types of conservative forces: repulsive
forces acting between chemically non-bonded beads and forces emulating chemical bonds
in polymer chains, i.e., attractive forces between non-bonding beads, are missing. The
repulsive forces drop to zero at a cut-off distance, rC, which defines the size of the soft
bead. Such a strange ‘force field’ could be confusing at first glance for a number of polymer
scientists, but this concept is reminiscent of the Flory–Huggins (FH) approach, in which
the χ parameter compares the space-limited cross-interaction between components i and j
with the average of their like interactions ii and jj. Analogously to the FH theory, a weaker
repulsion between some components than that acting between other components emulates
the attractive DPD force.

Second, as all forces (in common non-electrolyte systems) are repulsive, the beads
representing the solvent exercise pressure p on the walls of the simulation box. This fact
enables the calibration of the repulsion forces of the studied system on the basis of the
dependence of the solvent compressibility, p/(ρkBT), on density, ρ (kB is the Boltzmann
constant and T is the system temperature). As most DPD simulations address aqueous
solutions, the experimental dependence of the the comressibility on density of water is
commonly used for the calibration.

Third, the overwhelming majority of published DPD studies have been performed
at a relatively high density of beads, ρ = 3 (in reduced DPD units, i.e., 3 beads in volume
(rC)3), which could be highly confusing for most experimentalists. The reason for using the
elevated density is simple. The stability of the numerical solution is much better at higher
densities than ρ = 1. However, such an explanation would not satisfy the experimentalists.
Fortunately, the statement can be supported by clear physical arguments. (i) As the calibra-
tion of repulsion forces is based on the density-dependent experimental compressibility,
the results of DPD simulations practically do not depend on the density (within the limits
of exploited simplifications). The higher the density, the stronger the repulsions between
the beads. Because this rule applies for all components of the system (the solvent as well as
the solutes), the strengths of solvent–solvent, solvent–solute and solute–solute interactions
vary analogously, which means that the global result of their interplay remains almost
the same. (ii) Real liquids, and water in particular, are barely compressible as a result of
the excluded volume of molecules. The DPD beads are soft and can partly interpenetrate
each other, which means that, at low densities, they do not feel the excluded volume effect
strongly enough. Even though the whole volume of the simulation box is filled in by soft
spherical beads at densities of around 1, the beads only touch each other and almost do not
overlap. As the inter-bead interaction potential drops to zero at the cut-off distance defining
the size of the DPD bead, the interaction energy of the whole system is very weak. At the
elevated density ρ = 3, the bead centres are relatively close to each other and important
repulsive forces between individual beads partially emulate the excluded volume effect,
i.e., the system of DPD beads behaves as a compressible liquid. This is documented by
the fact that the simulated radial distribution function for ρ = 3 shows a sign of damping
oscillations and is more reminiscent of that of real liquids than the RDF for ρ = 1 (see
Figure 1). Furthermore, Groot and Warren have shown, in their seminal papers [101–104],
that, starting at ρ = 2, the increment in the compressibility factor with density remains
constant, which indicates a self-consistent compressibility behaviour.

The questions as to whether the DPD method is scale-free and applicable in a wide
range of length scales or if and how the parameters scale with the size of DPD beads
(i.e., with the number of solvent molecules forming one bead) have been the subject of
several studies [101,135,136]. The results of these studies, supported by a number of spe-
cific application-orientated papers, indicate that the DPD simulations of static equilibrium
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properties of polymer systems (including the studies of the polymer self-assembly) based
on the mass of the bead, m, cut-off radius, rC, energy in kBT and the time unit defined
as τ = rC[m/(kBT)]1/2 correctly reproduce the experimental behaviour in the whole meso-
scopic range, provided that the relative differences between interactions of individual
components have been set appropriately. However, the simulations of dynamic proper-
ties, which are not a topic of this review, require the appropriate setting of parameters,
particularly the recalculation of the time unit at a given coarse-grained level [102,137–139].
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3. DPD from the Viewpoint of Polymer Physics: Mapping the DPD Model onto a
Realistic Model of Polymer Systems

DPD simulations are a very suitable tool for studying polymer chains, not only because
the polymer chains are long and their study requires the coarse-grained approach, but
mainly because the simplifying assumptions used in DPD respect the real behaviour of
polymer chains and are similar to those currently used in polymer physics. The classical
polymer theories treat polymer chains as a string of short linear segments that are connected
to each other, but their unrestricted or only partially restricted mutual orientations allow
for astronomically high numbers of conformations. The segments are characterised by the
length and by the excluded volume, which depends on interactions with other segments and
with the solvent. The overwhelming majority of theories of polymer solutions [64,140,141]
assume that one segment comprises several monomeric units, because the fixed valence
bond angles and barriers of hindered rotation restrict the set of mutual orientations of two
neighbouring monomeric units and only a short part of the chain (5–7 units, depending
on the complexity of their chemical structure) provides the flexibility required by the
models. Flexible polymer chains generally form random coils in dilute solutions (if their
behaviour is not affected by strong electrostatic or specific interactions). In θ solvents,
when the excluded volume effect of segments is compensated by relatively mild, attractive
segment–segment interactions (analogy of the Boyle temperature for gasses), the density
of segments in the radial distance from the gravity centre follows the Gaussian curve
and the coils behave as entropic springs, i.e., the energy needed for their expansion or
compression is proportional to the increase or decrease in the mean-square end-to-end
distance, respectively. The average density of segments in the coil is low in dilute solutions,
and the volume occupied by segments reaches only a few percent of the coil volume
depending on the chain length and solvent quality. In good solvents, the chains expand
(swell and the segment density decreases), and, in poor solvents/non-solvents, they shrink
and finally collapse. It should be stressed that the random coils formed by high-molar-mass
polymers do not obey the scaling laws of trivial 3D (constant density) objects. They are
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nontrivial fractal structures containing the self-similar motifs replicating at several length
scales (Figure 2), and a number of their unique features arise from the very high flexibility
of their parts at various length scales.
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simplifying model assumptions and the real behaviour.

When the polymer concentration increases and exceeds the concentration at which
the polymer coils fill in the whole volume and touch each other (concentration of the first
overlap, c*), the coils do not shrink, but they start to interpenetrate, which is accompanied
by sharp changes in the solution properties (e.g., by a huge increase in viscosity).

This shows that the whole polymer coils and their shorter parts, down to the level of
Kuhn segments, behave as soft, interpenetrating objects and meet the basic assumptions
of the DPD method very well. These facts were soon realised by the pioneers of DPD,
Groot and Warren, who applied the method on nonpolar polymer systems and mapped
DPD results onto the FH systems, which enabled them to derive a simple formula for
the recalculation of the Flory interaction χ parameters into DPD parameters of inter-bead
conservative forces.

χij = 2 α(r) ρ r3
c

(
aij −

aii + ajj

2

)
rc

kBT
(1)

where ρ is the total particle density, rc is the cut-off distance, and α(r) is a parameter
dependent on ρ. For ρ = 3, Equation (1) acquires the simple form

aijrc

kBT
=

aiirc

kBT
+ 3.27χij (2)

where aii = 75/ρ.
By this choice, the authors implicitly set the DPD polymer bead identical to the FH

segment (roughly corresponding to the Kuhn segment), even though they have not stressed
it explicitly (and have not redefined its mass and volume with respect to the solvent).
The success of DPD studies of polymer systems proves that this slight inconsistency does
not affect the results and confirms the flexibility of DPD applications [142–155]. This
inconsistency arises from the FH lattice theory itself, which postulates that the lattice sites
are either occupied by polymer segments or by the solvent, assuming that the sizes of the
polymer and solvent segments are comparable (viz. the calculation of molar and volume
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fractions). As the FH approach provides a sound description of polymer solutions and
overcomes the problem of the considerable size asymmetry of components, we believe
that this legitimises the FH-based parameter setting with all consequences. For the readers’
convenience, we recall that the χ parameter for a good (athermal) solvent, χ = 0, translates
into aij = 25; aij = 26.635 describes the θ solvent with χ = 0.5, and aij = 40 describes a poor
solvent (nonsolvent) for density ρ = 3 in a system where the solvent bead comprises three
molecules. Note that the interaction parameters used in computer simulations (not only
in DPD) are generally higher than those estimated experimentally for a given polymer
because the simulated chains are appreciably shorter than the real ones. Higher values
in simulations are theoretically justified by the condition for the phase separation of two
incompatible polymers, Nχ = 10. This equation shows that the effective chain repulsion
depends on the product of the chain length, N, and the interaction parameter for one bead,
χ. The shorter the chains, the higher the χ value needed to model the same effect of polymer
compatibility/incompatibility.

At present, the parameter setting has been significantly ramified and there are methods
regarding the chemical nature of the components [129] and DPD variants enabling the
simulation for mixtures of species, the beads of which differ in mass and size [156–159].

4. Electrostatics in DPD

Electrostatics were implemented in DPD by Groot and others [160–162]. The common
treatment of electrostatic interactions in polymer physics assumes that the charged PE bead
bears the elementary charge e and most DPD simulations of polyelectrolytes obey this
rule. Nevertheless, the treatment of electrostatic interactions in DPD is not straightforward.
In contrast to simulations that use the Lennard-Jones and the Coulomb potentials, both
strongly diverging at short distances, the application of the Coulomb potential is prohibited
in DPD because its use in combination with soft and non-diverging repulsion potentials
would cause catastrophic non-physical consequences (the collapse of the oppositely charged
beads on top of each other). Therefore, various tricks, e.g., a cut-off of the Coulomb potential
at short distances, addition of an impermeable core into the centre of the bead or addition of
a narrow impermeable cylinder emulating the bond [148,149,152–154,163,164] and others,
have been used.

Besides the solution of problems due to the divergence of electrostatic interactions, the
addition of impermeable domains also precludes the prohibited intersection of self-avoiding
chains. Note that neither the soft beads nor the springs representing the bonds prevent the
passage of one polymer chain though the other, and a simple DPD variant does not emulate
the entanglements that non-negligibly influence the rheology and viscoelastic behaviour
of real high-molar-mass polymers. Another approach, which significantly suppresses the
intersection of self-avoiding chains, consists of the addition of the spring–spring repulsion
to the bead–bead repulsion [153].

Thus far, a slight delocalisation of charges described by a common Slater-type expo-
nential charge distribution [161]

f (r) =
q e

π λ3 exp
(
−2r

λ

)
(3)

where q is the charge fraction, e is the electron charge and λ is the charge decay length, has
been used by most authors studying PEs by DPD. This treatment is inspired by the fact that
(i) the beads do not represent single atoms but larger objects and (ii) the potential describing
the interaction of delocalised (smeared) charges does not diverge at short distances. In this
case, the interaction between charged particles i and j is given as

uel
ij =

qiqj

rij
λBkBT

[
1− exp

(
−

2rij

λ

)(
1 +

11rij

8λ
+

3r2
ij

4λ2 +
r3

ij

6λ3

)]
(4)
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where λB = e2/(4πε0εrkBT) is the Bjerrum length (ε0 is the dielectric constant of a vacuum
and εr is the relative permittivity of the reference medium), and qi and qj are their electric
charges. Equation (4) can be reasonably approximated by

uel
ij =

qiqj

rij
λBkBT

[
1−

(
1 + βrij

)
exp

(
−2βrij

)]
(5)

where β = 5/(8λ). Equation (5) provides good accuracy at all relevant distances and
is slightly less computationally expensive when compared with Equation (4) and was
therefore used in a number of simulations.

Nevertheless, other types of charge smearing (e.g., linearly or exponentially decreasing,
Gaussian, etc.) have also been tested [160,162], and the published papers further differ
in the extent of delocalisation [134,161] and in the mathematical treatment of electrostatic
interactions [161,162]. Concerning the extent of charge delocalisation in Equation (3), a low
smearing constant, λ = 0.2 (spatially restricted delocalisation), ensures that the whole charge
(>99%) remains inside one bead. We believe that this delocalisation reflects the entity of PE
segments and small ions and realistically models the interactions and correctly emulates
the behaviour of real PE systems, which are controlled by the electrostatic vs. entropic
interplay and in which the entropy of small ions plays a crucial role. Nevertheless, it is fair
to say that larger spatial charge delocalisation (λ = 0.67) [161] also emulates the behaviour
of the PE solution well, which suggests that the degrees of delocalisation λ∈(0.2–0.7) do
not dramatically change the DPD results.

Figure 3 compares the distributions of the electric charge in space for λ = 0.2 and
λ = 0.67. In the latter case, an important part of the charge spreads outside the bead.
Figure 4a,b depict the r-dependence of the total pair interaction potential (and of its
electrostatic and non-electrostatic parts) and Figure 5 shows the effects of electrostatics on
the radial distribution function of evenly and oppositely charged beads for λ = 0.2 and 0.67.
It is obvious that the narrower charge smearing generates a stronger local effect, but the
shapes of the corresponding curves are fairly similar to each other.
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5. Recent Progress in DPD Modelling of Polymer and PE Self-and Co-Assembly

A number of interesting papers on DPD modelling of polyelectrolytes and surfactants,
and particularly on their organisation, self- and co-assembly, have been published in
recent decades. They focus on different research topics and can be divided roughly into
several categories: (i) methodology, development and improvement of the simulation
strategy and simulation machinery (improved codes, development and comparison of
different interaction potentials, more appropriate parametrisation of forces, etc.); (ii) general
studies of the most important trends of association processes in a wide range of conditions
(experimentally inaccessible features of the behaviour, detailed study of the interplay of
several contributions that cannot be separated in experimental studies, etc.); (iii) the use of
DPD in combination with experimental research to support the validity of conclusions or
to complete the experimentally inaccessible (or difficult of tediously accessible) pieces of
knowledge and (iv) studies aimed at the development and better understanding of specific
biomedical and technological applications. Because most authors combine several aspects
in one study, in the next section, we do not follow the outlined categorisation but discuss
the papers according to their main contribution to polymer science.

6. Studies Aimed at the Improvement of DPD Methodology and at Important Trends
of the Behaviour

As this review focuses primarily on the electrostatic co-assembly, the papers by
Gonzalez-Melchor et al. [161,165] deserve to be mentioned first. Using the potential of
electrostatic interactions between smeared charges expressed by Equation (5), the authors
applied the Ewald summation [166] for the enumeration of long-distance interactions and
proposed a suitable alternative to the original method developed by Groot [102]. Their
simulations provided data that compare well with those of Groot and the paper can be
considered a seminal DPD paper.

Using their method, Gonzalez-Melchor et al. later investigated the formation of elec-
trostatically stabilised complexes between oppositely charged copolymers. They focused
on the conformations of polycations and polyanions in nonstoichiometric mixtures and
found that a significant chain collapse occurs at the 60% charge compensation (see Figure 6).
They also studied the screening of electrostatic interaction by small ions and observed the
weakening of the aggregation tendency with the increase in ion concentration, which agrees
with experimental observations [167–170]. The paper provides important information and
is very interesting, but it is a pity that the authors neither reported the dependences of
association numbers on the composition of the mixture and on the salt concentration, nor
confronted their results with the famous van der Burgh [61] speciation diagram.

The problem of the appropriate treatment of non-diverging electrostatic forces is
one of the key questions of the successful DPD simulation of electrically charged sys-
tems and, therefore, several authors later tested the use of other non-diverging potentials.
Gavrilov et al. [143] studied the collapse of PE chains and the microphase separation in
PE blends using several potentials that diminish at short distances and formulated the
following requirements for a successful DPD simulation: (i) the potential used should be
identical to the Coulomb potential at distances larger than the closest distance between the
neighbouring molecules in the liquid state, (ii) it should be a smooth function of distances,
(iii) it should enable reasonably long integration steps and (iv) it should prevent significant
overlap of oppositely charged beads.

A few years later, Gavrilov et al. [171] investigated polar systems (formally uncharged)
using their DPD method with the electrostatics developed earlier. The polar units were
modelled as oppositely charged dumbbells (dipoles) orientated either parallel with respect
to the chain (i.e., incorporated into the chain) or perpendicular, i.e., semipendant (one part
inside the chain and the other outside). The authors concluded that this approach is suitable
for modelling polar polymers in polar solvents. They claim that the method ‘allows one to
deal with polar species explicitly, without the need to introduce local polarisability, making
it a powerful and robust tool’ for studying polar polymer systems.
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solution. The vertical dotted line indicates the ratio at which a change from an extended to a compact
complex structure appears for the systems with 0.1 M of NaCl. The arrows indicate the regions
of crossover from a drastic to a smooth conformational change. The insets on the left and right
show the polyelectrolyte complex for δ = 30% and 60%, respectively, at 0.1 M NaCl concentration.
(Republished with permission of Royal Society of Chemistry, from E. Meneses-Juarez, C. Marquez-
Beltran, J.F. Rivas-Silva, U. Pal, M. Gonzalez-Melchor, The structure and interaction mechanism of
a polyelectrolyte complex: a dissipative particle dynamics study. Soft Matter 2015, 11, 5889–5897,
doi:10.1039/C5SM00911A. Copyright 2021; permission conveyed through Copyright Clearance
Center, Inc.).

Applying the mean field calculations and DPD with explicit electrostatics,
Rumyantsev et al. [172] studied the phase segregation in systems of oppositely charged
polyelectrolyte blends. The study shows that the driving force derives from the incompat-
ibility of uncharged monomer units and the electrostatics strongly hinder the formation
of segregated domains and control their size. A certain drawback of the study lies in the
fact that the authors studied polymer systems without added counterions. Such systems
can be prepared, but most polymer blends form upon mixing two polyelectrolyte salts and
contain equivalent numbers of oppositely charged counterions. Nevertheless, the study
captures all decisive features of electrostatic co-assembly and correctly indicates the trends
of the behaviour.

An efficient DPD-based algorithm for simulating an electrolyte solution, which treats
the counterions as a dynamic and fluctuating ion cloud and enables the fast evaluation of
electrostatic contribution, was proposed by Medina et al. [173]. The method was elaborated
for low-molar-mass electrolytes and its function was tested by calculating the electroosmotic
flow in capillary electrophoresis, but the algorithm is suitable also for studying high-molar-
mass systems.

A slightly problematic paper on the behaviour of polyelectrolytes at the water–oil inter-
face was published by Nair et al. [174]. The authors set the parameters of non-electrostatic
interactions to reproduce the scaling properties of neutral polymers in water and in oil
and then they studied the effect of charges on the polymer and the effect of counterions.
However, they did not describe the treatment of electrostatic interactions (the employed
electrostatic potential, evaluation of the contribution of distant ions and more), which
strongly obscures the results and conclusions.
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Even more problematic are the papers published by Wang et al. [175] and by
Guo et al. [176]. The authors of the first paper simulated the pH-dependent behaviour
of a triblock copolymer composed of a water-soluble and a pH-sensitive (ionisable) block
attached to a strongly hydrophobic block. They used simulations without explicit electro-
statics and simply ascribed different parameters to the charged and uncharged units and
then were able to emulate experimental data.

In the second article, the solubilisation of doxorubicin into pH-sensitive copolymer
micelles composed of a cholesterol block, polyarginine and poly(histidine) block was stud-
ied by DPD simulations. Analogously to the previous paper, the increased solubility of
histidine units upon the protonation was treated by a significant decrease in the repulsion
parameter between the protonated histidine and water. We are of the opinion that simula-
tions of polyelectrolytes that do not take into account real physics and ignore electrostatic
interactions [176–186], even though they are fast and can emulate some properties (if the
interaction parameters are suitably set to reproduce experimental data), fail to describe
correctly the general trends of the behaviour (not speaking of their prediction), simply
because they do not capture the behaviour of counterions, the entropy of which acts as a
decisive driving force of the electrostatic co-assembly.

Concerning the DPD methodology, an important article was published by
Horsch et al. [187]. The authors addressed the phase behaviour of melts of block copoly-
mers with the finite length. They used several computer-aided methods and compared the
predictions from the FH theory with numerical results of molecular dynamics, Brownian
dynamics with and without hydrodynamics and with results of DPD and proposed a rela-
tionship between the parameters of the Lennard-Jones potential and DPD parameters. They
focused on the formation of the hexagonal cylinder phase (see Figure 7) and, in contrast to
an earlier study [188], found that its formation does not require the action of hydrodynamic
forces, as was believed earlier.

Important stimuli for the optimisation of coarse-grained methods come from the mul-
tiscale studies and from the papers that compare the results of DPD with other types of
simulations and/or with mean-field predictions [189–195]. Spaeth et al. [196] employed
the implicit solvent Brownian dynamics (BD) using the parameters proposed earlier by
Chen [197] and the explicit solvent DPD simulation. The authors emulated the experi-
ment by Kumar [198], who prepared stable core–shell polystyrene–b-poly(ethylene oxide)
PS–b-PEO nanoparticles by fast nanoprecipitation. The study showed that both methods re-
produced the experiment at the semiquantitative level and yielded similar aggregates (even
though they were smaller than those formed in experiments); only the BD-generated PEO
blocks were more expanded and the formation of associates and their growth proceeded
more slowly in BD than in DPD.

Some papers comparing different methods were devoted to the dynamics of PE chains
under flow. Even though we are interested in static properties, we feel obliged to mention
the paper by Jayasree et al. [199]. The authors compared the PE conformations under flow
generated by Brownian dynamics with full electrostatics and results of DPD simulations
with only the long-range part of electrostatic interactions treated by the Ewald summation.
They found reasonable agreement, which they attributed to the fact that the fast and short-
range dynamics of PE chains are strongly coupled with those of counterions. The paper
thus provides information that is important for DPD methodology and for the numerical
solution of equations of motion of charged species.

The flexibility of polymer and surfactant chains varies significantly and affects the
structure and behaviour of assembled nanodomains. Therefore, it is not surprising that this
topic attracted the interest of many research groups. The semiflexible chains are usually
modelled using the angle-dependent potentials, restricting the range of mutual orientations
of two (or more) successive bonds [127,128]. An alternative approach was applied by the
Neimark group, who addressed the effect of the restricted flexibility of surfactants on
their self-assembly in several publications [121,135,200]. They did not apply the angular
potentials, but, in addition to the bond forces between beads i and i + 1, which they modelled
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either by harmonic or by FENE potentials, they added analogous potentials between beads
i and i + 2 and i and i +3, confining the average distances between them to relatively large
values and thus stretching the chain. Quite recently, the group used another interesting
approach to the treatment of the angularly dependent coordination of multivalent metals
to polyelectrolyte chains using the predefined directions in the coordination sphere of the
metal atom [201].
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−3. (a) Interconnected tube structure obtained
using DPD with t = 1000 τ and (χN)eff = 23.7. (b) Hexagonal cylinder phase obtained using DPD
with t = 30 000 τ and (χN)eff = 23.7. (c) Interconnected tube structure obtained using soft BD
with t = 1000 τ and (χN)eff = 23.7. (d) Hexagonal cylinder phase obtained using soft BD with
t = 150,000 τ and (χN)eff = 23.7. (Copyright J. Chem. Phys., doi:10.1063/1.1814976).

7. Experiment-Inspired and Application-Orientated Papers

Numerous papers were inspired by experimental studies and aimed at prosperous
applications of self-assembling polymer and polyelectrolyte systems in various fields.
They offer the explanation of experimental results at the molecular level and provide
details inaccessible by experiments, including various specific application-orientated pieces
of information.

Great attention has been devoted to assembly in copolymer solutions and melts, to the
structure of assembled nanoparticles and to morphological transformations upon variation
of solvent composition, polymer concentration, ionic strength, etc. The behaviour of flexi-
ble polyelectrolytes and/or amphiphilic copolymers [69,91,105,106,174,178,193,202–206],
copolymers composed of linear and rigid blocks [127,128,207,208] and also hyperbranched
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copolymers [209–211] has been simulated and the decisive principles and trends of under-
lying processes have been described. Besides the above systems, the multicore assemblies
forming in mixtures of linear copolymers [212], the self-assembling amphiphilic homopoly-
mers [213], side-chain discotic liquid crystalline polymers [214], polymers tethered to
nanoparticles and mixtures of copolymers with nanoparticles [215,216] and the ‘shape am-
phiphiles’ [217–221] have been successfully studied by DPD. Because the most promising
and very intensively studied application of polymeric nanoparticles is the targeted transport
of drugs in living organisms and their controlled release [17,21,23,25], several DPD and com-
bined experimental–DPD studies have also been published recently [176,177,183,222–225].
Concerning biomedical applications, the relatively recent reviews by Biswas [225] and
Chen [226], and particularly the references therein, are of interest. However, it is a pity
that a high fraction of biomedically orientated DPD studies of pH-dependent ionised
systems do not use the explicit electrostatics, and this drawback significantly weakens
their importance.

The number of papers on the soluble self-assembled polymeric particles is very high
and we will discuss only a few of them in more detail, especially those addressing charged
systems and exploiting explicit electrostatics. An interesting paper was recently published
by Zhu et al. [227]. The authors combined DPD with Split Reactive Brownian Dynamics
(SRBD) [228], creating the Reactive DPD (RDPD), which enables the study of reacting
systems. Inspired by the behaviour of cell membranes and by papers by Wright [229], who
experimentally studied the molecular rearrangements in stimuli-responsive systems and
offered their computer-based interpretations, and by the simulation paper by Gumus [230]
on the morphology changes of kinetically trapped polymeric nanostructures upon the
addition of a nonsolvent, Zhu et al. successfully simulated the local shape changes of
polymer vesicles upon the microinjection of a droplet of a good solvent, which triggers
polymer swelling (see Figures 8 and 9).
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Figure 8. Microinjection of a droplet of SB that is 8.07% of the vesicle volume (15,584 beads) near the
surface of the vesicle at (a) t = 0, (b) t = 200, (c) t = 500 and (d) t = 5000. The polymer A block is shown
in blue, SB is coloured red and the polymer B block and SA beads are not shown. Panel (e) shows
t = 500 again, omitting SB to highlight the flattening of the lumen wall and the formation of a micelle
in the inner membrane. Panel (f) defines the aspect ratio (AR) as the ratio between the spans in the
z-direction and the y-direction. (Republished with permission of Royal Society of Chemistry, from
Q.Y. Zhu, T.R. Scott, D.R. Tree, Using reactive dissipative particle dynamics to understand local shape
manipulation of polymer vesicles. Soft Matter 2021, 17, doi:10.1039/d0sm01654c; Copyright 2021;
permission conveyed through Copyright Clearance Center, Inc.).
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green circle in panels (a,b) shows the circumference of the original vesicle as a guide to the eye.
(Republished with permission of Royal Society of Chemistry, from Q.Y. Zhu, T.R. Scott, D.R. Tree,
Using reactive dissipative particle dynamics to understand local shape manipulation of polymer
vesicles. Soft Matter 2021, 17, doi:10.1039/d0sm01654c; Copyright 2021; permission conveyed through
Copyright Clearance Center, Inc.).
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Posel et al. addressed the behaviour of poly(2-vinylpyridine)-b-poly(ethylene oxide)
(P2VP-b-PEO) in aqueous solutions [134]. The study was motivated by a very interesting
pH-dependent self-assembly and by the fact that some of the co-authors studied this self-
assembly experimentally [82]. PEO is a water-soluble polymer that dissolves in aqueous
buffers in a wide pH range. The deprotonated P2VP is strongly hydrophobic and insoluble
in neutral and alkaline aqueous solutions, but, after the protonation of the nitrogen atoms
at pH < 4.8, the charged P2VPH+ becomes readily water-soluble. The copolymer forms
spherical core–shell micelles with hydrophobic P2VP cores in alkaline and neutral solu-
tions. In acidic solutions, the micelles readily dissociate and the copolymer molecularly
dissolves because both PEO and the protonated P2VPH+ are highly soluble below pH
4.8. The formation/dissociation of micelles upon a slight pH change are reversible and
reproducible processes. As the sharp change in P2VP solubility in a narrow pH range
occurs without an appreciable chemical change in the polymer building units (it is a result
of the proton dissociation/association only), the system is ideal for the testing and proper
setting of the balance of non-electrostatic and electrostatic forces. Experimental molar
masses, MW (or association numbers), of micelles formed in alkaline solutions enable the
adjustment of the parameters of non-electrostatic interactions of P2VP and the comparison
of the pH-dependent dissociation of micelles emulated by DPD (using the experimental
acidic dissociation constant, KA

ap, of P2VP) with the corresponding experimental curve
provides a feedback control of the proper setting of the balance between non-electrostatic
and electrostatic forces.

The most important results of the simulation study are reproduced in Figure 10.
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Figure 10. Weight average association number 〈As〉W (dotted curve 3) and apparent radius of
gyration, (RG)〈As〉w, (solid curve 2) as functions of pHap. The effect of the salt is depicted by the
shift in the radius of gyration for ionic strength I = 0.1and I = 0.25 (dotted curve 1). (Reprinted
with permission from Macromolecules 2014, 47, 2503–2514, doi:10.1021/ma402293c. Copyright 2021
American Chemical Society).

In summary, the simulation study of the P2VP-b-PEO self-assembly, based on the
simplifying assumption that the average ionisation of P2VP units is proportional to the
pH-dependent ionisation degree, α, which can be enumerated from the definition of the
dissociation constant, KA

ap (of protonated beads behaving as independent univalent acids),

pH = pKap
A + log

α

1− α
(6)
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confirmed that the description used of electrostatic interactions with the charge decay
constant, λ = 0.2, and the parameters aij = 40 of non-electrostatic repulsive interactions
(i) between the non-protonated hydrophobic P2VP units and water and (ii) between mu-
tually incompatible hydrophobic P2VP and hydrophilic PEO blocks nicely reproduce the
experimentally observed association behaviour.

The other example of the fine tuning of electrostatic vs. non-electrostatic interaction
parameters [231] concerns the study of the solubilisation of ionic porphyrin derivatives (PR)
in the interpolyelectrolyte complex (IPEC) cores of block PE micelles. The PR solubilisation
in nanoparticles finds practical applications in medicine (in photodynamic therapy), but,
surprisingly, the embedding of ionic porphyrin derivatives in IPEC complexes almost
escaped the interest of researchers. PR are little soluble in aqueous media and form
several types of aggregates depending on the concentration, ionic strength, pH, etc. The
aggregation is a result of important π-π stacking. The attachment of pendant ionic groups
improves the solubility and restricts the aggregation tendency. The multiple charged PR
(bearing 2 to 4 charged groups) are usually reasonably soluble in low-ionic-strength buffers,
where they predominantly dissolve as monomers. Increasing the salt concentration screens
the electrostatic interaction, deteriorates the solubility and promotes the aggregation. The
ionic-strength-dependent experimental data on the solution behaviour of ionic PR in
aqueous media were used as the calibration gauge for the appropriate setting of interaction
parameters. Using the electrostatic potential described by Equation (5) and exploiting the
strategy of mapping DPD results onto the concentration-dependent and ionic-strength-
dependent experimental data on porphyrin solutions [232–234], the authors obtained
the optimum parameters for non-electrostatic porphyrin–porphyrin, porphyrin–water,
porphyrin–pendant group and pendant group–pendant group repulsion parameters, which
they further used for predicting PR solubilisation in IPEC complexes.

An interesting DPD study of the complex process comprising the combination of
electrostatic co-assembly and amphiphilic self-assembly was recently published by a team
of experimentalists and computer scientists. They studied the formation and properties of
onion micelles prepared by mixing preformed core–shell micelles composed of hydropho-
bic cores and cationic polyelectrolyte shells with a double-hydrophilic block copolymer
composed of an anionic block and a water-soluble poly(ethylene oxide) block [235]. The
simulation proved that the three-layer micelles with the compact central hydrophobic block,
compact middle interpolyelectrolyte complex layer and the diffuse stabilizing water-soluble
shell form not only in mixtures of pre-aggregated core–shell micelles, but also upon the
transfer of the components dissolved in a common solvent into a selective aqueous medium.
An example of the simulation results is reproduced in Figure 11.

Steric confinement strongly influences the assembly of polymers and represents a
powerful tool for controlling and manipulating the shape and internal structure of created
nanoparticles. The strategy of preparation of novel nanostructures under confinement was
exploited by a number of experimental research groups [236–240]. More examples can be
found in the review by Yabu [241]. The impact of the confinement and the trends of the
behaviour were also studied theoretically by SCF [242–244] and by computer simulations,
including DPD [245–247].

A non-negligible fraction of DPD papers were devoted to studies of various block
copolymer membranes (semipermeable, porous and others), narrow films and tethered
polymer brushes. From a theoretical point of view, the flat and low-curvature surfaces and
interfaces represent a mild 1D confinement sterically restricting polymer conformations.
Here, we discuss the porous membranes in more detail because they find important
applications in many biomedical and technological areas. A fairly reproducible, controllable
and simultaneously relatively facile method of preparation of porous membranes consists
of the dissolution of a suitable copolymer (usually a hydrophobic–hydrophilic one) in a
common solvent for both blocks and in a fast transition into a solvent (commonly water) that
is poor for the hydrophobic block. In solutions containing ca. 30–40% of the copolymer, the
self-assembly process leads to fairly regular membranes consisting of a dense hydrophobic
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matrix perforated by regularly arranged spherical holes with a surface covered by the
soluble blocks. This method, called non-solvent-induced phase separation (NIPS), was
successfully applied by a couple of experimental groups [248–251]. Several authors used
DPD to confirm the self-assembling mechanism of NIPS proposed by experimentalists,
focusing on the effects caused by the concentration, lengths of blocks and others on the
structure, regularity and stability of the prepared membranes [252–255].
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Figure 11. Weight distribution function, Fw(As), of association numbers, As, for the pre-aggregated
micelles A5B5

+ with ∆aBS = 0 (B block compatible with the solvent—black dashed curve), for onion
micelles formed by A5B5

+ micelles and C7B5
− chains with ∆aBS = ∆aBC = ∆aBI = 0 (B block compatible

with the solvent, with block C and with counterions—red curve) and for systems with increasing
compatibility of blocks (∆aBS = ∆aBC = ∆aBI = 3.5—blue curve and ∆aBS = ∆aBC = ∆aBI = 5.0—green
curve). The left-hand-side insert shows a typical snapshot of associates with ∆aBS = ∆aBC = ∆aBI = 3.5
and the right-hand-side one shows a snapshot for the value of 5 (beads A—red, beads B—blue
and beads C—green). (Reprinted with permission from Macromolecules 2020, 53, 6780–6795,
doi:10.1021/acs.macromol.0c00560, Copyright 2021 American Chemical Society).

Recently, Karunakaran [256] succeeded in preparing porous membranes also in sys-
tems of double-hydrophobic copolymers. In contrast to the previous system, the mechanism
of membrane formation is not clear. Jiang et al. [257] performed an extensive study of
a series of polystyrene-b-poly(methyl methacrylate), PS5-b-PMMA25 to P305-b-PMMA25
samples in good and bad solvents. Using a GALAMOST DPD method [258] in a large
1003 box (recalculated according to a standard volume of water to a 653 box), they studied
the effect of concentration, length of blocks and the quality of the common solvent. They
found that fairly regular porous membranes form spontaneously in solutions containing
30–40% of the polymer component. In dilute solutions, small spherical aggregates with PS
cores form, and, in highly concentrated solutions, various irregular dense structures form.
The study indicates that the polymer concentration is the crucial factor for the successful
preparation of porous membranes. The relative length of blocks and the choice of the
common solvent (interacting differently with individual blocks) affect the structure of the
membrane (e.g., size of the pores), but both factors play only a minor role because stable
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membranes form in all studied systems in the region between 30% and 40% of polymer
content. The study reveals that the success of the method comes from the difference in hy-
drophobicity between both blocks and elucidates both the slightly unexpected mechanism
of the self-assembly and the good reproducibility of the preparation porous membranes.

A few years ago, the area of functional zwitterionic membranes was addressed by the
research group of Zhou. They studied the pH-responsive zwitterionic membranes formed
by hydrophobic–hydrophilic diblock copolymers decorated by a short, rigid, hydropho-
bic sticker [259]. The DPD study with explicit electrostatics is interesting and shows the
general self-assembling behaviour of this type of copolymer. However, the conclusion
that the authors designed and developed a new system based on docosahexaoinic acid-
b-poly(γ-benzyl L- glutamate-b-poly(carboxybetaine methacrylate) suitable for drug (dox-
orubicin) delivery and investigated its properties is, in our opinion, unjustified. This claim
is not supported by experimental data and the authors used only the coarse-grained DPD,
applying the repulsion parameters for the nonpolar interactions from Material Studio 7.0,
thus ignoring all potential chemistry caprices.

A recent study of the same research groups addresses membranes for separation
technologies. Membranes based on polyvinylidene fluoride (PVDF) decorated by zwitteri-
onic polymer brushes are suitable materials, e.g., for seawater desalination, wastewater
treatment and more. As it was reported that adding silica particles during their preparation
improves their mechanical stability [260] and that the decoration of inorganic particles by
zwitterionic polymer brushes enhances the compatibility of the components [261,262], the
group performed a study of the formation of mixed membranes [263]. They found that
grafted nanoparticles gradually migrate to the surface of the membrane and form a fairly
uniform layer there.

The formation, structure and properties of nanostructured membranes are also very
important topics for modern lithography. Stoychovich et al. have shown experimentally
that the directed assembly of copolymers on chemically patterned surfaces can produce
useful structures for the fabrication of integrated circuits [264]. Inspired by this study,
Takahashi et al. [265] performed targeted DPD simulations, reproducing the copolymer
self-assembly in trench and cylindrical holes. They optimised the level of coarse-graining,
the bond parameter and the interaction parameters and obtained reasonable agreement
with experimental data. Even though the parametrisation was based on physical principles,
the authors focused strictly on one experimental system only and, being aware of this weak
point, they neither discussed general trends nor offered any predictions of the behaviour of
other membranes used in lithographic procedures.

Other types of important polymeric materials are the hydrated selectively perme-
able membranes (particularly the Nafion membranes), which play a crucial role in fuel
cells. Their study has represented a hot topic for experimentalists [266,267], theoreticians
and computer scientists for several decades, and it is not surprising that several recent
DPD studies have addressed the fuel cell membranes [124,253,268–273]; the last two pa-
pers unfortunately study the electrically charged system without explicit electrostatics,
which restricts their impact. On the other hand, the papers on hydrated membranes
published by the Neimark group [124,271,273] are of special interest because they also
contribute significantly to the methodological progress in DPD modelling. Using the short-
range Morse potential for the interaction of protons with water molecules, the authors
developed a suitable model for proton dissociation, which extends the use of DPD for
reactive systems.

Relatively recently, DPD was applied to emulate and elucidate the chemoepitaxy and
graphoepitaxy preparation of thin films [274]. The authors reparametrised the density,
bond distance, inter-bead potential and noise ratio. After they increased the system density
to 5 and set r0 = 1 and K = 40 in the harmonic bond potential, they were able to reproduce
the structures formed in real systems by their modified DPD simulations.
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The behaviour of copolymers and polymeric nanoparticles at interfaces is not confined
only to membranes and thin films. It covers a broad spectrum of phenomena important
from the viewpoint of colloid, polymer and interface science and offers various techno-
logical applications. Consequently, a number of theoretical computer studies included
multiscale approaches and DPD (see the Special Issue of Interface Science published in
2020 [275,276]). Guskova et al. [277] studied the directed assembly of polymer-grafted
nanoparticles on the surfaces of phase-separated copolymer brushes and reported the
formation of various regularly arranged nanodot and nanowire systems. The authors
offered some rules facilitating the design and optimisation of this class of nanomaterials.
Another interesting paper was published by Gumerov et al. [278]. The authors studied
the behaviour of arborescent (dendrograph) copolymers at the oil–water interface. The
arborescent copolymers are highly branched high-molar-mass dendritic molecules, first
prepared and studied by cooperating Gautier and Möller teams [279] and independently
by Tomalia et al. [280]. They contain linear sequences of monomer units differing in
solvophilicity/solvophobicity and offer a number of potential applications as templates for
the preparation of metallic nanoparticles [281], drug delivery [282] or as efficient additives
for polymer processing [283]. In agreement with experimental observations, the study
shows that the arborescent copolymers of the second and third generation are fairly spheri-
cal in common, good solvents. In selective solvents, they almost do not aggregate, but form
unimolecular micelles. They flatten at the liquid–liquid interfaces and their conformation
and properties depend on the quality of the solvents used. Depending on their amount
in the system, they form both loose and dense nanostructured or homogeneous films at
interfaces and the study indicates that they can be used as efficient emulsifiers. The confor-
mations created at interfaces are depicted in Figure 12. Qualitatively similar behaviour of
flexible polymeric dendrimers at interfaces in porous media was recently reported also by
X. Wang et al. [284].

The simulation trajectory starting from a random mixture of molecularly dispersed
chains emulates the time evolution of the self-assembling system at the DPD level. If the
coarse-grained model captures all decisive features of the real system and all parameters
have been well set, the time evolution of the simulated system provides valuable informa-
tion on the growth of aggregates and on the parameters that affect it. Hence, several authors
have studied the kinetics of the aggregation process and investigated the role of the polymer
chain architecture, relative lengths of blocks, solvent quality and others [229,285–287].

Recently, Ye at al. [288] published the results of large-scale DPD simulations in simula-
tion boxes 1003 and 1503 containing 20k to 80k copolymer chains (A12B6 to A12B8). They
used a LAMMPS code and performed massively parallel simulations. They studied the
time evolution of the self-assemblies and observed the step-wise growth of nanoparti-
cles formed by the fusion of smaller ones. First, relatively small spherical and rod-like
micelles formed in the selective solvent; later, they transformed into membrane-like as-
semblies, which finally bent and formed the vesicles. The final stages usually contained
mixtures of various types of nanoparticles, including single-wall and multilayer vesicles
and core–shell and onion micelles. The results are interesting. The simulations revealed
the presence of low fluctuating fractions of single chains and the authors claim that it
is the first time that the simulations have shown the dynamic exchange of chains. This
statement is incorrect because the dynamic exchange of unimer chains among micelles
was reported earlier, e.g., in papers based on the cooperation of the Procházka and Lísal
groups [67,69,105,106,134,289]. Moreover, Ye et al. used fairly high repulsion parameters
(aAB = aAS = 50) to model the incompatibility of the A and B beads and the insolubility of
the solvophobic beads A vs. the standard value aii = 25 for the similar beads. Therefore, it
is unclear whether the ultimate simulation stage in systems with longer insoluble blocks
than soluble ones could be the macroscopic precipitation of the copolymer and how the
shape, size and association number of associates would change in systems with lower
repulsion parameters. Some simulations of other authors (e.g., the Lísal and Procházka
group) suggest that the worsening of the thermodynamic quality of the solvent and the
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consequent retardation of the dynamic exchange of chains between associates can lead to a
stepwise increase in the association numbers simply because the system remains arrested
for relatively long times in fairly frozen states. Nevertheless, information on the fusion
mechanism is interesting and the paper is worth studying.
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Figure 12. Snapshots of single arborescent copolymers and block copolymer microgel adsorbed at
the interface of two immiscible liquids. (a) First column corresponds to the case when the upper (oil)
and bottom (water) liquids act as good solvents for the green (B) and the grey (A) beads, respectively,
and vice versa (aAW = aBO = 25, aAO = aBW = 40). (b) Second column shows the regime when water
is a good solvent for the A beads, poor solvent for the B beads and oil is a poor solvent for both
polymeric beads (aAW = 25, aBO = 40). (c) The third column represents the swelling of minor (B)
component in the oil (aBO = 25, aAW = 40). Finally, (d) the fourth column demonstrates deformation
of the molecules insoluble in both liquids (aAW = aBO = 40). (Reprinted with permission ACS from
Appl. Mater. Interfaces 2017, 9, 31302−31316, doi:10.1021/acsami.7b00772. Copyright 2021 American
Chemical Society).

8. Summary and Concluding Remarks

The main purpose of this critical review is to inform the broad community of poly-
mer scientists on the coarse-grained DPD computer simulation method, with its impact
on polymer science and particularly on its contribution to the field of self-organisation
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and self-assembly of amphiphilic copolymers and polyelectrolytes. In the first sections,
we elucidate the principles of DPD simulations from the viewpoint of general polymer
physics, trying to explain the essential assumptions and some mathematical tricks to lay
people in computer science. In contrast to the recent well-written, methodology-orientated
reviews [84,290], we focus on the results of recent papers and on their contribution to
the broadening of knowledge on self- and co-assembling processes in systems containing
polymers, polyelectrolytes and surfactants. In the second half of the paper, we review DPD
papers published in roughly the last two decades, analysing their usefulness for polymer
science and for biomedical and various technological applications.

The enormous number of successful DPD studies on polymer systems and on pro-
cesses of their spontaneous assembly and organisation show that DPD is robust and
simultaneously versatile for studies of polymer systems. Not only has the power of state-
of-the-art computers increased tremendously in recent years, but the methodology of DPD
simulations has also improved considerably and various studies of large complex systems
are now possible. There are prescriptions and databases for the relatively accurate set-
ting of interaction parameters for individual biomedically or technologically interesting
systems; various program packages enable simulations with different masses and sizes
of DPD beads, simulations of entanglements in systems of self-avoiding chains, studies
of polymers at both permeable and impermeable interfaces and sophisticated studies of
electrically charged polyelectrolytes, including weak polyelectrolytes and other reversibly
dissociating/associating systems. In spite of this, still, a non-negligible fraction of papers
of the pH-dependent behaviour of self-assembling polymer systems published in recog-
nised journals (particularly in biomedical ones) do not use the DPD variant with explicit
electrostatics, but rather the ‘ion-free’ approach. We would like to repeat once more that
the simulation model should be based on real physics and should involve all important
interactions and particles contained in the system to be modelled, particularly in the case
when the entropy of counterions plays a very important role and is in fact the decisive
driving force of the electrostatic co-assembly.
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Aspects of Coassembly of PEO–PMAA Block Copolymer and DPCl Surfactants into Ordered Nanoparticles in Aqueous Solutions
Studied by ITC, NMR, and Time-Resolved SAXS Techniques. Macromolecules 2013, 46, 2172–2181. [CrossRef]
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