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Abstract

Chronic inflammation causes dysregulated expression of microRNAs. Aberrant microRNA

expression is associated with endothelial dysfunction. In this study we determined whether

TNF-α inhibition impacted the expression of miRNA-146a-5p and miRNA-155-5p, and

whether changes in the expression of these miRNAs were related to inflammation-induced

changes in endothelial function in collagen-induced arthritis (CIA). Sixty-four Sprague-Daw-

ley rats were divided into control (n = 24), CIA (n = 24) and CIA+etanercept (n = 16) groups.

CIA and CIA+etanercept groups were immunized with bovine type-II collagen, emulsified in

incomplete Freund’s adjuvant. Upon signs of arthritis, the CIA+etanercept group received

10mg/kg of etanercept intraperitoneally, every three days. After six weeks of treatment,

mesenteric artery vascular reactivity was assessed using wire-myography. Serum concen-

trations of TNF-α, C-reactive protein, interleukin-6, vascular adhesion molecule-1 (VCAM-1)

and pentraxin-3 (PTX-3) were measured by ELISA. Relative expression of circulating

miRNA-146a-5p and miRNA-155-5p were determined using RT-qPCR. Compared to con-

trols, circulating miRNA-155-5p, VCAM-1 and PTX-3 concentrations were increased, and

vessel relaxation was impaired in the CIA (all p<0.05), but not in the CIA+etanercept (all

p<0.05) groups. The CIA group had greater miRNA-146a-5p expression compared to the

CIA+etanercept group (p = 0.005). Independent of blood pressure, miRNA-146a-5p expres-

sion was associated with increased PTX-3 concentrations (p = 0.03), while miRNA-155-5p

expression was associated with impaired vessel relaxation (p = 0.01). In conclusion, block-

ing circulating TNF-α impacted systemic inflammation-induced increased expression of

miRNA-146a-5p and miRNA-155-5p, which were associated with endothelial inflammation

and impaired endothelial dependent vasorelaxation, respectively.
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Introduction

Rheumatoid arthritis (RA) is associated with a greater risk of cardiovascular events and mor-

tality [1]. Subclinical vascular changes including endothelial dysfunction, arteriosclerosis and

atherosclerosis are more prevalent in RA compared to the general population and contribute

to the increased cardiovascular disease (CVD) prevalence in RA [2]. Systemic inflammation is

associated with impaired vascular function, independent of traditional risk factors in RA [3].

The mechanisms whereby systemic inflammation impairs vascular function are currently

under investigation [4].

One of the earliest subclinical cardiovascular pathophysiological features observed in states

of high-grade inflammation is endothelial activation [5]. Indeed, inflammation-induced endo-

thelial activation and dysfunction are considered important early predictors of atherosclerotic

CVD, arterial stiffness and heart failure [6–8]. Chronic systemic inflammation in RA report-

edly modifies the phenotype of endothelial cells, leading to functional and structural alter-

ations in both endothelial and smooth muscle layers [4]. Increased circulating cytokine

concentrations promote endothelial activation through increased expression of vascular adhe-

sion molecules, including vascular adhesion molecule-1 (VCAM-1) [9]. VCAM-1 enables leu-

kocyte binding and migration to the arterial wall intima, making it a sensitive marker of

endothelial activation and early atherosclerosis [10, 11]. Circulating cytokines additionally

induce a concomitant accumulation of reactive oxygen species that drives endothelial inflam-

mation [12]. Recently, pentraxin-3 (PTX-3), an acute phase protein that is produced under

inflammatory conditions by various stromal and myeloid cells, has been identified as highly

sensitive marker of local vessel inflammation [13]. Local production of PTX-3 impairs endo-

thelial function and amplifies vascular inflammation [14]. Furthermore, endothelial inflamma-

tion reduces nitric oxide (NO) bioavailability which results in impaired endothelial-dependent

vasodilation and ultimately endothelial dysfunction [15].

Chronic systemic inflammation alters the signaling pathways that govern gene expression

of endothelial function markers [16]. In this regard, microRNAs (miRNAs) regulate gene

expression by inhibiting the translation of messenger RNA or inducing mRNA degradation

[16]. Increasing evidence suggests that high-grade inflammatory states, such as RA, may cause

inappropriate expression of miRNAs [17, 18]. MiRNA-155-5p and miRNA-146a-5p expres-

sion is strongly induced through TNF-α mediated signalling pathways [18, 19]. MiRNA-155-

5p and miRNA-146a-5p expression is dysregulated in RA and have been implicated in the dis-

ease pathogenesis [20] and disease activity [21]. In non-RA populations, miRNA-155-5p is

involved in endothelium-dependent vasorelaxation, altered endothelial permeability and ath-

erosclerotic progression [22, 23], while miRNA-146a-5p promotes inflammation-induced

senescence in vascular remodelling cells [24]. The role of these miRNAs in the development of

inflammation-induced endothelial dysfunction in RA is uncertain. Dysregulated expression of

miRNA-146a-5p and miRNA-155-5p may present an alternative mechanism whereby vascular

integrity is compromised [17], and hence may serve as promising therapeutic targets in RA

[25].

TNF-α inhibition therapy successfully slows disease progression and prevents joint damage

in the management of RA [26]. However, its effectiveness in simultaneously controlling CVD

risk is controversial [27]. The effect of TNF-α inhibitor treatment on endothelial function in

RA patients are inconsistent [28, 29]. The confounding effects of combination therapy and

other cardiovascular drugs limit our understanding of the effects of TNF-α inhibitor treatment

on endothelial function in RA [29]. Moreover, miRNA expression may be induced through

several cytokines and the effects of TNF-α inhibition on the expression of miRNAs associated

with endothelial dysfunction is uncertain. Therefore, the independent effects of TNF-α
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inhibition on the regulation of endothelial function in high-grade inflammation requires eluci-

dation. The present study aimed to determine whether TNF-α monotherapy impacts the

expression of miRNA-146a-5p and miRNA-155-5p, and whether altered expression of these

miRNAs is associated with endothelial dysfunction and impaired vascular reactivity in colla-

gen-induced arthritis (CIA).

Materials and methods

Study design and animal treatment

All experimental procedures were approved by the Animal Ethics Screening Committee

(AESC) of the University of the Witwatersrand (AESC number: 2017/03/21C and 2019/02/

10C) and complied with the Guide for the Care and Use of Laboratory Animals. Three-

month-old, Sprague-Dawley rats were housed individually in cages in temperature-controlled

rooms (23 ± 2˚C), with a 12-hour light-dark cycle and allowed free access to food and water.

Rats were habituated to the housing conditions for two weeks, where blood pressure and body

weight were measured, as previously described [30]. Following the two-week habituation

period, rats were randomly divided into the control (n = 24, 9 females and 15 males), CIA

(n = 24, 12 females and 12 males) and CIA+etanercept (n = 16, 8 females and 8 males) groups.

Systemic inflammation was induced in the CIA and CIA+etanercept groups using bovine type

II collagen dissolved in incomplete Freund’s adjuvant, as previously reported [30]. To ensure a

high incidence of arthritis, booster injections (0.1ml) were given after seven and 21 days. All

collagen-treated rats exhibited paw inflammation as previously described [30]. Upon the first

signs of inflammation, approximately 3–4 weeks after CIA was first induced, rats in the CIA+-

etanercept group received intraperitoneal injections of etanercept (Enbrel), a TNF-α inhibitor

(Roche, Basel, Switzerland) at a dosage of 10 mg/kg every third day for six weeks [30]. Follow-

ing the onset of arthritis, rats in the CIA and CIA+etanercept groups received subcutaneous

injections of 1-4mg/kg Tramadol (Zydus Healthcare, Johannesburg, South Africa), for pain

management. The present study included 64 rats from a larger study [30], wherein miRNA

expression and markers of endothelial and vascular function were measured.

Vascular reactivity

Following six-weeks of drug treatment, rats were anaesthetised using ketamine and xylazine at

a dosage of 100mg.kg-1 and 5mg.kg-1, respectively. Rats were terminated by thoracotomy. Vas-

cular reactivity was measured in the mesenteric artery, as previously described [31]. Briefly,

the mesentery was removed and cleaned. Second branches of the mesenteric artery were cut

into 2 mm rings and suspended in a wire myograph (model 610M; Danish Myo Technology,

Aahrus, Denmark). Artery rings were exposed to potassium chloride (KCl, 80 mM) to establish

the maximal reference contraction. Thereafter, preparations were exposed to increasing con-

centration of KCl and phenylephrine (Phe) to determine the contraction responses as a per-

centage of the maximal contraction. Preparations were then exposed to increasing

concentrations of acetylcholine (Ach), an endothelium-dependent vasodilator and sodium

nitroprusside (SNP), an endothelium-independent vasodilator during phenylephrine (Phe,

10 μM) induced contractions. Vascular relaxation was expressed as a percentage of the baseline

tension during contractions induced by Phe (10 μM).

Markers of circulating and endothelial inflammation

After thoracotomy, blood was collected in blood collection tubes and allowed to clot for two

hours. Thereafter, samples were centrifuged, serum was collected and stored in cryotubes at
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-80˚C until assayed. Individual samples were visually examined for hemolysis by comparing

the appearance of the serum with a specimen integrity chart based on colour [32]. Commer-

cially available enzyme-linked immunosorbent assay (ELISA) kits (Elabscience Biotechnology

Co. Ltd, Wuhan, China) were used to measure serum levels of tumor necrosis factor-alpha

(TNF-α), interleukin 6 (IL-6) and C-reactive protein (CRP). In a subgroup of animals (n = 40)

serum levels of vascular adhesion molecule-1 (VCAM-1) and pentraxin-3 (PTX-3) were mea-

sured using ELISA. The lower detection limit for TNF-α, IL-6, CRP, VCAM-1 and PTX-3

were 78 pg/ml, 62 pg/ml, 0.3 ng/ml, 12.5 pg/ml and 0.16 ng/ml, respectively. The interassay

and intra-assay coefficients of variation were below 10% for all kits.

MicroRNA expression

Total RNA was extracted from serum using the MagMAX™ mirVana™ Total RNA Isolation Kit

(Thermo Fisher Scientific, Waltham, MA). cDNA templates were prepared using TaqMan™
Advanced miRNA cDNA synthesis kits (Thermo Fisher Scientific, Waltham, MA). Production

of cDNA (>1000ng/μl) was confirmed using a NanoDrop OneC spectrophotometer (Thermo

Fisher Scientific, Waltham, USA).

Real-time quantitative PCR (qPCR) was performed using cDNA (~1μg), pre-designed VIC

labelled probe mixes for the reference miRNA (miRNA-191-5p, 0.25 μL, Taqman assay ID:

rno480971_mir), the miRNA of interest (0.5 μL Taqman Advanced miRNA Assay), Taqman

Fast Advanced Master Mix (5 μL) and 3.25 μL of RNase-free water, to make up a total volume

of 10μL per reaction well.

Comparative miRNA expression was assessed in duplicate for miR146a-5p (Taqman assay

ID: rno481451) and miRNA-155-5p (Taqman Assay ID: rno480953_mir) in duplex reactions

with the endogenous control. Although SNU6 and RNU6 are conventionally used as endoge-

nous controls, recent reports showed that the expression of these genes are unstable [33, 34].

SnU6 and RNU6 do not reflect the biochemical character of miRNA molecules in terms of

their transcription, processing and tissue specific expression patterns and may respond differ-

ently to qPCR techniques [35, 36]. Based on comparison to another potential miRNA refer-

ence gene (miR26a-5p), miR191-5p was found to be most consistently expressed in serum,

with a distinguishably low cycle threshold value standard deviation. The fold-change in relative

expression was calculated using the 2-ΔΔCt method [37].

Statistical analysis

Statistical analysis was performed using SAS software, version 9.4 (SAS Institute Inc., Cary,

North Carolina, USA). Continuous data are expressed as means ± standard error of the mean

(SEM) for normally distributed variables or median and interquartile range (IQR) for non-

normally distributed variables. Differences in animal characteristics and the vascular reactivity

dose-response curves were determined by repeated-measures analysis of variance (ANOVA)

followed by Tukey post-hoc tests. The sensitivity (EC50) and the maximal (Emax) responses

were determined from regression analysis of logistic sigmoid function curves (GraphPad Soft-

ware Inc, San Diego, CA). A two-way ANOVA followed by a Tukey post-hoc test was used to

determine differences in inflammatory markers, endothelial activation markers and the EC50

and Emax responses, where the main effects were group and sex. A Kruskal-Wallis test was

used to determine differences in miRNA expressions between groups. Except for body weight,

there were no sex differences in inflammatory cytokine concentrations and vascular measure-

ments, hence the male and female data were pooled to increase statistical power. To determine

whether miRNAs are associated with circulating inflammatory markers, endothelial activation

markers and vessel relaxation responses, bivariate and multivariate linear regression analyses
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were performed. As body mass and blood pressure are known confounders to vessel function,

these variables were included in multivariate regression analyses. Non-normally distributed

variables were log-transformed prior to inclusion in regression analysis. A p-value < 0.05 was

considered statistically significant.

Results

Animal characteristics

The characterization of the animal model has been reported [30]. Briefly, for the animals

included in this study the onset of arthritis, as indicated by joint swelling and oedema,

occurred in the CIA and CIA+etanercept groups within 21–28 days after the primary immuni-

zation [30]. At termination arthritis scores remained increased compared to the control group

in both the CIA and CIA+etanercept groups, however, paw thickness at the tarsometatarsal

and ankle joints were similar between the CIA+etanercept and control groups [30]. The body

weight, and systolic and diastolic blood pressures were similar between the groups at baseline

and termination (all p>0.05; Table 1). The serum concentrations of TNF-α, IL-6 and CRP

were increased in the CIA and CIA+etanercept groups compared to the control group (all

p< 0.05; Table 1). Compared to the CIA group, the serum concentrations of CRP were lower

(p = 0.03; Table 1) and TNF-α tended to be lower (p = 0.07) in the CIA+etanercept group.

Biomarkers of endothelial function

The relative expression of miRNA-146a-5p was significantly higher in the CIA group com-

pared to the CIA+etanercept group (p = 0.006, Fig 1A). The relative expression of miRNA-

155-5p was significantly higher in the CIA group compared to the control group (p = 0.048,

Fig 1B). The expression of miRNA-155-5p in the CIA group was higher than the CIA+-

etanercept group but did not reach statistical significance (p = 0.09, Fig 1B).

Circulating VCAM-1 concentrations were significantly higher in the CIA group compared

to the control and the CIA+etanercept groups (p = 0.0003 and p = 0.003 respectively, Fig 1C).

Circulating PTX-3 concentrations were significantly higher in the CIA group compared to the

Table 1. Body weights, food intake and tail-cuff blood pressure at baseline and termination.

Control (n = 24) CIA (n = 24) CIA+etanercept (n = 16)

Baseline

Body weight (g) 431 ± 25 387 ± 25 371 ± 33

Systolic blood pressure (mm Hg) 128 ± 2 128 ± 2 129 ± 2

Diastolic blood pressure (mm Hg) 89 ± 1 89 ± 1 89 ± 2

Termination

Body weight (g) 494 ± 25 419 ± 24 388 ± 33

Systolic blood pressure (mm Hg) 127 ± 2 129 ± 2 130 ± 2

Diastolic blood pressure (mm Hg) 86 ± 2 89 ± 1 86 ± 2

Circulating inflammatory markers
TNF-α (pg/ml) 98.7 ± 9.9 177.9 ± 8.7� 145.6 ± 11.6�

IL-6 (pg/ml) 18.4 ± 2.1 31.5 ± 1.9� 27.8 ± 2.5�

CRP (ng/ml) 0.12 ± 0.04 0.60 ± 0.04� 0.43 ± 0.05�†

Data presented as mean ± SEM.

�p<0.05 versus control.
†p<0.05 versus CIA. CIA; collagen-induced arthritis; TNF-α: Tumor necrosis factor alpha; IL-6: Interleukin 6; CRP: C reactive protein.

https://doi.org/10.1371/journal.pone.0264558.t001
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control and the CIA+etanercept groups (p = 0.001 and p = 0.005 respectively, Fig 1D). To

determine whether inflammation was responsible for the increase in these endothelial function

markers, we determined the association between CRP concentrations and VCAM-1 and PTX-

3 concentrations. Circulating CRP concentrations were directly associated with VCAM-1 con-

centrations (r (95%CI) = 0.29 (-0.01–0.55); p = 0.048) and PTX-3 concentrations (r (95%CI) =

0.33 (0.03–0.58); p = 0.03).

Vascular reactivity

The reference contraction induced by potassium chloride (KCl; 80mM) was similar between

the experimental groups (all p>0.05). There were no differences in the KCl-induced and Phe-

induced contractile responses between the groups (p>0.05; Fig 2A and 2B). Phe (10 μM)-

Fig 1. Circulating concentrations of biomarkers of endothelial function in control, CIA and CIA+etanercept groups. Circulating concentrations of

miR146a-5p (A), miR 155-5p (B), VCAM-1 (C) and PTX-3 (D) in control, CIA, and CIA+etanercept groups. Data presented as mean ± SEM or median

(IQR). �p<0.05 versus control, ��p<0.001 versus control. †p<0.05 versus CIA, ††p<0.001 versus CIA, using a Kruskal-Wallis test or a two-way ANOVA

followed by Tukey post-hoc tests. CIA: collagen-induced arthritis; VCAM-1: Vascular adhesion molecule-1; PTX-3: Pentraxin-3.

https://doi.org/10.1371/journal.pone.0264558.g001
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induced contractions were similar between the groups before the addition of acetylcholine

(ACh) (all p>0.05) or sodium nitroprusside (SNP) (all p>0.05).

The ACh-induced relaxation responses at 10−7.5 to 10-4M were significantly impaired in the

CIA group compared to the control group and the CIA+etanercept group (all p<0.01; Fig 2C).

The ACh-induced relaxation responses at 10−7 to 10-6M were significantly impaired in the

CIA+etanercept group compared to the control group (all p<0.05; Fig 2C). There were no dif-

ferences in the relaxation responses (Fig 2D), logEC50 and Emax (Fig 3) for SNP-induced relax-

ation between the groups in mesenteric arteries (all p>0.05).

The logEC50 was significantly lower in the CIA group compared to the control and CIA+-

etanercept groups (p = 0.0008 and p = 0.001, respectively; Fig 3). The Emax of ACh-induced

relaxation was significantly reduced in the CIA group compared to the control and CIA+-

etanercept groups (both p<0.0001; Fig 3).

To determine whether VCAM-1 and PTX-3 were indeed markers of endothelial function,

we determined the associations between these endothelial function markers and vascular reac-

tivity measures. VCAM-1 concentrations were directly associated with mesenteric artery ACh-

Fig 2. The effects of inflammation and TNF-α inhibitor treatment on vessel responses to vasoactive substances. The cumulative dose-response curves to

(A) potassium chloride, (B) phenylephrine (C) acetylcholine and (D) sodium nitroprusside in the second branch of mesenteric arteries, in control, CIA and

CIA+etanercept groups. Contractile responses are expressed as a percentage of the KCl maximal response. Relaxation responses are expressed as a percentage

of the Phe (10 μM)-induced contraction. Data expressed as means ± SEM. �p<0.01 control and CIA+etanercept versus CIA, †p<0.05 CIA+etanercept versus

control; using repeated-measures ANOVA followed by Tukey post-hoc tests.

https://doi.org/10.1371/journal.pone.0264558.g002
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induced sensitivity (logEC50) (r (95%CI) = 0.48 (0.12–0.72); p = 0.01) and with mesenteric

artery ACh-induced maximum relaxation responses (Emax) (r (95%CI) = -0.52 (-0.75- -0.18);

p = 0.003). When adjusting for body mass, blood pressure and CRP, VCAM-1 concentration

remained associated with mesenteric artery ACh-induced sensitivity (logEC50) (r (95%CI) =

0.43 (0.02–0.71); p = 0.04) and with mesenteric artery ACh-induced maximum relaxation

responses (r (95%CI) = -0.61 (-0.81- -0.26); p = 0.001). Similarly, PTX-3 concentrations were

directly associated with mesenteric artery ACh-induced sensitivity (logEC50) (r (95%CI) =

0.65 (0.37–0.83); p<0.001) and with ACh-induced maximum relaxation responses (Emax) (r

(95%CI) = -0.41 (-0.68- -0.04); p = 0.03). These associations were materially unaltered when

adjusting for body mass, blood pressure, and CRP (logEC50: r = 0.62 (0.27–0.81); p = 0.001 and

Emax: r = -0.49 (-0.75- - 0.10); p = 0.01).

Fig 3. The effects of TNF-α inhibitor treatment on the sensitivity (LogEC50) and maximum responses (Emax) to vasodilatory substances in

mesenteric arteries. The sensitivity (LogEC50) to acetylcholine (A) and sodium nitroprusside (B) and the maximal relaxation response (Emax) to

acetylcholine (C) and sodium nitroprusside (D) in the second branch of mesenteric arteries, in control, CIA and CIA+etanercept groups. Data expressed

as means ± SEM. ��p<0.001 versus control; †† p<0.001 versus CIA; using two-way ANOVA and Tukey post-hoc tests.

https://doi.org/10.1371/journal.pone.0264558.g003
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Association between microRNAs and measures of circulating

inflammation, endothelial function, and vascular relaxation

In unadjusted regression analysis, the relative expression of miRNA-146a-5p was associated

with increased circulating CRP and TNF-α concentrations (both p = 0.01; Table 2). When

adjusting for body mass and blood pressure, the association between miRNA-146a-5p and cir-

culating CRP and TNF-α concentrations remained significant (p = 0.009 and p = 0.01, respec-

tively; Table 2). Increased miRNA-146a-5p expression was associated with increased

circulating PTX-3 concentrations (p = 0.03), but not with circulating VCAM-1 concentrations

(p = 0.26; Table 2). When adjusting for body mass and blood pressure, miRNA-146a-5p

remained significantly associated with PTX-3 (std β (SE) = 0.48 (0.16); p = 0.01). When addi-

tionally adjusting for CRP concentrations, these associations remained materially unaltered

(std β (SE) = 0.41(0.17); p = 0.02). In unadjusted regression analysis, the relative expression of

miRNA-146a-5p was positively associated with mesenteric artery ACh-induced sensitivity

(logEC50) (p = 0.04) and this association remained significant in multivariate regression analy-

ses (p = 0.04; Table 2).

The relative expression of miRNA-155-5p was associated with increased circulating CRP

concentrations in univariate (p = 0.03) and in multivariate regression models (p = 0.003;

Table 2). No significant associations were observed between the relative expression of miRNA-

Table 2. Associations between relative microRNA expressions and markers of inflammation, endothelial function and vascular relaxation.

miRNA-146a-5p� miRNA-155-5p�

N std β (SE) p n std β (SE) p

Unadjusted

Circulating inflammatory markers
CRP 57 0.34(0.13) 0.01 54 0.28(0.13) 0.03

TNF- α 54 0.31(0.12) 0.01 52 0.14(0.13) 0.26

IL-6 55 0.23(0.13) 0.09 52 0.04(0.13) 0.77

Circulating endothelial function markers
VCAM-1 35 0.17(0.15) 0.26 31 0.03(0.13)) 0.81

PTX-3 35 0.35(0.15) 0.03 31 0.03(0.17) 0.87

Vascular relaxation markers
Mesenteric artery ACh EC50 41 0.35(0.17) 0.04 41 0.16(0.17) 0.35

Mesenteric artery ACh Emax 41 -0.23(0.18) 0.20 41 -0.43(0.16) 0.009

Multivariate adjusted #

Circulating inflammatory markers
CRP 57 0.36(0.13) 0.009 54 0.39(0.12) 0.003

TNF- α 54 0.33(0.13) 0.01 52 0.29(0.13) 0.03

IL-6 55 0.25(0.14) 0.08 52 0.16(0.13) 0.19

Circulating endothelial function markers
VCAM-1 35 0.16(0.17) 0.34 31 0.11(0.15) 0.47

PTX-3 35 0.48(0.16) 0.007 31 0.16(0.17) 0.36

Vascular relaxation markers
Mesenteric artery ACh EC50 41 0.38(0.18) 0.04 41 0.18(0.17) 0.28

Mesenteric artery ACh Emax 41 -0.25(0.19) 0.20 41 -0.43(0.16) 0.009

� Logarithmically transformed variables.
# adjusted for body mass and blood pressure. CRP: C reactive protein; TNF-α: Tumour necrosis factor alpha; IL-6: Interleukin-6; VCAM-1: Vascular adhesion molecule-

1; PTX-3: Pentraxin-3; ACh: Acetylcholine.

https://doi.org/10.1371/journal.pone.0264558.t002
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155-5p and circulating VCAM-1 or PTX-3 concentrations (both p>0.05). The relative expres-

sion of miRNA-155-5p was negatively associated with mesenteric artery ACh-induced maxi-

mum relaxation responses in unadjusted analysis (p = 0.009) and when adjusting for body

mass and blood pressure (p = 0.0009; Table 2). When further including CRP concentrations in

the regression model, the association between miRNA-155-5p and maximal mesenteric artery

relaxation was no longer significant (std β (SE) = -0.32 (0.17); p = 0.07).

Discussion

This study investigated whether inhibiting circulating TNF-α impact the relative expression of

miRNAs in rats exposed to inflammation, and whether relative miRNA expressions are related

to endothelial function and vascular relaxation responses. The main findings of the present

study are that TNF-α inhibition ameliorated inflammation-induced aberrant expression of

miRNA-146a-5p and miRNA-155-5p. In turn, TNF-α inhibition reduced inflammation-

induced increases in serum concentrations of VCAM-1 and PTX-3 and impairments in endo-

thelium dependent vascular responses in mesenteric arteries. MiRNA-146a-5p was indepen-

dently associated with PTX-3 expression, a marker of vascular inflammation. This suggests

that miRNA-146a-5p may be involved in the regulation of vascular inflammation that is medi-

ated by TNF-α. Increased miRNA-155-5p expression was associated with impaired ACh-

induced maximum relaxation responses in mesenteric arteries. These results confirm that NO-

dependent vasodilation may at least, in part, be mediated by inflammation-induced upregula-

tion of miRNA-155-5p. Taken together our results suggest that inflammation-induced

increased expression of miRNA-146a-5p and miRNA-155-5p may be mediated by TNF-α and

that these miRNAs are differentially associated with distinct processes involved in inflamma-

tion-induced impairments in vessel function.

In the present study, circulating miRNA-146a-5p expression was associated with higher

serum TNF-α and CRP concentrations. MiRNA-146a-5p is produced by hematopoietic stem

and progenitor cells, myeloid cells and various leukocytes [38], and its expression is upregu-

lated in response to systemic inflammation [39]. Inflammatory cytokines, including TNF-α,

induce miR-146a-5p expression via activation of the NF-kB signalling pathway [19]. In turn,

several studies suggest that miR-146a-5p is involved in negative feedback control of TNF-α
induced inflammation by targeting specific NF-kB intermediary molecules [19, 40]. However,

controversy exists in the literature, with some studies reporting upregulated [41, 42], while

others report downregulated miR-146a-5p expression [43, 44] in inflammatory conditions.

In RA patients, several studies reported increased miRNA-146a-5p expression [45, 46].

Although there is evidence of strong relations between increased circulating TNF-α concentra-

tions and miRNA-146a-5p expression in RA, the effects of TNF-α inhibitor treatment on

miRNA-146a-5p expression is controversial [43, 45–47]. In the current study, when blocking

circulating TNF-α, we showed a reduced expression of miRNA-146a-5p, despite a high circu-

lating TNF-α concentration. Nevertheless, TNF-α inhibitor treatment is aimed specifically at

inhibiting the binding of circulating TNF-α to its receptor and receptor inhibition is com-

monly accompanied by increased circulating concentrations of the cognate ligand [48]. Our

findings therefore confirm previous reports that inflammation-induced upregulation of

miRNA-16a-5p may be mediated by TNF-α.

Similar to previous reports, in the present study TNF-α inhibition prevented inflammation

induced increases in VCAM-1 and PTX-3 concentrations, suggesting decreased endothelial

activation and inflammation following TNF-α inhibition [49]. In the present study, miRNA-

146a-5p was not associated with VCAM-1. This is in line with previous reports that miRNA-

146a-5p may not be a risk marker of atherosclerosis [50, 51]. However, expression of
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circulating miRNA-146a-5p was related to circulating PTX-3 concentrations, indicating that

in an inflammatory model, miRNA-146a-5p may be related to vascular inflammation [24].

Importantly, although the association between circulating PTX-3 concentrations and miRNA-

146a-5p expression remained significant following adjustment for circulating CRP concentra-

tions, the strength of the association was reduced. This suggests that inflammation may indeed

be a strong driver of the relationship between miRNA-146a-5p and endothelial inflammation.

Nevertheless, miRNA-146a-5p may be a biomarker of endothelial dysfunction independent of

systemic inflammation. Hence miRNA-146a-5p may hold potential as a therapeutic target in

vascular inflammation in RA.

In the current study, inflammation reduced the sensitivity of the mesenteric artery to vaso-

active substances, that were offset by blocking circulating TNF-α. These results are in accor-

dance with previous reports that TNF-α induces alterations in the receptor expression of

various vasoactive substances [52, 53]. Moreover, we showed that miRNA-146a-5p expression

was associated with the sensitivity of mesenteric arteries (LogEC50) to acetylcholine. Hence,

our results indicate that TNF-α inhibition downregulate general vascular inflammatory

responses that may contribute to endothelial dysfunction, possibly via the regulation of

miRNA-146a-5p. Furthermore, blood pressure was not altered by inflammation or TNF-α
inhibitor therapy, and the associations between miRNA-146a-5p and PTX-3 and mesenteric

artery sensitivity were independent of blood pressure. Taken together, these results suggest

that TNF-α inhibition may improve endothelial function and miRNA146a-5p may be involved

in the regulation of endothelial inflammation via mechanisms independent of blood pressure.

In the present study, similar to reports in RA patients [23, 54], the relative expression of

miRNA-155-5p was significantly upregulated following exposure to high-grade inflammation

and was related to higher serum CRP concentrations. Indeed, inflammatory cytokines are the

primary stimulus for increased expression of miRNA-155-5p [18, 38]. In turn, miRNA-155-5p

expression drives the inflammatory response of immune cells in a positive feedback manner,

by repressing the production of inhibitory proteins that act on the NF-kB pathway [55]. How-

ever, blocking circulating TNF-α in the present study, prevented inflammation-induced upre-

gulation of miRNA-155-5p. Similarly, blocking circulating TNF-α prevented the

inflammation-induced impairment in ACh-induced relaxation. In this regard, it is well known

that TNF-α decreases the expression of the endothelial nitric oxide (eNOS) enzyme [56],

which results in decreased NO production and ultimately impaired vasodilation [56]. Similar

to our findings, previous studies have shown improved ACh-induced relaxation responses fol-

lowing TNF-α inhibitor therapy [29, 57]. Therefore, our results confirm that inflammation-

induced, endothelial dependent impaired vessel relaxation may be mediated via TNF-α. Fur-

thermore, previous reports suggest that miRNA-155-5p may be involved in the regulation of

inflammation induced impairments in endothelial dependent, but not endothelial indepen-

dent vasorelaxation [23]. Indeed, in the present study we showed that circulating miRNA-155-

5p expression was associated with impaired Ach-induced maximum relaxation responses, but

not SNP induced relaxation responses. Moreover, the association between miRNA-155-5p and

endothelial dependent vessel relaxation was independent of blood pressure. However, when

adjusting for circulating CRP, the association between miR-155-5p expression and mesenteric

artery maximal relaxation was no longer significant. Therefore, these results suggest that

inflammation is a key driver of upregulated miR-155-5p expression, but that in inflammatory

conditions miRNA-155-5p may be involved in the regulation of vasorelaxation via mecha-

nisms that are independent of blood pressure.

This study has limitations. We used a recombinant humanized TNF-α dimer. Although

previous rat studies using similar TNF-α inhibitors have shown significant effects on inflam-

mation-induced outcomes [58], future studies should consider using rat specific TNF-α
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inhibitor therapy. We determined the expression of two circulating miRNAs relative to surro-

gate measures of endothelial function. Inflammatory cytokines may regulate endothelial func-

tion through upregulated miRNA expression from circulating leukocytes and hematopoietic

cells, and therefore we measured the expression of miRNAs in serum. Nevertheless, miRNAs

are ubiquitously expressed and hence measuring circulating miRNAs levels may reflect a com-

pensatory upregulation in response to inflammation, rather than endothelial miRNA expres-

sion. However, in vitro studies using human umbilical vein endothelial cell (HUVEC) lines

have reported similar upregulated expression of miR-155-5p and miR-146a-5p following expo-

sure to TNF-α [59, 60] and strong relations between circulating and tissue expressions of miR-

NAs have previously been reported [23, 24, 61]. Similarly, circulating PTX-3 concentrations

may have originated from various cell types. Nevertheless, endothelial PTX-3 is highly

expressed in inflammatory conditions [62–64]. Although we have shown independent associa-

tions between miRNAs and markers of endothelial function, correlations do not infer causa-

tion and these results may show reciprocal relations. Moreover, the interpretations of our

results may have been strengthened by measuring downstream intracellular adaptor proteins

and NO-dependent signalling mechanisms to explore the mechanism whereby TNF-α inhibi-

tion impacted markers of endothelial dysfunction independent of changes in blood pressure.

In conclusion, TNF-α inhibition prevented inflammation-induced upregulation of

miRNA-146a-5p, miRNA-155-5p, PTX-3 and VCAM-1, and improved vasorelaxation.

MiRNA-146a-5p expression was associated with vessel inflammation, independent of circulat-

ing inflammation, while miRNA-155-5p was associated with mesenteric artery vasorelaxation.

MiRNAs may be relevant biomarkers of vessel dysfunction in inflammatory conditions. Future

studies should investigate the potential of miRNAs as therapeutic targets for protecting against

endothelial dysfunction in inflammatory conditions.
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