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Abstract
Triple- negative breast cancer (TNBC), a heterogeneous tumour that lacks the expres-
sion of oestrogen receptor (ER), progesterone receptor (PR) and human epidermal 
growth factor receptor 2 (HER2), is often characterized by aggressiveness and tends 
to recur or metastasize. TNBC lacks therapeutic targets compared with other sub-
types and is not sensitive to endocrine therapy or targeted therapy except chemo-
therapy. Therefore, identifying the prognostic characteristics and valid therapeutic 
targets of TNBC could facilitate early personalized treatment. Due to the rapid devel-
opment of various technologies, researchers are increasingly focusing on integrating 
‘big data’ and biological systems, which is referred to as ‘omics’, as a means of re-
solving it. Transcriptomics and proteomics analyses play an essential role in exploring 
prospective biomarkers and potential therapeutic targets for triple- negative breast 
cancers, which provides a powerful engine for TNBC’s therapeutic discovery when 
combined with complementary information. Here, we review the recent progress of 
TNBC research in transcriptomics and proteomics to identify possible therapeutic 
goals and improve the survival of patients with triple- negative breast cancer. Also, 
researchers may benefit from this article to catalyse further analysis and investigation 
to decipher the global picture of TNBC cancer.
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1  |  INTRODUC TION

Breast cancer is the most commonly diagnosed cancer and the lead-
ing cause of cancer death in women worldwide.1 Different breast 
cancer subtypes have distinct biological, morphological, histologi-
cal, and molecular features and display different therapy responses. 
Triple- negative breast cancer (TNBC), a heterogeneous subtype 
characterized by the absence of oestrogen receptor (ER), progester-
one receptor (PR) and human epidermal growth factor receptor 2 
(HER2), represents 12% to 17% of all breast carcinomas.2 It is often 
seen in younger and premenopausal women and more frequently in 
African- American women.3 A study has shown that they preferen-
tially metastasize to the brain and have a higher recurrence poten-
tial and often worse prognosis than other breast cancer subtypes.4 
Given the lack of specific molecular targets, TNBC treatment is 
mainly based on surgery and assisted with radiotherapy and chemo-
therapy.5 Chemotherapy includes neoadjuvant chemotherapy and 
postoperative chemotherapy. The effect of long- term chemother-
apy is significantly reduced due to therapy resistance, which easily 
leads to tumour recurrence and distant metastasis.6,7 Less than 30% 
of women with metastatic breast cancer will survive five years after 
initial diagnosis despite systematic chemotherapy and virtually all 
metastatic TNBC patients eventually die of this disease.8 Therefore, 
by analysing the essential characteristics of TNBC and using effec-
tive indicators to determine the clinical prognosis, it is possible to 
find a suitable alternative therapy by exploring the specific treat-
ment targets.

Transcriptomic investigations have been used to investigate 
promised biomarkers and potential therapeutic targets for human 
tumours.9 Microarray analysis helps to measure the gene expression 
levels via complementary probe hybridization, and a variety of breast 
cancer- related genes have been found.10,11 Moreover, the broad uti-
lization of RNA sequencing (RNA- seq) technologies has dramatically 
expanded our knowledge of breast cancer.12 Utilizing RNA- seq, we 
can quantify genes that are expressed at extremely low levels.13

Proteomics approaches have emerged as a powerful technique 
for performing protein profiling and discovering novel biomarkers 
associated with cancer.14 Targeted proteomics offers new strategies 
for validating these candidate biomarkers’ diagnostic, prognostic, or 
predictive performance, which can be precisely quantified in a large 
cohort of clinical samples. There are two types of targeted proteom-
ics approaches: non– MS- based methods that use protein detection 
antibodies (Western blot, ELISA, immunohistochemistry and reverse- 
phase protein array) and MS- based methods (mass spectrometry 
imaging, targeted proteomics and next- generation proteomics). The 
rapid advancement of proteomics offers a unique opportunity to in-
vestigate the proteome of triple- negative breast cancer further.

Traditionally, four different subtypes of breast cancer have been 
identified based on the expression of three molecules: the oestrogen 
receptor (ER), the progesterone receptor (PR) and the human epi-
dermal growth factor receptor 2 (HER2). Triple- negative breast can-
cer (TNBC), one of these subtypes, is characterized by the absence 
of all three receptors. Subtypes of breast cancer can be classified 

according to their molecular characteristics as (1) Basal- like (Triple- 
negative), (2) Luminal A, (3) Luminal B and (4) HER2- positive, and 
additionally Normal- like and Claudin- low.3 Most basal- like tumours 
are triple- negative breast cancers, but not all.

Our current understanding of breast cancer biology is more com-
prehensive than ever. Various molecular subtypes of breast cancer 
have been elucidated using genomic profiling strategies and other 
major technological discoveries, opening new windows into breast 
cancer treatment and research. However, the basal- like (Triple- 
negative) subtype, the most distinct among all the intrinsic subtypes 
of breast cancer, has not been well characterized.15 A genomic study 
has also revealed that the basal- like (Triple- negative) breast cancer 
subtype is not only distinct among other breast cancer subtypes but 
also other cancer types.16 A further subclassification of this aggres-
sive cancer subtype is urgently required to help develop more tar-
geted treatments for TNBC patients with better clinical outcomes.

Proteomics and transcriptomics are already impacting TNBC re-
search, and this article reviews the latest prognostic studies of TNBC 
through proteomics and transcriptomics to better understand TNBC 
and its potential therapies.

2  |  TR ANSCRIPTOME ANALYSIS OF TNBC

2.1  |  Sequencing analysis of whole transcriptome

With the deep understanding of genes and the application of high- 
throughput technology continues to mature, the prognosis can be 
determined by constructing a gene expression scoring system or 
typing according to the characteristics of TNBC gene expression 
profile.17 At the same time, prognostic indicators can be obtained by 
sequencing and analysing the whole transcriptome of each subtype 
of the tumour. Lehmann et al. classify TNBC into seven subtypes 
based on a comprehensive transcriptomic analysis of 21 data sets for 
breast cancer.17 These include two basal- like subtypes (BL1 and BL2), 
an immunomodulatory subtype (IM), a mesenchymal subtype (M), a 
mesenchymal stem- like subtype (MSL), a luminal androgen receptor 
subtype (LAR) and an unstable unclassified set (UNS). Specific genes 
linked to cell proliferation and DNA damage response are strongly 
expressed in the BL1 subtype and this subtype preferentially re-
sponds to cisplatin and poly (ADP- ribose) polymerase (PARP) inhibi-
tors. The BL2 subtype is enriched with genes associated with growth 
factor pathways, suggesting that growth factor inhibitors may be ef-
fective for the BL2 subtype. The IM subtype has abundant genes 
involved in immune- mediated reactions, and programmed cell death 
1/programmed death- ligand 1 (PD1/PDL1) inhibitors are expected 
to be a hopeful therapeutic option for this subtype. Both subtypes of 
M and MSL explicitly express genes relevant to cell motility, cellular 
differentiation, and growth factor pathways, while the MSL subtype 
expresses lower proliferation genes than those present in the M sub-
type. For these two subtypes, the mammalian target of rapamycin 
(mTOR) inhibitors and targeted epithelial- to- mesenchymal transition 
(EMT) agents are candidate drugs. The LAR subtype is named for 
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the AR enrichment, and anti- androgen treatments (eg bicalutamide, 
an AR antagonist) are undergoing clinical trials.18 Liu et al. analysed 
the transcriptome data and found four molecular types, which were 
named FUSCC typing, including immunomodulatory (IM), luminal 
androgen receptor (LAR), mesenchymal- like (MES), Basal- like and 
immunosuppressive (BLIS),19 the first two types are basically con-
sistent with IM and LAR in Lehmann's study.17

Further analysis of this study found that MES with FUSCC typing 
contained mesenchymal stem cell- like (MSL) and mesenchymal (M) 
in Lehmann typing, while BLIS mainly included basal cell- like 1 (BL1) 
and M. Survival analysis suggested that the relapse- free survival 
(RFS) of BLIS type was worse than IM, LAR and MES.

Besides, the analysis of overall survival (OS) and RFS showed 
that the changes of differentially expressed genes were firmly re-
lated to the prognosis of the tumour. Yang et al. compared the ex-
pression profiles of mRNAs, lncRNAs and miRNAs between 111 
TNBC tissues and 104 non- cancerous tissues utilizing RNA- Seq 
Data from The Cancer Genome Atlas (TCGA). Data indicated that 
LHX1, WISP1 and S1PR1 were inversely related to patients’ overall 
survival, while SORBS1 was positively correlated with OS.20 Liu et al. 
used the biomarker combination of ALDH and CD24/CD44 to sort 
four populations isolated from triple- negative breast cancer (TNBC) 
patient- derived xenografts, and performed whole- transcriptome 
sequencing on each population. They found that in ALDH+CD24−
CD44+ breast cancer stem cells, those with high expression of 
P4HA2 and PTGR1 and low expression of RAB40B had shorter RFS, 
indicating these genes might be important prognostic markers in 
TNBC.21 Chen et al. validated HORMAD1 mRNA levels were sig-
nificantly upregulated in both breast cancer cell lines and clinical 
samples using qRT- PCR, and survival analysis suggested that its high 
expression was associated with worse RFS.22 The conclusion was 
also confirmed by immunohistochemical detection and clinicopath-
ological information analysis. Li et al. analysed the CCR7 gene am-
plification and mRNA expression levels and found that the prognosis 
of patients with positive CCR7 expression was significantly better 
than those with negative expression in TNBC patients.23 Although 
these studies lack uniform standards, they can be used as a clinical 
prognostication of tumour therapy to some extent.

2.2  |  Non- coding RNA sequencing analysis

Most human genes have no function of coding proteins, and their 
transcriptional products are non- coding RNA (ncRNA), including 
long non- coding RNA (lncRNA), microRNA (miRNA), circular RNA 
(circRNA) and many more, which participate in the process of cell 
biology at different levels such as post- transcription, translation and 
epigenetics.24

Long non- coding RNAs (lncRNAs) are independently transcribed 
RNA species greater than 200 nucleotides that lack open read-
ing frames (ORFs). Functionally characterized lncRNAs have been 
shown to act as transcriptional enhancers, transcription factor de-
coys, transcriptional guides, scaffolds for molecular interactions and 

competitive endogenous RNAs (ceRNAs) that sponge miRNAs and 
proteins and other molecules.25 Many lncRNAs promote cancer de-
velopment, metastasis, drug resistance and abnormally expressed in 
various tumours and play an indispensable role in TNBC, support-
ing their potential clinical relevance.26,27 Lin et al. found that both 
LINK- A expression and LINK- A- dependent signalling pathway acti-
vation are associate with triple- negative breast cancer, promoting 
breast cancer glycolysis reprogramming and tumorigenesis, leading 
to poor prognosis.28 Tao et al. showed that E2 significantly upreg-
ulated HOTAIR’s expression in MDA- MB- 231 and BT549 triple- 
negative breast cancer cells by inhibiting miR- 148a and promoting 
the migration of TNBC (Figure 1).29

It is worth noting that ERRLR01 and MALAT1 are also regulated 
by the E2 hormone signalling pathway and participate in TNBC migra-
tion and invasion.30,31 One study identified potential core lncRNAs 
in TNBC by co- expression networks and found that the patients with 
low expression of potential core lncRNA- RMST (rhabdomyosarcoma 
2) had worse overall survival.32 Wang et al. analysed five lncRNAs 
(ENSG00000250337, ENSG 00000224137, ENSG00000266088, 
ENSG00000238121 and ENSG00000260257) models to evaluate 
the prognosis of breast cancer and found that the model is inde-
pendent of other scoring systems, suggesting that these indicators 
could distinguish breast cancer subtypes.33 LncRNA also has a 
‘sponge function’ (Figure 2), Xu et al. demonstrated that long non- 
coding RNA ANRIL overexpression modulated TNBC tumorigene-
sis through acting as molecular ‘sponge’ for miR- 199a, participating 
in a variety of pathophysiological processes.34 Other studies also 
showed that LncRNA AWPPH and lncRNA POU3F3 might promote 
cancer cells’ proliferation in triple- negative breast cancer, while 
LncRNA NEF overexpression inhibited the migration and invasion of 
TNBC cells.35- 37

MicroRNA (miRNA), a class of non- coding small RNA that post- 
transcriptionally regulates gene expression, plays a vital role in cell 
proliferation, differentiation and apoptosis by targeting multiple 
downstream genes.38 The previous study with relatively small num-
bers of patients has specifically evaluated tumour miRNA markers in 
TNBC and showed that miRNAs play a crucial role in cellular growth 
and proliferation, cellular movement and migration and Extra Cellular 

F I G U R E  1  Model of E2- induced breast cancer cell migration via 
upregulation of HOTAIR expression. Reprinted from.29 Copyright © 
2015 J Transl Med
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Matrix degradation.39 Table 1 lists the recent studies of MicroRNAs 
in triple- negative breast cancer.

Considering that the overall miRNA score can better define the 
tumour prognosis than the single miRNA index, some studies have 
tried to establish a feature score system to evaluate the tumour prog-
nosis. They systematically evaluated 57 metastasis- related miRNAs 
in tumour tissue in 456 TNBC patients and proved that the expres-
sion levels of miR- 374b- 5p, miR- 27b- 3p, miR- 126- 3p and miR- 218- 5p 
in tumour tissues predict TNBC outcomes.40 Avery- Kiejda et al. have 
identified 27 miRNAs related to the metastatic capabilities of TNBC 
cells.41 The expression of some miRNAs in TNBC is upregulated and 
may serve to promote the growth and/or invasion of TNBC cells. 
Therefore, this type of miRNAs is referred to as oncomiRs, including 
miR- 146a/146b,42 miR- 181a/181b,43 miR- 155,44 miR- 21,45 miR- 72046 
and miR- 455.47 Xiao et al. examined the expression of miR- 128 in 110 
TNBC patients and demonstrated that miR- 128 was able to inhibit the 
proliferation of TNBC cells.48 Jang et al. proved that miR- 9 overex-
pression was significantly associated with poor disease- free survival 
and distant metastasis- free survival (DMFS) in TNBC, while the high 
level of miR- 155 expression showed significant association with bet-
ter DMFS.49 Lv et al. investigated the functional role of miR- 212- 5p 
in TNBC and found that miR- 212- 5p inhibits cell migration and inva-
sion of TNBC during cancer progression.50 Other microRNAs such as 
miR- 493, miR- 124 and miR- 17- 5p are protentional prognostic factors 
in triple- negative breast cancer. High expression of miR- 493, miR- 124 
and miR- 17- 5p were all associated with better outcomes.51- 53

Conversely, some other miRNAs are decreased in TNBC and 
can function as tumour suppressors to inhibit cancer cell growth, 
induce apoptosis and reduce metastasis. These miRNAs are defined 
as anti- oncomiRs, including the miR- 200 family,54 miR- 34a,55 miR- 
497,56 miR- 1296,57 miR- 223,58 miR- 21159 and miR- 217.60 The high 
expression of miRNA- 301a and miRNA- 454 and the low expression 
of tumour suppressor miRNAs such as miRNA- 221- 3p and miRNA- 
34c all indicate poor prognosis of TNBC.61- 64 Studies of the systemic 
delivery of miRNA mimics or inhibitors via nanotechnologies are on-
going and hold great promise for cancer management.65

Circular RNAs (circRNAs), a new type of endogenous non- coding 
RNA, have the characteristics of a continuous covalently closed loop 

without the 5′- cap structure and the 3′- poly- A tail.66 Some studies 
have revealed that circRNAs are associated with TNBC and can be 
the potential prognosis marker for TNBC. He et al. showed that circG-
FRA1 functions as a competing endogenous RNA (ceRNA) to regulate 
GFRA1 expression through sponging miR- 34a to promote prolifera-
tion and inhibit apoptosis in TNBC, which correlated with reduced 
survival of patients.67 Yang et al. demonstrated that circAGFG1 could 
sponge miR195- 5p to modulate CCNE1 expression, leading to tumor-
igenesis and development of TNBC (Figure 3).68 Wang et al. revealed 
that circ- UBAP2 (hsa_circ_0001846) was markedly upregulated in 
TNBC, and its expression was associated with unfavourable progno-
sis. They noticed that circ- UBAP2 was able to sponge miRNA- 661 to 
increase the expression of the oncogene MTA1, serving as a promising 
therapeutic target for TNBC patients.69 Tang et al. explored the reg-
ulatory mechanisms of circKIF4A in TNBC and found that circKIF4A 
was dramatically upregulated and positively associated with poorer 
survival of TNBC. CircKIF4A regulated the expression of KIF4A via 
sponging miR- 375 and acted as a prognostic biomarker for TNBC.70 
These studies all indicated that circRNAs could act as the ‘sponge’ of 
miRNA, forming the corresponding circRNA- miRNA- mRNA axis and 
exerting the function of endogenous competitive RNA (ceRNA), such 
as interacting with RNA- binding protein, regulating transcription fac-
tors, alternative splicing and translation, and participate in tumour 
proliferation, invasion and metastasis.67- 69,71

Zeng et al. found that the upregulated circANKS1B expressed 
in TNBC can increase the expression of transcription factor USF1, 
upregulated TGF- 1 and activated TGF- β1 / Smad signal transduc-
tion through Mirna- 148a- 3p and MIRNA- 152- 3P to induce EMT to 
promote breast cancer invasion and metastasis.71 Its expression is 
closely related to lymph node metastasis and advanced clinical stage 
and function as an independent risk factor for OS in breast cancer 
patients. The study further confirmed that ESRP, which promotes 
circANKS1B synthesis, is regulated by USF1, suggesting that cir-
cRNA and mRNA are not linearly regulated.

2.3  |  Single- cell RNA sequencing analysis

Sunny Wu et al. used a single- cell RNA sequencing strategy to se-
quence nearly 24,300 single cells from five patients with triple- 
negative breast cancer.72 By differing gene expression patterns, 
they identified two cancer- associated fibroblasts (CAF) as well as 
two subpopulations of perivascular- like (PVL) cells. After delving 
into these stromal clusters, they began to sort out certain microen-
vironmental changes that might affect tumour growth or treatment 
response. In particular, the researchers noted that an inflammatory 
cancer- associated fibroblast (iCAF) releases the chemokine CXCL12, 
a signalling molecule that inhibits the anti- tumour activity of T cells. 
They believe that this promises to point the way to enhanced immu-
notherapy for triple- negative breast cancer.

Mihriban et al. also sequenced >1500 cells from six female pa-
tients with primary triple- negative breast cancer using single- cell 
RNA sequencing in order to investigate the underlying biology of 
triple- negative breast cancer.73 Through computational analysis of 

F I G U R E  2  lncRNAs that by complementarity of bases succeed 
in matching or sequestering sequences of small non- coding RNAs, 
such as miRNAs, are controlling bioavailability of miRNAs, vs. 
lncRNAs themselves, with the functional biological repercussions 
at cellular or physiological level. RNA- induced silencing complex 
RISC. Reprinted from.34 Copyright © 2017 Biomed. Pharmacother 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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TA B L E  1  MicroRNAs reported in triple- negative breast cancer

RNA Target/ Axis

Endogenous 
expression in 
TNBC Main biological function(s) in TNBC References

LINK- A HIF1α Upregulated Glycolytic reprogramming and tumorigenesis 28

HOTAIR E2/GPER- miRNA148- HOTAIR Upregulated Cell migration 29

ERRLR01 17β- estradiol signalling 
pathway

Upregulated Epithelial development and cellular differentiation 30

MALAT1 MALAT1- miRNA- 1/slug Upregulated Cell proliferation, invasion 31

RMST - Downregulated Enhance cell apoptosis and regulate cell cycle 32

LncRNA ANRIL MiR- 199a Upregulated Functions as tumour- promoting molecular in TNBC 
tumorigenesis

34

LncRNA 
AWPPH

FZD7 Upregulated Cell proliferation 35

LncRNA 
POU3F3

Caspase 9 Upregulated Promote proliferation and inhibit apoptosis of cancer 
cells in triple- negative breast cancer

36

LncRNA NEF MiRNA- 155 Downregulated Inhibit the migration and invasion of breast cancer cells 37

MiR- 146a / 
b- 5p

BRCA1 Upregulated Cell proliferation 42

MiR- 155 VHL Upregulated Promote breast cancer growth and angiogenesis 44

MiRNA- 21 PTEN Upregulated Cell proliferation 45

MiR- 455- 3p EI24 Upregulated Improve cell proliferation, invasion and migration abilities 
in TNBC

47

MiR- 128 INSR and IRS1 Downregulated Inhibit glucose consumption and mitochondrial energy 
production in TNBC cells

48

MiR- 155 RAD51 Upregulated Promote tumour cell proliferation, angiogenesis and EMT 
but decreases tumour cell apoptosis

49

MiR- 212- 5p Prrx2 Downregulated Inhibit cell proliferation and invasion (inhibits TNBC 
growth and metastasis)

50

MiR- 124 ZEB2 Downregulated Inhibit the proliferation, metastasis and epithelial- 
mesenchymal transition (EMT) of TNBC cells

52

MiR- 17- 5p ETV1 Downregulated Inhibit TNBC cells proliferation, migration and invasion 53

MiR- 9 PDGFRβ Upregulated Cell migration, invasion, EMT 54

MiR- 34a C- SRC Downregulated Inhibit proliferation and invasion 55

MiR- 497 SMAD7 Downregulated Suppress breast cancer cell proliferation and invasion in 
vitro

56

MiR- 1296 CCND1 Downregulated Suppress cell proliferation and induces apoptosis in 
TNBC,sensitizes cells to cisplatin treatment

57

MiR- 223 HAX- 1 Downregulated Promote TNBC cell apoptosis (enhances the anti- tumour 
effect of doxorubicin and cisplatin)

58

MiR- 211- 5p SETBP1 Downregulated Inhibit cell proliferation and induces apoptosis,suppress 
breast cancer cells invasion and migration

59

MiR- 217 KLF5 Downregulated Inhibit TNBC cell growth, migration, and invasion 60

MiRNA- 301a PTEN- Wnt/β- catenin 
Signalling pathway

Upregulated Cell proliferation, colony formation, migration, invasion 61

MiRNA- 454 MiRNA- 454– 3'UTR- Smad4/
PTEN Signalling pathway

Upregulated Transcription inhibition 62

MiRNA- 221- 3p MiRNA- 221- 3p- 3'UTR- PARP1 
Signalling pathway

Downregulated Cell migration and epithelial- mesenchymal 
transformation

63

MiRNA- 34c MiRNA- 34c- GIT1/FRA- 1 Downregulated Cell migration and invasion of cell cycle arrest 64

CircGFRA1 MiR- 34a Upregulated Promote proliferation and inhibit apoptosis in TNBC 67

(Continues)
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individual tumour cells and the subpopulations they contained, they 
found that the heterogeneity of gene expression programs among 
each tumour cell was variable and largely correlated with the clonality 
of inferred genomic copy number changes, suggesting that genotype 
drives the gene expression phenotype of individual subpopulations. 
This analysis reveals functional heterogeneity in TNBC and its associ-
ation with genomic evolution, and uncovers unanticipated biological 
principles that contribute to the poor prognosis of the disease.

Long non- coding RNAs have been shown to play an important 
role in TNBC as increasingly important oncological targets. Pinkney 
et al. used single- cell RNA sequencing to study the expression of 
lncRNAs in TNBC.74 They found that single- cell RNA sequencing 
could identify the level of expression of lncRNAs in an aggressive 
subpopulation of xenograft tumours, and their finding that lncRNAs 
are expressed at low levels in TNBC xenograft cells may help us iden-
tify new therapeutic targets in future.

Triple- negative breast cancer is a type of malignant breast can-
cer that is often resistant to chemotherapy. However, the cause of 
this resistance is due to selection of pre- existing clones by chemo-
therapy or to genetic mutations occurring during chemotherapy has 

not been determined. To address this question, Charissa et al. used 
total exome sequencing and single- cell DNA and RNA sequenc-
ing to study genetic and expression changes in 20 TNBC patients 
during neoadjuvant chemotherapy.75 They found that neoadjuvant 
chemotherapy resulted in the disappearance of cancer clones in 
10 patients, while clones in another 10 patients persisted during 
treatment. They performed a more in- depth and detailed analysis 
of eight patients using single- cell DNA sequencing and single- cell 
RNA sequencing analysis, which showed that drug- resistant cancer 
cells were present prior to treatment and were adaptively selected 
for by neoadjuvant chemotherapy, while the gene transcriptional 
profiles of cancer cells in these patients underwent reprogram-
ming after chemotherapy. With follow- up studies, we may be able 
to predict which patients are likely to benefit from chemotherapy, 
thereby improving the precision of treatment.

3  |  PROTEOMIC ANALYSIS OF TNBC

The difference between RNA and protein expression levels prevents 
functional biological characteristics from fully reflecting gene expres-
sion characteristics. Therefore, functional proteomics analysis is used 
as supplementary information, and the integration of genomic and 
transcriptome data is conducive to the discovery of new targets.76 
Intrinsically, proteins are more complex, dynamic, and reflect biologi-
cal function more closely than genes. The requirements for protein 
analysis were also exemplified by shortcomings in the bioinformat-
ics capacity to predict gene products’ presence and function. The 
requirement for protein analysis was also exemplified by shortfalls 
in bioinformatics’ capacity to predict the presence and function of 
gene products. A single gene can encode several distinct proteins, 
as a single pre- mRNA transcript can be spliced into various isoforms 
of proteins and modified in various ways (modifications known as 
post- translation modifications or PTMs) after translation. The emerg-
ing technology of modern proteomics allowed us to study protein 
abundance, protein- protein interactions, PTM and ultimately protein 
function. Cuzick et al. proposed the IHC4 scoring standard, which 
confirmed its prognostic significance and showed that proteomics re-
search on TNBC is one of the directions worth exploring.77 Relevant 
studies investigating triple- negative breast cancer- associated pro-
teins using proteomics methods are listed in Table 2.

RNA Target/ Axis

Endogenous 
expression in 
TNBC Main biological function(s) in TNBC References

CircAGFG1 MiR- 195- 5p (circAGFG1/miR- 
195- 5p/CCNE1 axis)

Upregulated Promote TNBC cell proliferation, increases TNBC cell 
migration and invasion and modulates cell cycle and 
apoptosis, functions as a sponge for miR- 195- 5p

68

Circ- UBAP2 MiR- 661/MTA1 Upregulated Promote proliferation and migration in TNBC 69

CircKIF4A MiR- 375(circKIF4A- miR- 375- 
KIF4A axis)

Upregulated Promote cell proliferation and metastasis in TNBC,acts 
as a sponge for miR- 375

70

CircANKS1B MiR- 148a / 152- 3p- 
USF1,TGF- β1/ Smad

Upregulated Promote breast cancer invasion and metastasis, serves as 
a sponge for miR- 148a- 3p and miR- 152- 3p

71

TA B L E  1  (Continued)

F I G U R E  3  Schematic diagram of how circAGFG1 promotes 
TNBC tumorigenesis and progression. Reprinted from.68 
Copyright © 2019 Mol. Cancer [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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3.1  |  Non- mass spectrometry- based proteomic 
platforms in TNBC

Non- MS techniques such as Western blotting, enzyme- linked immu-
nosorbent assay (ELISA), immunohistochemistry (IHC), immunocy-
tochemistry (ICC), and recently protein microarray (PMA) and tissue 
microarray (TMA) analyses, all require specific antibodies to examine 
target proteins. Many of these non– MS- based technologies are ben-
eficial for addressing particular problems.

Huang et al. estimated the prognostic values of Gαh and 
PLCδ1 by performing immunohistochemical staining experiments 
and showed that Gαh is a poor prognostic marker and correlates 
with the metastatic evolution of TNBC cells. Moreover, clinico-
pathological analyses revealed that the combined signature of 
high Gαh/PLCδ1 levels leads to worse prognosis in TNBC patients. 
This study established Gαh/PLCδ1 as a poor prognostic factor 
for TNBC patients.78 Agboola et al. detected the expression of 
EpCAM in TNBC by immunocytochemistry and found that it was 
positively correlated with tumour size and grade, and the disease- 
free interval (DFI) and metastasis- free survival (MFS) of this type 
of patients were significantly shortened.79 Handa et al. detected 
CPA4 expression in TNBC patients by immunocytochemistry, 
suggesting that the OS and DFS of patients with high CPA4 ex-
pression were significantly shorter, and the results of multivariate 
analysis showed that CPA4 was an independent prognostic factor 
for poor survival.80 Cheng et al. analysed the expression level of 
TIMP- 1 using Quantikine Human TIMP- 1 ELISA Kits in breast can-
cer tissues and found that serum TIMP- 1 levels were strongly en-
hanced in TNBC patients, which lead to a poor prognosis of TNBC 
patients.81 Other studies also used non- MS techniques showed 
that the high expression of PAI- 1, SPAG5 and CYPOR were associ-
ated with the prognosis of patients with TNBC, whereas GGNBP2 
suppressed cell proliferation, migration and invasion.82- 85

Despite significant impacts on cancer research, the widespread 
application of non- MS techniques can be limited by the availability 
or high cost of producing suitable antibodies.

MS is one of the most versatile and useful tools in cancer re-
search among proteomic tools. Proteomic research based on MS has 
enabled worldwide analyses of proteomes that have led to the dis-
covery of new protein signatures for breast cancer.

3.2  |  Quantitative mass spectrometry- based 
proteomic strategies in TNBC

Mass spectrometry- based technologies offer a unique opportunity 
to profile cancer proteomes accurately and rapidly in terms of mass 
precision, sequencing speed, resolution, power and cost- efficiency.86 
Powerful mass spectrometers like Q- TOF, TOF / TOF, Q- OT and Q- 
Exactive have high resolution, sensitivity and sub- ppm mass accuracy, 
making them suitable for shotgun proteomics approaches to quantify 
hundreds to thousands of proteins in a biological sample.87,88

The dynamic changes in cellular proteome abundance have a 
significant influence on different life processes. For example, the 

occurrence and development of many diseases are often accompa-
nied by abnormal expression of specific proteins. Quantitative pro-
teomics is the accurate quantification and identification of all proteins 
expressed in a genome or all proteins in a complex mixed system. The 
current quantitative proteomics technology is primarily divided into 
labelling (Label) and non- labelling (Label Free) quantitative strategies, 
in which the labelling strategy is divided into in vivo labelling (such 
as SILAC89), and in vitro labelling (such as iTRAQ90 and TMT mark91).

3.3  |  Stable labelling approaches

The first global in- depth proteomic analysis of TNBC molecular 
characteristics identified 12,000 distinct proteins whose expres-
sion patterns could discriminate between TNBC subtypes. This 
study also elucidated the specific TNBC pathway for metasta-
sizing, adherence and angiogenesis.92 Different expression sig-
natures for three proteins desmoplakin (DP), thrombospondin- 1 
(TPS1) and tryptophanyl- tRNA synthetase (TrpRS) were discov-
ered for relapse and non- relapse TBNC tumours using an iTRAQ 
labelling- based proteomic approach.93 DP and TPS1 overexpres-
sion significantly altered disease- free survival and increased the 
risk of TNBC patients’ recurrence. However, the overexpression 
of TrpRS was also reported to be associated with better disease- 
free survival and lower recurrence risk. Another iTRAQ labelling- 
based proteomics study identified several factors that have strong 
links with breast cancer molecular subtypes such as fibronectin, 
alpha- 2- macroglobulin (A2 M), complement component- 4- binding 
protein alpha (C4BPA) and complement factor- B. One of these 
factors, the antiprotease A2 M, is an abundant plasma protein 
genetically modified and expressed differently in TNBC patients’ 
plasma and tissue samples.94

In 2010, Geiger et al. observed that the downregulation 
of PTEN in TNBC tumours resulted in higher activity of cell survival 
PI3K pathways. MCM5, STMN1, RCL1 and C9ORF114 were also 
found to be highly correlated with TNBC tumour cell growth.95

3.4  |  Label- free proteomics strategies

Label- free proteomics strategies in breast cancer research have 
been extensively used. Liu et al. examined 126 frozen TNBC pri-
mary tumours samples split into training and testing sets and 
identified a signature of 11 proteins linked with clinical outcome 
(CMPK1, AIFM1, FTH1, EML4, GANAB, CTNNA1, AP1G1, STX12, 
AP1M1, CAPZB and MTHFD1) by a label- free proteomic approach. 
Of these 11 proteins, MTHFD1 was downregulated and associated 
with poor prognosis, while the other ten upregulated proteins led 
to a good prognosis in patients.96 Three of the upregulated proteins 
were involved in immunomodulation and apoptosis pathways, while 
MTHFD1 is involved in nucleotide and non- coding RNA metabolism. 
Another proteomics study has further confirmed that FTH1, an im-
munomodulatory molecule involved in augmentation of CD8+ T 
cells in the tumour area, is a potential therapeutic target of TNBC.97 
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Sun et al. used label- based proteomics to reveal that a tyrosine 
phosphatase called PTPN12 inhibited cellular transformation and 
metastasis of TNBC cells.98 He et al. also reported 30 proteins as-
sociated with drug resistance and poor patient survival of TNBC by 
using label- free proteomics.99 Among these proteins, HSP70 kDa- 
8, periostin, RhoA, actinin alpha 4, cathepsin D, preproprotein and 
annexin 1 were highly expressed in TNBC tumours resistant to 
neoadjuvant chemotherapy. The present study also identified three 
TNBC- associated proteins (ALDH1A1, complementary component 
1 inhibitor and G3BP). G3BP (also known as 90- kDa Mac- 2- binding 
protein), which was before unreported associated with TNBC, is a 
member of the beta- galactoside- binding protein family. Additionally, 
another study also identified ENO1 as a potential biomarker of 
TNBC.100

Phosphorylation is the most common type of post- translation 
protein modification and some protein phosphorylation directly af-
fects TNBC patients’ tumour progression. Semaan et al. identified 
several phosphoproteins associated with breast cancer progression 
by LC- LTQ/FT- ICR MS. Targeted dephosphorylation of such proteins, 
such as TRIM28, HSP90- alpha, hnRNP A1, CLTC and myosin- 9, in 
breast cancer cells may inhibit TNBC progression. In the metastasis 
region, these phosphoproteins (TRIM28, HSP90- alpha, hnRNP A1, 
CLTC and myosin- 9, HDGF) had no phosphopeptides and a higher 
number of phosphopeptides in the tumour site than in the normal 
tissue location. Increased phosphopeptides at the site of tumours 
suggest phosphorylation of these proteins that lead to a tumour 
phénotype are required for the onset of cancer in TNBC.101 Besides, 
HMGA1’s phosphorylation activated the IL4- mediated signalling 
pathway and enhanced the TNBC tumour's metastatic potential.101 
Using a quantitative phosphoproteomic approach based on SILAC, 
Wu et al. assessed tyrosine kinase activity in TNBC and have dis-
covered that the receptor tyrosine kinase (AXL) is activated in most 
invasive TNBC cells, and the positive expression of AXL significantly 
reduces the patients’ survival.102 Their phosphoproteomic analysis 
also showed that AXL was highly phosphorylated in TNBC. Upon 
activation (phosphorylation) AXL dimerized with the receptor MET, 
resulting in activation of downstream signalling pathways (PI3K- AKT 
and FAK- SRC), augmenting cell proliferation and migration in TNBC.

Due to its high sensitivity, precision, reproducibility and perfor-
mance in biomedical research, proteomics methods have become 
practical investigative tools. MS- based proteomic approaches, both 
labelled- free and isobaric, allow thousands of proteins to be profiled 
globally across biological conditions and used to uncover TNBC's po-
tential protein biomarkers.

4  |  CONCLUSION AND PERSPEC TIVE

The development of high- profile sequencing technologies and 
computational analysis tools, including transcriptomic and pro-
teomic technologies, has enhanced our understanding of TNBC. 
Transcriptomic analyses have provided a considerable amount 
of information on the gene expression patterns in breast cancer. 

For clinical applications, transcriptomic can be employed to clas-
sify TNBC into unique molecular subtypes and to propose reliable 
therapeutic targets, and large- scale approaches such as proteom-
ics can be used to decipher the global picture of TNBC cancer 
biology.

At present, the transcriptomic and proteomic prognostic stud-
ies on TNBC can be basically divided into two categories: one is 
to establish a scoring model to identify prognosis; the other is to 
study the prognostic relevance through a single indicator involved 
in signalling pathways. In the transcriptome study, considering the 
interaction among mRNA, lncRNA, miRNA and circRNA from mul-
tiple perspectives, researchers attempted to establish a ceRNA 
regulatory network to evaluate the prognostic characteristics of 
tumours.20,33,103 However, due to big data modelling, analysis tool 
selection, tumour heterogeneity and other reasons, the final feature 
scoring models are different. Adopting uniform standards and de-
veloping specific analytical data sets and tools can help balance clut-
tered data to a certain extent, particularly for cross- omics research. 
In proteomic studies, the integration and analysis of gene data with 
protein- related information based on immunohistochemistry, lc- ms /
MS and other technologies are one of the most important means of 
proteomics research, which helps discover potential targets, signal-
ling pathways within or between tumours, and overall tissue biolog-
ical characteristics.

Multi- omic data's emergence has become a routine in cancer 
studies. However, the challenge is increasingly difficult to assimilate 
the rapidly growing number of ‘big data’. Intelligent utilization and 
management of these data require massive computational resources 
and accurate statistical methodologies to unearth the hidden links 
among different sub- components.

The multiple layers of cancer biology are detailed in multi- omic 
data, but our perception of the nature of cancer seems confusing 
with the endless complexity. Enormous efforts must be made to ac-
quire a considerable quantity of multi- omic data indicating the di-
verse biological signatures of the development of TNBC.

The treatment of TNBC remains to be challenging since its poor 
patient outcomes and few therapeutic targets. A better understand-
ing of TNBC carcinogenesis is a prerequisite for more sophisticated 
TNBC subtyping and the development of personalized treatment 
options.

This paper reviews the recent advances in TNBC research 
through transcriptomics and proteomics and understands that the 
power of proteomics and transcriptomics can be used for decoding 
the complexity of TNBC, which will develop more effective clinical 
interactions. It is high time we take advantage of these abundant 
resources to unveil TNBC, and we hope that this intractable cancer 
will be precisely targeted soon.
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