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Abstract

Background: Acute lymphoblastic leukemia (ALL) is the most common type of cancer diagnosed in children and
Glucocorticoids (GCs) form an essential component of the standard chemotherapy in most treatment regimens. The
category of infant ALL patients carrying a translocation involving the mixed lineage leukemia (MLL) gene (gene
KMT2A) is characterized by resistance to GCs and poor clinical outcome. Although some studies examined GC-
resistance in infant ALL patients, the understanding of this phenomenon remains limited and impede the efforts to
improve prognosis.

Methods: This study integrates differential co-expression (DC) and protein-protein interaction (PPI) networks to
find active protein modules associated with GC-resistance in MLL-rearranged infant ALL patients. A network
was constructed by linking differentially co-expressed gene pairs between GC-resistance and GC-sensitive samples and
later integrated with PPl networks by keeping the links that are also present in the PPI network. The resulting network
was decomposed into two sub-networks, specific to each phenotype. Finally, both sub-networks were clustered into
modules using weighted gene co-expression network analysis (WGCNA) and further analyzed with functional
enrichment analysis.

Results: Through the integration of DC analysis and PPI network, four protein modules were found active under the
GC-resistance phenotype but not under the GC-sensitive. Functional enrichment analysis revealed that these modules
are related to proteasome, electron transport chain, tRNA-aminoacyl biosynthesis, and peroxisome signaling pathways.
These findings are in accordance with previous findings related to GC-resistance in other hematological malignancies
such as pediatric ALL.

Conclusions: Differential co-expression analysis is a promising approach to incorporate the dynamic context of gene
expression profiles into the well-documented protein interaction networks. The approach allows the detection of
relevant protein modules that are highly enriched with DC gene pairs. Functional enrichment analysis of detected
protein modules generates new biological hypotheses and may help in explaining the GC-resistance in MLL-
rearranged infant ALL patients.
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Background

Acute lymphoblastic leukemia (ALL) is a malignant dis-
ease of the bone marrow characterized by the overpro-
duction of immature white blood cells that accumulate
and inhibit the production of normal cells. ALL is the
most common type of leukemia in children (Gaynon and
Carrel 1999) and major improvements in the treatment
of childhood ALL have been achieved in recent years
(Pui et al. 2004). However, the treatment outcome re-
mains poor in infant (< 1year of age) ALL patients due
to frequent resistance to cytotoxic chemotherapy drugs,
including glucocorticoids (GCs). This condition is asso-
ciated with a genetic translocation involving the mixed
lineage leukemia (MLL) gene (gene KMT2A) that is
present in about 80% of infant ALL patients (Greaves
1996; Pieters et al. 2007). Glucocorticoids are used in
ALL treatment for their cytotoxicity induction properties
that lead to cellular apoptosis (Gaynon and Carrel 1999)
and resistance to their effects is the main cause of treat-
ment failure in MLL-rearranged infant ALL (Pieters et
al. 1998). Although some researchers have found bio-
markers that mediate GC-resistance in MLL-rearranged
infant ALL (Spijkers-Hagelstein et al. 2014a; Spijkers-
Hagelstein et al. 2013; Spijkers-Hagelstein et al. 2012;
Spijkers-Hagelstein et al. 2014b), knowledge regarding
the mechanism underlying this phenomenon remains
limited. The majority of gene expression studies adopted
conventional gene-wise approaches that detect differen-
tial expression in each gene separately between two
phenotypes.

Motivated by the fact that gene differential co-expres-
sion (DC) analysis has emerged as an alternative ap-
proach to differential expression analysis (de la Fuente
2010), recently we used weighted gene co-expression
network analysis to reveal a gene module associated with
GC-resistance (Mousavian et al. 2016) in infant ALL pa-
tients. The detected module included genes with docu-
mented association to GC-resistance, confirming the
hypothesis that network-based analysis complements the
conventional gene-wise methods and provides further
biological insights into GC-resistance in MLL-rear-
ranged infant ALL. Instead of gene modules, some stud-
ies used DC analysis to find phenotype-specific protein
modules (Zhang et al. 2012; Lin et al. 2010; Yoon et al.
2011; Chung et al. 2013). Prior to such approach, pro-
tein-protein interaction (PPI) networks have been used
to find disease-specific protein modules enriched with
differentially expressed genes between two groups of
samples (Ideker et al. 2002; Chuang et al. 2007; Dittrich
et al. 2008; Nacu et al. 2007; Sohler et al. 2004).

In this study, we propose the use of DC analysis to
identify protein modules that are active in GC-resistance
infant ALL patients but not in GC-sensitive patients.
First, gene expression profiles are considered to identify
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DC gene pairs and construct a DC network between
GC-resistance and GC-sensitive conditions. Next, the
DC network is modified such that any links that are ab-
sent in the experimentally validated PPI network are re-
moved from the DC network. To construct a dynamic
protein network for each condition (GC-resistance and
GC-sensitive), the resulting network is decomposed into
two sub-networks depending on the sign of the differ-
ence in co-expression between the two conditions. Fi-
nally, each sub-network is clustered into modules.
Examining these modules using functional enrichment
analysis reveal which of them are highly enriched with
gene ontology (GO) terms. Active modules in each con-
dition are specified by extracting genes of modules
which are highly enriched in the same category of GO
terms and form a connected sub-graph in the corre-
sponding module. Our results demonstrate that protein
modules related to signaling pathways such as
proteasome, electron transport chain, tRNA-aminoacyl
biosynthesis and peroxisome are active under the GC-re-
sistance condition in MLL-rearranged infant ALL
patients.

Methods

Datasets and preprocessing steps

The infant acute lymphoblastic leukemia gene expres-
sion dataset was obtained from the gene expression
omnibus (GEO) database under the series accession
number GSE32962 (Spijkers-Hagelstein et al. 2012). This
dataset consists of expression profiles of 43 untreated in-
fant samples (bone marrow and/or peripheral blood
samples) diagnosed with MLL-rearranged ALL and cate-
gorized into prednisolone sensitive (19 samples) and
prednisolone resistant (24 samples) groups. All leukemic
samples contained > 90% of leukemic blasts and contam-
inating non-leukemic cells were removed using immu-
nomagnetic beads as described in (Kaspers et al. 1994).
In vitro prednisolone sensitivity was assessed by 4-day
cytotoxicity assays as described in (Pieters et al. 1990).
Patient samples were characterized as in vitro sensitive
or resistant to prednisolone based on the concentration
of prednisolone lethal to 50% of the leukemic cells (LCs,
value), such that LCsq< 0.1 pg/ml of prednisolone indi-
cates prednisolone-sensitive and LCsy> 150 pg/ml of
prednisolone indicates prednisolone-resistant (Spijkers-
Hagelstein et al. 2012). Raw CEL files were downloaded
using the GEOquery Bioconductor package (Davis and
Meltzer 2007). Probe level data was mapped to gene
level data using the Affy Bioconductor package (Gautier
et al. 2004) and the hgul33plus2.db Bioconductor hu-
man genome annotation package. Intensity levels were
normalized using the variance stabilizing normalization
method as implemented in the VSN Bioconductor pack-
age (Huber et al. 2002). The normalized expression
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matrix consisted of ~ 19,000 rows and 43 columns,
representing genes and samples respectively.

The protein-protein interaction data was downloaded
from the Human Integrated Protein-Protein Interaction
rEference (HIPPIE) database (Schaefer et al. 2012). HIP-
PIE integrates the experimentally validated PPIs from
different sources including BioGrid (Chatr-aryamontri et
al. 2013), DIP (Salwinski et al. 2004), HPRD (Prasad et
al. 2009), IntAct (Kerrien et al. 2011), MINT (Licata et
al. 2012), BIND (Bader et al. 2003) and MIPS (Pagel et
al. 2005). The current version includes 203,968 interac-
tions between 14,874 proteins where interactions are
given a score between 0 and 1 based on the confidence
in used experimental techniques in determining them.

Construction of DC network and pruning by PPIs

To identify DC gene pairs between GC-sensitive and
GC-resistant groups, a DC network was constructed
using the DiffCorr R package (Fukushima 2013). Pear-
son’s correlation coefficient was used for calculating the
co-expression between gene pairs under conditions A
(resistant) and B (sensitive) separately. Pearson’s correl-
ation coefficient between genes x and y under condition
A is defined as

(ry) = Doty (k%) (7-7)
\/Zk 1 (k%) \/Zk 1 J’k_y

where ¥ and ¥ are respectively the mean expressions of
gene x and y under condition A, n, is the number of
samples under condition A, and k is the sample index.
The correlation values were transformed using Fisher’s Z
transformation such that (Fukushima 2013).
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The test statistic for each individual gene pair is the
difference between the Z-transformed correlations under
conditions A and B (Z4 and Zp) such that (Fukushima
2013).

Za-Zp
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where n, and np are respectively the numbers of sam-
ples under conditions A and B. DiffCorr provides a sig-
nificance of the correlation difference between two
conditions (p-value) for each individual gene pair and
only links with assigned p-values< 0.01 are deemed sig-
nificant and remain in the DC network while the
remaining links are removed from the network. The
resulting DC network represents links between gene
pairs that are differentially co-expressed between GC-
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resistant and GC-sensitive samples with high confidence.
To identify active protein modules, the DC network was
modified such that all the links that are absent in the ex-
perimentally validated PPI network are removed from
the DC network. In other words, the links of the DC
network are pruned or trimmed by the experimentally
validated protein-protein interactions. Combining the
gene expression data and PPI networks in this step is
reasonable given the moderate concordance between
messenger RNA (mRNA) and protein abundances (Kosti
et al. 2016), and provides the bridge between mRNA-
based gene expression data and protein modules.

Decomposing DC network into resistant and sensitive
sub-networks

The DC network is further decomposed into two sub-
networks, DCegissans and DClpygivives based on the weights
of the links given by (r4- rp) for individual gene pairs. In
the DC,esistan: sub-network, only the links that satisfy
both of the two conditions r4- g >0.5 and r4 > 0.5 are
included. Similarly, in the DCy, e Sub-network, only
links that satisfy both of the two conditions r4- rg < -
0.5 and rz >0.5 are included. These conditions ensure
that selected links represent high or moderate co-ex-
pression between the respective genes under the condi-
tion of interest but not under the second condition.
Decomposing the DC network in this way allows easier
biological interpretation for detected modules under
each condition, as only genes with homogeneous
changes between conditions are highlighted in each sub-
network.

Module identification

Two sub-networks DC,egistan: and DCqepsivive Were con-
structed to represent active links under each condition.
Each sub-network was clustered into modules to identify
active protein modules under each condition (resistant
and sensitive). We used the generalized version of Topo-
logical Overlap Measure (TOM), as implemented in the
WGCNA R package (Langfelder and Horvath 2008), to
define similarity between gene pairs based on the correl-
ation difference. The possible correlation differences can
take values between - 2 and 2, and therefore are normal-
ized by a factor of 2 while generating the adjacency
matrix of each network. The diagonal elements of the
adjacency matrix were set to 1. Then the TOM com-
putes the similarity among gene pairs based on the
shared neighbors in the DC networks. The average hier-
archical clustering algorithm, as implemented in the
WGCNA R package (Langfelder and Horvath 2008), was
applied to the dissimilarity matrix (1-TOM) to find clus-
ters in each network. The resulting protein modules in
each network represent active protein modules under
one condition only.
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After module identification, we also refined modules
in order to maximize the intra-modular connectivity and
minimize the inter-modular relationships. A module
membership measure was defined for each pair of gene
and module based on the connectivity of gene to the
corresponding module, and genes were assigned to mod-
ules with the highest level of module membership. If a
gene is connected to multiple modules with the same
number of links, the sum of link weights is used for
measuring the module membership value. Genes’ mod-
ule assignments are iteratively adjusted to reach the op-
timal assignments.

Functional enrichment analysis

To determine the potential functions of active protein
modules, we imported both DC,egsane and DCoesisive
sub-networks into the Cytoscape software platform
(Smoot et al. 2011) separately and then used the BINGO
application (Maere et al. 2005) to find the overrepre-
sented gene ontology (GO) categories in modules.
BiINGO uses the hyper-geometric test to determine
which gene ontology terms are significantly overrepre-
sented in a module. We also used the Database for An-
notation  Visualization and Integrated Discovery
(DAVID) tool (Dennis Jr et al. 2003) to test if some gene
modules are highly enriched with genes from known sig-
naling pathways, including KEGG (Kanehisa et al. 2006)
and Reactome (Croft et al. 2010) pathways. GO terms
and signaling pathways with FDR corrected p-values <
0.01 were deemed significant and selected for describing
the functions of different modules.

Results
Differential network analysis reveals active protein
modules
To detect which gene pairs are differentially co-
expressed with significance between resistant and sensi-
tive samples, a weighted differential co-expression net-
work was constructed and only significant links (p-value
<0.01) remained in the network. To identify active pro-
tein modules, the resulting network was integrated into
the PPI network obtained from the HIPPIE database,
such that only links available in the PPI network remain.
As a result of integrating with the PPI network, a DC
network with 4053 links across 3551 nodes (genes or
proteins) was obtained. To identify active protein mod-
ules in each condition separately, the resulting DC net-
work was decomposed into two DC, s and DCopgisive
sub-networks, as described in the Methods section. The
DCegistan: sub-network had 1511 links and 1449 nodes,
and the DCy,ssive sub-network had 739 links and 1075
nodes.

DC,pgistans represents protein links with their associ-
ated genes having moderate or high co-expression
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(correlation) in resistant samples that is also higher than
what is observed in sensitive samples. Clustering the
DCegistans Sub-network into modules revealed 8 gene
modules, with 385 genes, which are active under the re-
sistant condition but not the sensitive condition (see
Table 1). Each module was assigned a unique color, and
the size of module varies from 20 genes (pink module)
to 85 genes (turquoise module). All genes that remained
unassigned to any of the 8 modules were placed under
the grey module and ignored in this study. Table 1 pre-
sents the description of the 8 modules found in the
DC,egistans sub-network. The hub gene of each module
refers to the gene with highest degree in each module.

Applying the same steps to the DCy, e SUb-network
identified 5 modules (see Table 2) comprising 141 genes
and ranging in size between 20 (green module) and 39
genes (turquoise module). The remaining unassigned
genes were also grouped into the grey module and ig-
nored in further analysis. It is worth stating here that
colors were assigned to detected modules in DCl,,gisive
and DC, 514, independently, i.e. using similar colors for
modules in both conditions was totally random. Table 2
provides the description of the 5 detected modules in
the DC,,,sitive SUb-network.

Functional enrichment analysis

After detecting gene modules in both DC,.u,; and
DCgepsisive Sub-networks separately, we performed func-
tional enrichment analysis for all modules using both
BiNGO and DAVID tools. Table 3 lists the significantly
enriched biological process (BP) GO terms in the mod-
ules of the DC,sstan: Sub-network. We consider GO
terms that are not coarse terms and occupy lower layers
of the GO tree. There were no GO terms overrepre-
sented in the blue and violet modules, hence they are
not included in Table 3. Table 3 shows that in some
modules, such as turquoise, brown, pink and red, a ra-
ther large number of module members are involved in
the same biological process, hence yielding a high sig-
nificance (small p-value). The turquoise module has ~ 38
out of 85 genes playing key roles in the regulation of
protein ubiquitination, ubiquitin-protein ligase activity
in mitotic cell cycle, ubiquitin-dependent protein cata-
bolic process and proteolysis, and most of them are
highly enriched (FDR = 1.47 x 10~ *®) in the proteasome
KEGG pathway. These genes belong to the proteasome
subunit (PSM) family and PSMC4 with 34 differentially
co-expressed links with the rest of the module members
is a hub gene in this module. Two other important genes
of the same module are PSMD2 and PSMDI1 with 27
and 22 differentially co-expressed links, respectively. The
brown module is highly enriched with some close BP
GO terms including mitochondrial adenosine triphos-
phate (ATP) synthesis coupled electron transport,
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Table 1 Description of found modules in resistant sub-network

Module  #Genes #Links Max/Min Intra-Modular Hub Gene(s)
Degree
Turquoise 85 151 34/1 PSMC4
Blue 63 68 38/1 ELAVLT
Brown 53 55 15/1 NDUFA9
Yellow 46 48 1/1 LRRK2
Green 43 44 19/1 ABCET
Red 41 43 10/1 RARS,
ATP6VIA
Violet 34 33 18/1 APP
Pink 20 19 14/1 PEX5

respiratory electron transport chain and oxidative phos-
phorylation. Twelve genes of this module are different
subunits of NADH:ubiquinone oxidoreductase (complex
I), which is the first enzyme complex located in the
inner membrane of the mitochondrion and plays a key
role in the electron transport chain. In Table 1, NDUFA9
was introduced as a hub gene of the brown module.
NDUFA9 is differentially co-expressed with other mem-
bers of the module encoding different subunits of mito-
chondrial complex I. The brown module was also found
significantly enriched with members of the REACTOME
Complex I biogenesis and respiratory electron transport
pathways. These findings are concordant with earlier
studies which associated the up-regulation of oxidative
phosphorylation with GC-resistant (Beesley et al. 2009;
Samuels et al. 2014).

Another module seen in the DC, g5t SUb-network is
the yellow module. Genes of this module are highly
enriched in some distinct BP GO terms including pro-
grammed cell death, MAPKKK cascade and response to
stimulus. Approximately, 24 genes of the yellow module
are highly enriched in response to stimulus and some of
these genes are also involved in response to stress.
Among 46 genes located in the yellow module, about 10
genes are significantly enriched in programmed cell
death and apoptosis. Leucine rich repeat kinase 2
(LRRK?2) is a gene encoding protein kinase, which is dif-
ferentially co-expressed with 11 members of the yellow
module associated with MAPKKK cascade and also re-
sponse to stress. Protein kinase C delta (PRKCD) is a

Table 2 Description of found modules in sensitive sub-network

Module  #Genes #Links Max/Min Intra-Modular Hub
Degree Gene(s)
Turquoise 39 38 1/1 SIRT7
Blue 31 30 10/1 TRAF6
Brown 27 26 14/1 NXF1
Yellow 24 23 171 HNRNPAT
Green 20 19 17/1 APP
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member of the yellow module that is differentially co-
expressed with 9 other members of the module, and is
the second hub in the module. Human studies demon-
strate that this gene encodes a kinase which is involved
in B cell signaling and the regulation of growth and
apoptosis.

Some distinct categories of BP GO terms were found
in the green module. Respectively, 8 and 7 out of 43
genes were associated with RNA splicing and response
to DNA damage. Only 3 genes of this module (PDHB,
PDHAI and DLAT) are highly enriched in the acetyl-
CoA biosynthetic process, but none of them is a hub
gene within the module. Gene ABCEI has the highest
connectivity within the green module, but ABCEI shares
no common biological function with its neighbors in the
green module.

The red module with 41 genes and 43 DC links is an-
other important module found in the DC,;s,,,; Sub-net-
work. Nine out of 39 module members are involved in
tRNA aminoacylation for protein translation and are as
well members of class I aminoacyl-tRNA synthetase
family. The encoded protein by RARS, which is a hub
gene in this module, belongs to the mentioned protein
family and most of its immediate neighbors in the DC,,.
sistane SUb-network, including LARS, IARS, EPRS, DARS
and MARS, also encode proteins found in the aminoa-
cyl-tRNA synthetase family. In accordance with this
finding, DAVID also indicates that the red module is
highly enriched in Aminoacyl-tRNA biosynthesis path-
way with FDR corrected p-value < 10,

Although the pink module is the smallest module in
the DC,esisians sub-network, it is significantly enriched
with more GO terms than some other modules.
Enriched terms include fatty acid oxidation, fatty acid
catabolic process and peroxisome organization (Table 3).
Genes of this module are also highly enriched in Peroxi-
some KEGG pathway (FDR = 6.07 x 10” *?). PEXS which
plays an essential role in peroxisome, has the highest
connectivity within the pink module, and most of its im-
mediate neighbors, including PEX6, ACOX3, ACOTS,
EHHADH, HMGCL, HACLI1, ECI2 and MPV17, are also
involved in Peroxisome KEGG pathway.

To determine whether the genes associated with
biological functions are connected in their corre-
sponding modules, we extract sub-graphs comprising
these genes. We observed that the genes associated
with proteasome, respiratory electron transport, per-
oxisome and aminoacyl-tRNA biosynthesis pathways,
respectively in the turquoise, brown, pink and red
modules are connected within these modules. This in-
dicates that the genes involved in these biological
functions are significantly DC between resistant and
sensitive condition. This result suggests that the path-
ways connecting these genes are active pathways
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Table 3 Significantly enriched BP GO terms in active protein modules of DC,esisian: SUb-network

BP GO term Count FDR corrected P-value

Turquoise module

positive regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 33 1.05E-58
negative regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle 32 2.26E-57
anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process 32 3.66E-57
positive regulation of protein ubiquitination 34 1.08E-54
ubiquitin-dependent protein catabolic process 36 9.37E-41
proteolysis 37 3.94E-27
Brown module
mitochondrial ATP synthesis coupled electron transport 12 1.82E-17
mitochondrial electron transport, NADH to ubiquinone 11 4.66E-17
respiratory electron transport chain 12 5.11E-17
electron transport chain 13 9.51E-16
oxidative phosphorylation 12 9.11E-15
mitochondrion organization 6 1.17E-04

Yellow module

positive regulation of programmed cell death 9 2.59E-03
MAPKKK cascade 6 2.59E-03
protein amino acid phosphorylation 10 2.59E-03
response to stimulus 24 2.59E-03
programmed cell death 9 3.68E-03
Green module
RNA splicing 8 6.09E-05
regulation of acetyl-CoA biosynthetic process from pyruvate 3 1.31E-04
spliceosomal snRNP assembly 3 1.61E-03
response to DNA damage stimulus 7 1.80E-03
nuclear mRNA splicing, via spliceosome 4 1.92E-03
glycolysis 3 3.52E-03
Red module
tRNA aminoacylation 8 1.50E-11
tRNA aminoacylation for protein translation 8 1.50E-11
translation 9 1.88E-06
Pink module
fatty acid oxidation 6 7.26E-10
peroxisome organization 5 3.55E-09
protein targeting to peroxisome 3 1.37E-05
fatty acid beta-oxidation using acyl-CoA oxidase 2 2.84E-04
acyl-CoA metabolic process 2 1.94E-03
mitochondrion organization 3 4.30E-03
where regulatory relationships under one condition We performed similar functional enrichment analysis

are disrupted under another. As indicated in Fig. 1, and sub-graph extraction steps to find out whether the
the links among genes of these pathways are highly detected active modules under the sensitive condition
co-expressed in the resistant condition in contrast to  are enriched with BP GO terms. Table 4 shows that only
the sensitive condition. 2 out of 5 modules (blue and yellow modules) of the
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negative correlation by blue color

Fig. 1 A schematic representation of correlation changes across four protein sub-modules, found in the DCegistant SUD-network, between GC-
resistance (right side) and GC-sensitive (left side) conditions. Connected genes in the turquoise, brown, pink and red modules are associated with
proteasome, respiratory electron transport, peroxisome and aminoacyl-tRNA biosynthesis pathways, respectively, suggesting that the regulatory
relationships in these pathways under one condition are disrupted under another. A positive correlation is indicated by yellow color and a

DCgepsisive sub-network are highly enriched in BP GO
terms (FDR < 0.01). In the blue module, 10 genes are in-
volved with protein ubiquitination and proteolysis and
~ 10 genes of the yellow module are involved in RNA
splicing and spliceosome KEGG pathway. Although the
blue module of DC,,,sisive Sub-network is involved in
proteolysis similar to the turquoise module of DC, g0

sub-network, there are only two genes (PSMC2 and
PSMD6) in the intersection of the two modules. More-
over, after extracting the genes associated with
proteolysis from the blue module under the sensitive
sub-network, no connectivity was observed among them.
We also extracted the genes associated with the spliceo-
some pathway from the yellow module of the DCj,,siive
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Table 4 Significantly enriched BP GO terms in active protein
modules of DCsensirive SUb-Network

BP GO term Count FDR corrected
P-value

Blue module
proteolysis involved in cellular protein 10 9.03E-08
catabolic process
ubiquitin-dependent protein catabolic 8 5.94E-06
process
proteolysis 10 8.75E-05
proteasomal ubiquitin-dependent protein 5 4.37E-04
catabolic process
protein ubiquitination 5 1.56E-03
myeloid leukocyte activation 3 3.90E-03
positive regulation of ubiquitin-protein 3 8.08E-03
ligase activity involved in mitotic cell cycle

Yellow module
mMRNA processing 11 1.74E-11
RNA splicing 10 2.16E-10
nuclear mRNA splicing, via spliceosome 5 5.40E-06

sub-network, and observed that these genes are con-
nected within the module. Hence, the spliceosome can
be suggested as an active pathway in sensitive condition
as compared to the resistant condition.

To check the hypothesis that the detected modules in
the present study are possibly confounded by differences
in prednisolone responsiveness in addition to differences
related to GC-resistance, we checked the intersection
between the list of 51 transcriptionally-regulated genes
by prednisolone reported in (Tissing et al. 2007) and
each detected module under the resistant condition.
These 51 genes showed differential expression after 8 h
of prednisolone exposure in leukemic cells of 13 chil-
dren as compared with non-exposed cells (Tissing et al.
2007). None of the reported 51 genes appeared in our
detected modules under the resistant condition.

Discussion

Through DC network analysis and protein interaction
networks, we identified gene modules which show much
higher co-expression under the GC-resistant condition
as compared to the GC-sensitive condition. After detect-
ing gene modules from the integration of DC network
between GC-sensitive and GC-resistant samples and PPI
links, functional enrichment analysis detected which
members of modules share similar biological functions
or are members of the same biological pathway. To-
gether, these results suggest that four gene sub-modules,
obtained from the turquoise, brown, pink and red mod-
ules of DCegistane SUb-network, are respectively associ-
ated with the proteasome, mitochondrial respiratory
electron transport, peroxisome and aminoacyl-tRNA
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biosynthesis signaling pathways (Fig. 1). The lists of
genes (ranked by the inter-modular connectivity) present
in these four modules are given in Additional file 1: Ta-
bles S1-S4. The yellow module was identified in the
DClesistant SUb-network as a significantly enriched mod-
ule in the immune system process, and this module
shares 11 genes with a module we found in our previous
study (Mousavian et al. 2016) which was introduced as a
relevance module to GC-resistant in infant ALL.

In 1993, the proteasome has been localized with high
serum concentration in tumor cells of patients with
hematological malignancy (Ichihara 1993). It was found
later that NF-kB (nuclear factor kappa-light-chain-en-
hancer of activated B cells) can mediate glucocorticoid
resistance in multiple myeloma, which is a cancer
formed by terminally differentiated B Cells (Feinman et
al. 1999; Tricot 2002). NF-xB is a heterodimeric tran-
scription factor that activates survival genes coding for
cytokines, cytokine receptors, chemotactic proteins and
cell adhesion molecules (De Bosscher et al. 2000) and
repressing its transcriptional activity facilitates cellular
apoptosis. In many cell types, the function of NF-kB de-
pends on the enzymatic activity of proteasome (Baud
and Derudder 2010). Through the degradation of the in-
hibitory protein, I-xBa, protein subunit of NF-kB includ-
ing RELA or c-Rel is allowed to activate expression of
target genes after entering the nuclease. In 2003, Borte-
zomib (a proteasome inhibitor) was found efficient in
treating patients whose multiple myeloma showed poor
response to at least two treatment protocols (Dick and
Fleming 2010; Lambrou et al. 2012). In recent years, the
effectiveness of Bortezomib was also tested for the treat-
ment of acute lymphoblastic leukemia. It was shown that
bortezomib can sensitize in-vitro GC-resistant childhood
B-cell precursor leukemia cell lines, MHH-cALL-2 and
MHH-cALL-3, to prednisolone-induced cell death via
inhibiting the proteasome (Junk et al. 2015). The use of
proteasome inhibitors to sensitize GC-resistant ALL
cells was supported by detecting that high expression of
valosin-containing protein (VCP), a member of the ubi-
quitin proteasome degradation system (UPS), is associ-
ated with poor response to prednisolone treatment in
childhood ALL patients (Lauten et al. 2006). Valosin-
containing protein mediates apoptosis after tumor
necrosis factor (TNF) stimulation by influencing the
proteasome degradation pathway and NF-«B activation
via I-kBa degradation (Asai et al. 2002). The immuno-
suppressive effects of glucocorticoids are linked to an in-
hibition of NF-«B activity (Greenstein et al. 2002;
Scheinman et al. 1995; Auphan et al. 1995), suggesting
that suppressing the NF-«kB activity is required for
glucocorticoid-induced apoptosis (Chandra et al. 1998).
Our results show that the activity of proteasome and
ubiquitination family genes (enriched in the turquoise
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module) is significantly higher in GC-resistant MLL-
rearranged infant ALL patients as compared to GC-sen-
sitive patients. Our results agree with related literature
in suggesting that inhibiting the proteasome protein
family members, which are crucial in regulating protein
ubiquitination and proteasome pathway, may lead to
sensitizing the infant ALL cells to prednisolone.

In the DC\egistant SUb-network, we found a set of genes
related to the NADH:ubiquinone oxidoreductase activ-
ity, which forms complex I in mitochondria for electron
transport chain, as a differential co-expressed gene set
between GC-resistant and GC-sensitive samples. Some
studies demonstrated that GC-resistance in T-cell ALL
is associated with a proliferative metabolism such as the
up-regulation of glycolysis, oxidative phosphorylation
and cholesterol biosynthesis (Beesley et al. 2009; Samuels
et al. 2014). It was shown that the activation of bioener-
getic pathways required for proliferation may suppress
the apoptotic potential and offset the metabolic crisis
initiated by glucocorticoids in the lymphocytes (Beesley
et al. 2009). It was also shown later that targeting bio-
energetic pathways in combination with glucocorticoid
treatment may offer a promising therapeutic strategy to
overcome GC-resistance in ALL (Samuels et al. 2014).
The detected brown module has 13 genes that are in-
volved in oxidative phosphorylation which is a metabolic
pathway for oxidizing nutrients and releasing energy in
the mitochondria. These genes are highly co-expressed
in GC-resistant infant ALL in comparison with the sen-
sitive cases, indicating that GC-resistance in infant ALL
may also be associated with some proliferative metabol-
ism like oxidative phosphorylation. High expression of
the valosin-containing protein, that mediates NF-kB ac-
tivation via I-kBa degradation, is associated with poor
response (resistance) to prednisolone treatment in child-
hood ALL patients as discussed above (Lauten et al.
2006). NF-kB acts through the transcription of anti-
apoptotic proteins, leading to increased proliferation and
growth activities (Escarcega et al. 2007). Therefore, de-
tecting an increased co-expression between genes associ-
ated with proliferation and oxidative phosphorylation in
GC-resistant ALL infants might (at least in part) be ex-
plained through this mechanism.

Another important active protein module observed in
DClesistant Sub-network is the pink module. The pink
module contains genes involved in fatty acid oxidation
and peroxisome organization. The peroxisome is a small
cell organelle which contributes to the breakdown of
very-long-chain fatty acids via beta oxidation. Recently,
it was indicated that the peroxisome proliferator-acti-
vated receptor alpha (PPARa) and fatty acid oxidation
mediate glucocorticoid resistance in chronic lympho-
blastic leukemia (CLL) (Tung et al. 2013). Gene PEXS
(Peroxisomal Biogenesis Factor 5), the hub gene of the
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pink module detected in the resistant sub-network, is as-
sociated with fatty acid beta oxidation, peroxisome path-
way, and glucose metabolism. Also gene ABCE1 (ATP
Binding Cassette Subfamily E Member 1), the hub gene
of the green module detected in the resistant sub-net-
work, is associated with glucose transport. The recent
work by Chan et al. (Chan et al. 2017) characterized pre-
B-cell ALL with transcriptional repression of glucose
and energy supply. Chan et al. found that the PAXS and
IKZF1 B-lymphoid transcription factors enforce a state
of chronic energy deprivation in pre-B-cell ALL cells,
and identified, among others, products of gene NR3CI
(a transcription factor gene encoding the glucocorticoid
receptor that bind to glucocorticoid response elements
and activate their transcription) as central effectors of B-
lymphoid restriction of glucose and energy supply. More
specific to MLL-rearranged infant ALL, the data re-
ported in (Stumpel et al. 2009) independently showed
that NR3C1 is among the top 100 genes with significant
hypermethylated promoter region in t(4;11)-positive
MLL-rearranged infant ALL samples. Hence, the litera-
ture already presents possible mechanisms (transcrip-
tional targets and promoter methylation) by which
glucose metabolism alterations and energy deprivation
could be associated with MLL-rearranged infant ALL
cells. Although Chan et al. did not conduct their study
using MLL-rearranged infant samples, the similarities
between their findings and the current study are within
the general characterization of B-cell ALL with tran-
scriptional repression of glucose metabolism and energy
supply. In addition to the pink module, the brown mod-
ule found in resistant sub-network is rich with genes re-
lated to ATP synthesis by chemiosmotic coupling,
adding additional indication to energy deprivation in B-
cell ALL.

Our results indicate that the red module is highly as-
sociated with the Aminoacyl-tRNA biosynthesis pathway
where 9 of its 39 module members belong to the Ami-
noacyl-tRNA synthetases family. Aminoacyl-tRNA syn-
thetases (ARSs) are essential house-keeping enzymes
that provide the substrates for protein synthesis (Yao
and Fox 2013). They have been implicated with human
cancers, given their varied effects on cell differentiation
and growth. It was discovered since the 1960s that
leukemic blasts require external asparagine (an ARS) for
growth since they lack sufficient activity of asparagine
synthetase. A component of guinea pig serum, L-aspara-
ginase, was isolated and successfully used to convert free
asparagine to aspartic acid, effectively starving the
leukemia cells (Broome 1963). L-asparaginase has been
used as a component of the chemotherapy in the treat-
ment of childhood ALL in combination with glucocorti-
coids (prednisolone and dexamethasone), and vincristine
(Dubbers et al. 1998). Similar to glucocorticoids, some
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patients show resistance to L-asparaginase and in vitro
resistance was found highly correlated with an increase
in the cellular asparagine synthetase activity, messenger
RNA and protein content (Hutson et al. 1997). On an-
other vein, the expression of glutamyl-prolyl-tRNA syn-
thetase and mitochondrial isoleucyl-tRNA synthetase is
controlled by the c-myc proto-oncogene (Coller et al.
2000), hence abnormal expression of these tRNA synthe-
tases under oncogenic conditions is not surprising. In
addition to NF-kB and activator protein 1 (AP-1), c-myc
was one of three transcription factors identified as the
most likely targets of GC-induced gene repression
(Greenstein et al. 2002). Previous studies have revealed
correlations between c-myc suppression and GC-in-
duced apoptosis in human leukemic cells (Thulasi et al.
1993). Interestingly, the transforming growth factor-f3
(TGEF-PB) induces nuclear localization of the aminoacyl-
tRNA synthetase-interacting factor 2 (AIMP2), where
AIMP2 enhances ubiquitin-dependent degradation of
the FUSE-binding protein (FBP), which is the transcrip-
tional activator of c-myc (Kim et al. 2003), resulting in
down-regulation of c-myc. Detecting the red module
that is highly enriched with ARSs in GC-resistant pa-
tients may indicate failure to repress c-myc and initiate
GC-induced apoptosis due to increased cellular activity
of ARS interacting factors. Additionally, a few mutations
of the aminoacyl-tRNA synthetase-interacting factor 3
(AIMP3) that affect its interaction with ataxia-telangi-
ectasia mutated (ATM) kinases and ability to activate
p53 (a tumor suppressor protein) have been reported in
human chronic myeloid leukemia patients (Kim et al
2008). These observations further support the relation-
ship between ARSs and/or their interacting factors with
the initiation or progression of human leukemia.

Conclusion

Differential co-expression analysis is a promising approach
to incorporate the dynamic context of gene expression pro-
files into experimentally-validated protein-protein inter-
action networks. The approach allows the detection of
relevant gene modules that are highly enriched with DC
gene pairs and reduces the problem of detecting modules of
co-expressed genes that are not truly related by discarding
all gene-pairs not documented in the PPI databases. Func-
tional enrichment analysis of detected modules revealed
that these modules are related to proteasome, electron
transport chain, tRNA-aminoacyl biosynthesis, and peroxi-
some signaling pathways. These findings are in accordance
with reported literature related to GC-resistance in
hematological malignancies such as pediatric ALL. Our re-
sults support the use of proteasome inhibitors and aspara-
gine depletion drugs as components of the chemotherapy
in the treatment of childhood ALL for patients showing re-
sistance to glucocorticoids. Our results also support the
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characterization of B-cell ALL with chronic glucose metab-
olism and energy supply deprivation.
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