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Abstract. Subcellular fractions were prepared from 
human neutrophils desensitized at 15°C with stimula- 
tory doses of the photoaffinity derivative F-Met-Leu- 
Phe-N~-(2-(p-azido[1251]salicylamido)ethyl-l,3'-dithio- 
propionyl)-Lys. The covalently labeled receptors were 
found in a membrane fraction of higher density than 
those from cells preexposed to ligand at 4°C but not 
desensitized. The denser fraction (p --- 1.155 g/cc) was 
the cellular locus of the membrane associated cytoskel- 
etal proteins, actin, and fodrin, as detected immuno- 
logically on western blots. The light fraction (0 - 
1.135), cosedimented with neutrophil plasma mem- 
brane markers, plasma membrane guanyl nucleotide 
regulatory proteins, and several characteristic polypep- 
tides identified by SDS-PAGE, including a major 72- 
kD species. The photoaflinity-labeled species in either 
case showed the same mobility on SDS-PAGE (Mr --- 

50,000-70,000) corresponding to previously reported 
values for N-formyl chemotactic receptors. These la- 
beled receptors were sensitive to proteolysis after ex- 
posure of the intact photoaffinity-labeled cells to 
papain at 4°C. We conclude that (a) the fractions iso- 
lated are probably derived from different lateral 
microdomains of the surface of human neutrophils; (b) 
the higher density fraction contains occupied N-formyl- 
chemotactic receptors previously shown to have been 
converted, to a high affinity, slowly dissociating form 
coisolating with neutrophil cytoskeleton and implicated 
in the termination of formyl peptide-induced neutro- 
phil activation; and (c) the translocation of receptors 
to these microdomains may serve to compartmentalize 
receptors and perhaps regulate the interaction of the 
receptor/G-protein transduction pair. 

H 
UMAN neutrophils play a central role in host defense 
and serve as a model system for the study of the 
sensory transduction in ameboid cells. In studies of 

the sensory transduction processes of the human neutrophil, 
we and others have shown that shortly after occupancy at 
37°C, N-formyl chemotactic peptide receptors are converted 
to a high affinity, slowly dissociating form (16, 17, 29, 35), 
found to coisolate (16, 17, 35) transiently with the Triton X-100- 
insoluble cytoskeleton of the cell. In our studies, we sug- 
gested that the coisolation of cell surface ligand-receptor 
complexes with the Triton X-100-insoluble fraction was the 
manifestation of a steady-state process driven by association 
of newly occupied receptors with the cytoskeleton followed 
by their removal by endocytosis (16). We also found that we 
could first occupy the receptors at the cell surface at lowered 
temperatures (15°C) avoiding internalization (31) and re- 
sponse (21) and thus trap them into the high affinity state 
coisolating with the cytoskeleton. Rapidly warming such 
cells back to 37°C allowed us to quantitate the ability of the 
cell to respond with a burst of superoxide production (17). 
We found that the ability of preincubated cells to respond to 
chemoattractants at 37°C appears to be quantitatively related 
to the calculated number of receptor sites remaining in the 

low affinity state and uncomplexed with the cytoskeleton. 
This desensitization was at least partially specific for formyl 
peptides (homologous) since other stimuli, such as C5a and 
phorbol myristate acetate, were partially or completely 
(respectively) effective in eliciting a response. Moreover, the 
desensitization and the formation of the ligand-receptor- 
cytoskeleton complex occurred more slowly at 4°C or in the 
presence of dihydrocytochalasin B (17, 18). Thus we pro- 
posed that this high affinity, Triton X-100-insoluble form of 
the receptor may be a form involved in the termination of the 
response of neutrophils to chemoattractants (17, 18). 

Several questions remain unanswered in these studies. 
These questions concerned (a) the surface localization of the 
high affinity ligand-receptor complex, (b) the receptor nature 
of these binding sites, and (c) the molecular basis of the rela- 
tionship between the progressive inability of the cell to re- 
spond and the association of ligand-receptor complex with 
the cytoskeleton in the high affinity form. In the study de- 
scribed below we endeavored to determine that the ligand- 
receptor complex observed was indeed a complex involving 
bona fide receptor as previously identified (22, 27) that was 
still at the cell surface after formation of the putative 
cytoskeletal association. In so doing, we discovered that after 
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neutrophil disruption by nitrogen cavitation, the plasma 
membrane separates into distinct fractions that can be 
resolved by sucrose density gradient sedimentation. This re- 
sult suggested preservation of an interesting lateral order in 
the plane of the membrane. Since receptors in desensitized 
cells were observed to shift from one domain to another, this 
result also implied a segregation of receptors from their 
guanyl nucleotide-binding protein transduction partners in 
the plasma membrane that accompanied desensitization of 
the cell. Preliminary reports of these results have been pub- 
lished (2, 12). 

Materials and Methods 

Preparation of CeUs 
Human granulocytes were prepared from peripheral blood from healthy fe- 
male donors by a modification (33) of an elutriation procedure originally 
described by Berkow et al. (3). The cells were treated with 2.5 mM di- 
isopropylfluorophosphate for 15 min at 4°C, washed, and resuspended in 
Dulbecco's phosphate-buffered saline (DPBS) ~ consisting of 8 rnM Na2HPO4 
+ 1.5 mM KH2PO4 + 2.7 mM KCI + 136.9 mM NaC1 + 0.9 mM CaCI2 
+ 0.5 mM MgC12, pH 7.4, containing superoxide dismutase (50 U/ml) 
and catalase (100 U/m]). 

Surface Digestion of N-formyl Peptide Receptor 
and Preincubations with Ligand 
Cells were divided into three aliquots (107 cells/nil) that were allowed to 
bind 5 nM radioiodinated, photoaffinity derivative of the chemotactic 
tetrapeptide, N-formyl- Met-Leu-Phe-A~-(2-( p-azido[ t 25I] salicylamido)ethyl - 
1,Y-dithiopropionyl)-Lys, or FMLPL-SASD-[~25I] (1) for 5 min at 4°C, 20 
min at 15°C or 10 min at 37"C to produce majority populations of surface 
reversibly bound ligand, surface irreversibly bound ligand, and internalized 
ligand, respectively. The different incubation times did not affect any of the 
measured parameters except receptor ligand complex distribution (see also 
Results section). Subsequent to the incubation the ligand was covalently at- 
tached to its receptor by photolysis on ice for 10 min. The cells were then 
washed and resuspended in DPBS at 107 c/m], and treated for 15 rain on 
ice with either papain (500 gg/m]) in DPBS + 0.1 mM EDTA + 10 mM 
DTT + 60 gM 13-mercaptoethanol that had been preactivated at 37°C for 
10 min, or the same mixture that had been inactivated with 5 mM iodoaceta- 
mide (30 min/20°C). The cells were then washed twice in DPBS + 50 Ixg/ 
m] chymostatin, 0.23 U/ml Trasylol, 2 mM PMSF and 5 mM iodoacetamide 
and solubilized by mixing 1:1 with 125 mM Tris, pH 6.8, + 6.7 M Urea 
+ 12.5% 13-mercaptoethanol + 2% SDS + 1 mM EDTA + 0.01% Bro- 
mophenol blue + chymostatin (50 gg/m]) + aprotinin (0.23 TIU/ml) + 
PMSF (2 mM) + leupeptin (5 mM). 

SubceUular Fractionation of 
FMLPL-SASD172~I]-labeled Granulocytes 
After covalent photoaffinity labeling, the cells were diluted into 5 vol of ice 
cold DPBS, washed, and resuspended into sucrose-containing buffer in 
preparation for N2 cavitation and subcellular fractionation by isopycnic su- 
crose density gradient sedimentation (14, 26). Subcellular fractions were as- 
sayed for myeloperoxidase, lactoferrin, and alkaline phosphatase as de- 
scribed by Parkos et al. (26). Determination of guanyl nucleotide-binding 
activity was performed as described by Northrup et al. (23). Detection of 
clathrin heavy chain was performed by ELISA in analogous fashion to the 
assay for lactoferrin using a 1:100 dilution of commercially available mouse 
monoclonal (IgG) anti-clathrin heavy chain (CHC 5.9 ICN Immunobiolog- 
icals, Lisle, IL) and peroxidase-conjugated goat anti-mouse IgG secondary 
antibody (Tago Labs, Inc., Burlingame, CA) at 1:1,000 dilution. Sucrose 
densities are given in weight percent + SD. 

1. Abbreviations used in this paper: FMLPL-SASD[125I]; F-Met-Leu-Phe- 
N~-(2 -(p-azido[~25I]salicylamido)ethyl-l,3'-dithiopropionyl)-Lys; DPBS; 
Dulbecco's phosphate-buffered saline; PM-L; low density plasma mem- 
brane; PM-H; high density plasma membrane. 

SDS-PAGE 
Electrophoresis was performed on a Laemmli type slab gel system (20, 25) 
with a number of important modifications. The stacking and separating gels 
were made in 0.1% SDS with 4 and 9% acrylamide respectively. They were 
1.5-mm thick, 10-cm wide and 0.5- and 5-cm deep. The samples were 
diluted with an equal volume of solubilizing buffer containing 6.7 M urea, 
175 mM Tris, 12.5% ~-mercaptoethanol, 2% SDS, 0.01% Bromophenol 
Blue, and 1 mM EDTA and placed directly into the wells of the stacking 
gel. Samples were focused at a constant current of 20 mA and separated 
at a current of 40 mA. The gels were fixed and stained in 25% 2-pro- 
panol/10% acetic acid/0.05% Coomassie Brilliant Blue (G250) and de- 
stained in the same solvent without the dye. 

Autoradiography 
Gels were dried onto Whatman 3-MM Chr paper under vacuum and subse- 
quently exposed to X-OMAT RP film (Eastman Kodak Co., Rochester, NY) 
with a Cronex Lighting Plus intensify screen (Dupont Instrument, Wilming- 
ton, DE). The film was developed after 2-5 d using a Koniea QX-130A 
Processor (Konishinoko Photo Ind. Co. Ltd., Japan). 

Western Blotting for Identification of Actin, 
Fodrin, Clathrin, and the Alpha and the Beta Chains of 
Guanyl Nucleotide Regulatory Proteins 
Electrophoretic transfer of proteins from SDS-polyacrylamide slab gels 
onto nitrocellulose was performed according to Towbin et al. (34). Atter 
transfer the nitrocellulose strips (Millipore HA 0.45 I~m, MiUipore Corp., 
Bedford, MA) were soaked in saturating buffer consisting of 10% goat se- 
rum and 3% BSA (Sigma Chemical Co., St. Louis, MO) in 0.5 M NaCl 
and 10 mM Hepes pH 7.4. The nitrocellulose strips were then incubated 
overnight at 4°C with primary rabbit (or mouse) IgG in DPBS plus 3 % goat 
serum, 1% BSA, and 0.2% Tween 20 (Sigma Chemical Co.). After rinsing 
the nitrocellulose five times with wash buffer consisting of 0.25 M NaCl, 
10 mM Hepes, 0.2% Tween 20, pH 7.4, the strips were then incubated for 
1 h at 20°C with 1 pg/ml of peroxidase-conjugated goat anti-rabbit (or 
mouse) IgG in DPBS plus 3% goat serum, 1% BSA and 0.2% Tween 20. 
Again after rinsing five times with wash buffer, the nitrocellulose strips were 
color developed for 5-30 min in a solution of developer consisting of 30% 
methanol, 0.5 mg/ml Bio-Rad peroxidase color developer (4-ehloro-1- 
napthol), and 5 mM H2Oz in 0.25 M NaCI, 10 mM Hepes, pH 7.4. The 
reaction was terminated by the transfer of nitrocellulose strips to distilled 
water. 

Affinity purified anti-actin antibody (IgG) was a kind girl of Dr. Keigi 
Fujiwara (7) and was used at a concentration of 1 gg/ml to detect actin in 
these blots. Normal rabbit serum IgG tested negative on transfers of neutro- 
phil fractions and rabbit skeletal muscle actin. To detect the presence of G 
proteins in the fractions, antibodies (IgG) made against bovine brain beta- 
subunit (5) and against the earboxyl terminal nonapeptide (NNLKDCGLF) 
from the sequence of the alpha-subunit of G~ (4) were used at a concentra- 
tion of 10 and 20 ~tg/ml respectively in the primary antibody incubation 
step. Rabbit antiserum raised against human brain fodrin (11) was the kind 
gift of Dr. Jon Morrow and was used at a dilution of 1:1,000 to detect the 
presence of fodrin. Mouse monoclonal (IgG anti-clathrin heavy chain) 
(CHC 5.9 ICN Immunobiologicals, Lisle, IL) and peroxidase-conjugated 
goat anti-mouse IgG secondary antibody (Tago Labs, Inc., Burlingame, 
CA) at 1:1,000 dilution were used to detect clathrin heavy chain. Unless ex- 
plicitly stated all other materials were obtained from the sources quoted in 
the original references. 

Results 

Using both ttuoresceinated and tritiated derivatives of che- 
motactic peptides, we have previously shown that after an in- 
cubation of 4°C, human neutrophils bind the chemoattrac- 
rants reversibly (t,~ off <2 min) (16, 30) and are capable of 
responding to their continued presence after rapid warming 
of the cells to physiological temperatures. After identical in- 
cubations but at 15°C, most of the occupied ligand-binding 
sites are converted to a high affinity, virtually nondissociable 
(t,~ off >2 h) form (16, 28, 30) and are incapable of inducing 
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a response after warming (17, 28) in spite of their apparent 
surface localization (30). During incubations performed at 
37°C the occupied receptors are internalized to a galactosyl 
transferase-enriched intracellular compartment (13, 15). We 
used the 15°C incubation as a way of trapping the receptor 
before endocytosis in a state allowing the analysis of the mo- 
lecular basis for this attinity conversion in the plasma mem- 
brane. 

To demonstrate that the converted binding sites were of 
surface receptor origin, we specifically labeled N-formyl 
peptide receptor on human neutrophils with a stimulatory 
dose of a radioiodinated, photoaffinity derivative of the che- 
motactic tetrapeptide, FMLPL-SASD[12~I] (1). Using this 
probe, we were able to compare the molecular weights and 
extracellular protease sensitivity of the cellular receptors. 
This comparison was done by covalently labeling the recep- 
tors while still on the cell with FMLPL-SASD[t2~I] after 
the three temperature incubations described above, then 
treating the cells with papain (at 4°C) and solubilizing them 
in SDS. The receptors could then be identified by their char- 
acteristic mobility on SDS-PAGE as observed by autora- 
diography. The left panel of Fig. 1 shows that after incuba- 
tion of the cells under the three conditions, only a single 
characteristic receptor species of Mr ,o50-70 kD was la- 
beled. The relative exposure of the film in the three lanes 
corresponding to the three preincubations, confirmed the 
previously reported relative amounts of radioligand uptake 
(nondissociable binding) after similar incubations. The 37°C 
preincubation resulted in the highest exposure and reflected 
continuous internalization and accumulation of the ligand- 
receptor complexes to the light Golgi (LG)-like (galactosyl 
transferase-enriched) fraction (13, 15). The 15°C preincuba- 
tion was intermediate in exposure and the 4°C preincubation 
was the lowest. The difference in the magnitude of the label- 
ing under these two latter conditions probably reflects differ- 
ent efficiencies of covalent incorporation arising from the 
differences in receptor affinities and the progressive decline 
in concentration of free photoactive ligand during irradiation 
of the cells. We conclude, therefore, that the converted forms 
of ligand binding observed under the three conditions re- 
sulted from modulation of the receptors and were not the re- 
sult of the artifactual appearance of nonreceptor formyl pep- 
tide-binding sites. 

To confirm the surface localization of receptor under the 
two low temperature conditions, we determined the protease 
sensitivity of the covalently labeled receptor in intact cells by 
its subsequent mobility on SDS-PAGE by autoradiography 
for the three conditions. The right panel of Fig. 1 shows that 
only the receptors in cells preincubated at lowered tempera- 
tures were completely sensitive to proteolysis, losing greater 
than 95 % of the 50-70-kD species (by densitometry) and 
yielding the previously described 35-kD receptor fragment 
(9). Since the 37°C preincubation condition produces inter- 
nalized ligand-receptor complex (15), which is 55% un- 
digested, the experiment suggests that the complexes are 
indeed inaccessible to papain. The higher levels of low mo- 
lecular weight degradation fragments, seen after the 37°C 
incubation, probably results from internal and endogenous 
degradation of ligand-receptor complexes and is present 
whether or not the cells are treated with papain. These frag- 
ments are not present after the two low temperature incuba- 
tions, further supporting the surface localization of the la- 

Figure 1. Surface localization of occupied N-formyl peptide recep- 
tors in ligand-desensitized human neutrophils. Neutrophils were 
divided into three aliquots (107 cells/ml) that were photoaftinity la- 
beled with 5 nM FMLPL-SASD[~25I]for 5 min at 4°C, 20 min at 
15°C or 10 min at 370C, before being covalently coupled to recep- 
tor. The cells were then washed and resuspended in DPBS at 107 
cells/ml, and treated with either activated papain (500 ~tg/ml) or 
iodoacetamide-inactivated papain. The cells were washed and solu- 
bilized in SDS-PAGE-solubilizing buffer containing a mixture of 
protease inhibitors. The samples were then subjected to SDS-PAGE 
and dried for autoradiography. In the autoradiogram of such a gel, 
the N-formyl peptide receptor (Mr = 50,000-70,000) was unaffected 
by inactivated papain. However, activated papain was able to cleave 
the receptor completely to produce a radiolabeled fragment of Mr 
,,~35,000 in cells labeled at both 4°C and 15°C, but only partially 
in cells labeled at 37°C. 

beled receptor in these cells. Comparison to controls not 
treated with papain or treated with inactivated papain also 
suggested no proteolysis occurred within the cell as there was 
no detectable difference in the Coomassie-staining patterns 
of the major protein constituents of the cell, nor in the intact 
morphology as observed by phase contrast microscopy (not 
shown). 

The sensitivity of the receptors to papain in the desensitized 
(15°C) and responsive cells (4°C) is strongly suggestive of 
their surface localization. In other studies using electron mi- 
croscopic autoradiography to localize the ligand receptor 
complex, we also found that the two low temperature incuba- 
tions resulted in equivalent grain distributions with 80-90% 
of the grains lying within 0.1 lain of the cell periphery (Jesai- 
tis, A. J., and C. M. Chang, unpublished results). These 
results supported the above protease sensitivity and the 
nearly complete accessibility of fluorescent ligand to rapid 
(<l s) quenching by low pH exposure after similar low tem- 
perature incubations (31). 

To study the molecular interactions governing the desen- 
sitization process and to minimize the contamination of 
preparations with cytoplasmic cytoskeletal proteins irrele- 
vant to high affinity complex formation, we performed a sub- 
cellular fractionation analysis of responsive and desensitized 
cells. Surprisingly, the results suggested that receptors were 
translocated to a novel plasma membrane subcompartment 
during the 15°C incubation. In these experiments, we pre- 
pared subcellular fractions from desensitized cells having 
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Figure 2. Transfer of occupied N-formyl peptide receptors from a light to a heavy plasma membrane domain during ligand-induced desensiti- 
zation of human neutrophils. 6 x 10 s neutrophils were resuspended in 4 ml DPBS and divided into two aliquots. The two-cell aliquots 
were photoatfinity labeled with 5 nM FMLPL-SASD[~2sI], one at 4°C for 5 min and the other at 15°C for 15 min, followed by photolysis 
on ice for 10 min to covalently incorporate the ligand. The cells were then washed in DPBS, disrupted and fractionated as previously described 
(26). Fractions of 1.4 ml were collected and subjected to SDS-PAGE on 9% gels. The gels were fixed and stained with Coomassie Brilliant 
Blue (G-250), and dried down for autoradiography. The Coomassie Blue-staining profiles in the dried gels are shown in the lower panels. 
The upper panels show the autoradiograms of the same gels. The panels under A and B are of membrane fractions obtained from cells 
preincubated with FMLPL-SASD[t25I] at 4°C and 15°C, respectively. The fractions containing the highest activity of neutrophil subcelhilar 
organelles are indicated below the gel profiles: Azurophil granules (AG), Specific granules/Golgi (SG/G), light Golgi or endosomes (LG), 
cytosol (CS). The alignment of the peak in labeled receptor with the corresponding fraction of the stained gel is indicated by the arrow. 
In A alkaline phosphatase activity coincides with the receptor peak (lane 13) and the peak staining density for the 72-kD band of the stained 
gels. This group of fractions has been termed the light plasma membrane (PM-L). However, the receptor'in B (15°C cells) is shifted to 
a higher density (lane 11 ), where it cosediments with proteins of Mr 55,000 and 42,000. This fraction is termed the heavy plasma mem- 
brane (PM-H). Specific granules can also be identified by lactoferrin at 78 kD. 

the high affinity form of the receptor (incubated with 
FMLPL-SASD[125I] at 15°C) and responsive cells having 
the low affinity form, (incubated with FMLP-SASD[t25I] at 
4°C). The fractions were prepared by nitrogen cavitation of 
both cell populations after UV irradiation to covalently cou- 
ple the ligand to the receptor. The cavitated homogenates 
were separated on isopycnic sucrose density gradients as pre- 
viously described (26). Marker profiles were typically dis- 
tributed with high recovery (>80%) in both gradients 
reproducing several previous studies from our laboratory 
(13, 15, 26). Aliquots were taken from the gradient fractions, 
run on SDS-PAGE and the resulting gels dried and used for 
autoradiography. Fig. 2 shows the resulting autoradiograms 
(upper panels) and the corresponding Coomassie Blue 
protein-staining patterns in the dried gels (lower panels) used 
for the autoradiography. The autoradiograms show that the 

characteristic receptor band of 50-70 kD is the only labeled 
species observed in any of the gradient fractions. It also 
shows that it is localized to the central fractions of the gra- 
dient which are enriched in plasma membrane markers but 
clearly separated from the heavy Golgi (galactosyl transfer- 
ase) and granule (lactoferrin, myeloperoxidase) fractions in 
lanes 3-9 and the lighter, galactosyl transferase-enriched, 
endosomes or Golgi fractions in lanes 14-16. 

Closer inspection however, shows important and repro- 
ducible differences in the distribution of the photoaffinity- 
labeled ligand-receptor complexes isolated in these gra- 
dients. The peak exposure is observed in lane 13 in the frac- 
tions from responsive cells (A) corresponding to a sucrose 
density of 31.9 _ 0.8 weight percent (n = 8; p = 1.135 g/cc). 
It is, however, shifted to lane 11 (35.3 + 1.7%; n = 8; p = 
1.155 g/cc) in fractions from desensitized cells exhibiting 
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conversion of receptors to the high affinity form. In both gra- 
dients the alkaline phosphatase activity, a common plasma 
membrane marker used in neutrophil studies sediments to 
the same sucrose density (30.7 + 1.1% and 30.3 + 0.8%, for 
the 4 ° and 15°C studies, respectively) with a peak corre- 
sponding to lanes 13 in Fig. 2, A and B. In A and B of Fig. 

• 3 the relative distributions of alkaline phosphatase activity 
and receptor, quantitated by scanning densitometry, are 
shown for another identically run experiment which clearly 
shows the shift of receptor relative to the alkaline phosphatase 
activity. This latter invariant distribution was shown to ac- 
curately parallel the distribution of surface-binding sites for 
unliganded receptor, radioiodinated wheat germ agglutinin, 
surface radioiodinatable proteins, and cholesterol (26) (Jesa- 
itis, A. J., J. O. Tolley, P. A. Hyslop, and R. A. Allen, unpub- 
lished results). The distribution of these markers also 
parallels a discrete set of Coomassie-stained bands observed 
in the lower panels. These include a major unidentified spe- 
cies of Mr = 72,000. Inspection of the fractions containing 
the shifted receptor, reveals that the protein composition of 
these fractions is distinct, containing a number of discrete 
bands including major species with Mr of 42,000 and 
55,000, and that they are well resolved from the flanking 
granule and "plasma membrane fractions" 

We have reproduced the shift in receptor localization in 
more than 16 similar experiments using cells isolated from 
different blood donors. In paired comparisons this shift was 
3.8 _ 1.8 weight percent (n = 16) or ,o10% of the working 
volume of the sucrose gradient, amounting to a significant 
2 ml or a two fraction shift. The shift also occurs if the covalent 
labeling is done before the incubation at 15°C, thus indicat- 
ing that the covalently labeled receptor species was not a new 
form to arrive at the cell surface replacing receptors that had 
been internalized.and degraded at 15°C. We also observed 
the shift with use of the tritiated form of F-Met-Leu-Phe (2, 
12) in which the conversion to high affinity form was respon- 
sible for retention of the peptide in the membranes after cell 
washing, cavitation and isolation of the membrane fractions. 
In two experiments, a misalignment of the receptor distribu- 
tion with the 42- or 55-kD bands was observed which may 
have resulted from variabilities in the state of the cells ob- 
tained from the different blood donors. In addition, we found 
in other unpublished studies, that incubations at 4°C do not 
block, but only lower the rates of translocation to the heavy 
fraction or conversion to high affinity form of the receptor 
or desensitization of the cell. Furthermore, the differential 
in these rate (4 ° vs. 15°C) is also reduced when very high 
affinity ligands such as FMLPL-SASD (Ka ,0 0.3 nM) are 
used. Thus to observe the maximum differential transloca- 
tion of receptor with the photoaffinity probe used here, we 
incubated the cells with FMLPL-SASD[~25I] for <5 min at 
4°C and >15 min at 15°C. Controls were performed in which 
the times of incubation at 4°C were increased to match those 
at 15°C but these often resulted in partial translocation of 
receptor. 

The resolved membrane fractions described here are also 
observed in fractions obtained from cells that have not been 
exposed to formyl peptides (not shown). Thus we presume 
they are preexisting in the cell and not due to changes in- 
duced by exposure of the cells to formyl peptides. Moreover, 
in other studies, we have also shown that a fraction of equiv- 
alent density, and shifted from the alkaline phosphatase 
distribution can be isolated from phorbol myristate acetate- 
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Figure 3. Partition of occupied 
N-formyl peptide receptors 
into a plasma membrane do- 
main depleted of G-protein 
in ligand-desensitized human 
neutrophils. Neutroplfi'ls were 
DFP-treated, photoaflinity la- 
beled, cavitated and fraction- 
ated by isopycnic sucrose den- 
sity gradient sedimentation as 
described in Fig. 2. The pro- 
files shown are: Alkaline phos- 
phatase ( ....... ), N-formyl pep- 
tide receptor ( ), and GTP'/ 
[3sS] binding ( . . . .  ). A shows 
the cosedimentation of recep- 
tor with the plasma membrane 
marker alkaline phosphatase 
in responsive cells. B shows 
how the receptor localizes to a 
different domain when desen- 
sitized cells are fractionated. 
The position of alkaline phos- 

phatase is unchanged. C shows that the GTP7 [3sS]-binding activ- 
ity cosediments with alkaline phosphatase activity in desensitized 
cells (15°C) in contrast to the receptor. 

stimulated neutrophils containing surface-localized, NADPH- 
dependent superoxide generating activity (Quinn, M. T., 
C. A. Parkos, and A. J. Jesaitis, unpublished results). Thus 
from cells treated entirely differently we observe similar 
separations thus suggesting a constancy in structure of the 
membrane at this level of resolution. Finally, because the 
occupied receptors in cells preincubated with the formyl 
peptide at 15°C were still accessible to exterior proteases, 
external acidification (31), and appeared by electron micro- 
scopic examination to be surface associated, receptor local- 
ization to this fraction suggests that this heavier membrane 
fraction is also surface derived and thus may represent a 
plasma membrane "microdomain". We therefore termed the 
two membrane fractions PM-L for the light plasma mem- 
brane fraction and PM-H for the heavy plasma membrane 
fraction. 

Occupied N-formyl peptide receptors of neutrophils coiso- 
late with a Triton X-100-insoluble fraction under the condi- 
tions which promote the shift of receptors to membrane frac- 
tions of higher density (17). Thus we wanted to determine 
whether there was a structural link between these events in 
the membrane. Since the PM-H fractions were the predomi- 
nant locus of a 42-kD protein, we also examined the compo- 
sition of the sucrose density gradient-isolated membrane 
fractions with respect to the presence of the cytoskeletal pro- 
teins actin, fodrin, and clathrin. Sucrose gradient fractions 
were separated by SDS-PAGE and transferred to nitrocellu- 
lose as described in the Materials and Methods section and 
blotted with antibodies specific to these proteins. After dry- 
ing, these same blots were used to generate autoradiograms 
to monitor transferred photoaffinity-labeled receptor. Fig. 4 
A is a composite overlay of such an autoradiogram and its 
corresponding Western blot. The gradient fractions shown 
were obtained from photoaffinity-labeled desensitized cells 
(15°C preincubation) and the immunoblots used affinity 
purified anti-actin antibodies. The figure shows that actin 
codistributes with receptor in these fractions and thus is 
present in the 42-kD band in evidence in the staining pattern. 
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Figure 4. (A) Cosedimentation of actin with N-formyl peptide receptor in the PM-H domain of desensitized neutrophils. Fractions prepared 
as in Fig. 2 from formyl-peptide desensitized cells were analyzed for actin content. 300 gl of gradient fractions were diluted 1:1 with 10 
mM Hepes, pH 7.4, and pelleted after 45 min at 45,000 rpm in a Beckman 50 Ti rotor at 4°C. Pellets were solubilized and subjected to 
SDS-PAGE on 9% gels as described in Fig. 1. The slab gels were electrophorectically transferred for Western blots to nitrocellulose (34) 
and bound with primary rabbit antibodies followed by peroxidase-conjugated goat anti-rabbit IgG as described (25) previously. Incubation 
with primary antibody (1 I~o/ml) affinity purified rabbit anti-fish skeletal muscle actin (7) was performed overnight at 4°C in blocking 
buffer (25). (B) Cosedimentation of the alpha subunit of fodrin (Mr = 240,000) with the shifted N-formyl peptide receptor in the heavy 
plasma membrane fractions (PM-H) obtained in cells incubated with FMLPL-SASD[~25I] at 15°C. These experiments were performed 
and are displayed as described in A with the exception that the shifted receptors were covalently labeled before their incubation at 15°C. 
A 1:1,000 dilution of anti-human fodrin antisera was used as the primary antibody. The lighter band of Mr ,x,150,000 is the proteolytic 
fragment of alpha-fodrin resulting from activity of the calcium-sensitive protese (11). 

In the corresponding fractions from responsive cells (4°C 
preincubation) the receptor is in the PM-L and shifted rela- 
tive to the invariant actin profile (not shown). Fig. 4 B shows 
that the receptor also cosediments with alpha-fodrin and its 
150-kD, Ca÷+-sensitive cleavage product. 

Attempts to detect clathrin heavy chain using commer- 
ciaUy available anti-clathrin antibodies gave consistent de- 
tection of clathrin in the cytosolic fractions, but inconsistent 
results for the membrane fractions. Micro-ELISA assays 
supported the detection of clathrin in the cytosolic fraction 
and the dense granule fraction but not in the membrane frac- 
tions. Because of the low levels of coated pits observed in 
these cells and the apparent lack of correlation of these struc- 
tures with the autoradiographic grains of iodinated N-formyl 
peptide observed during statistical analysis of grain distribu- 
tion by electron microscopy (16) the relationship of these 
structures to the formation of the converted high affinity 
surface-receptor sites observed after the 15°C incubation re- 
mains unresolved. 

To determine whether the ligand-induced desensitization 
and receptor transfer had a possible functional relationship, 
we analyzed the subcellular distribution of guanyl nucleotide 
regulatory proteins in the sucrose density gradient fractions 
of the responsive (4°C) and densensitized (15°C) cells. Fig. 
3 shows that Gamma[35S]GTP-binding activity (C) co-sedi- 
mented with the plasma membrane marker activity, alkaline 
phosphatase, in fractions derived from FMLPL-SASD- 
[J25I]-desensitized and responsive cells but not with ligand- 
receptor complexes in the desensitized cells (Fig. 3, A and 
B). This distribution was confirmed using a rabbit poly- 
clonal antibody recognizing the pertussis toxin substrate, the 
alpha subunit of human neutrophil G-protein and is shown 

in Fig. 5. A parallel distribution was also observed for the 
beta-subunit (not shown). Based on the GTP-binding mea- 
surements and immunoblots, we estimate that the vesicles 
(PM-H) containing shifted receptor have a significantly low- 
er G-protein content (10-20%) than the alkaline phospha- 
tase-enriched, PM-L vesicles. This relative depletion sug- 
gests a different environment for the receptors in the two 
fractions. 

Figure 5. Cosedimentation of the alpha subunit of the guanyl 
nucleotide regulatory protein with the PM-L domain (fodrin and 
actin-depleted) of formyl peptide desensitized human neutrophils. 
Fractions used in the experiment shown in Fig. 3 were also analyzed 
for G-protein content using an anti-alpha chain antibody. Peroxi- 
dase activity of the conjugated secondary antibody was observed to 
localize in the fractions enriched in PM-L domain (PM-L) and 
clearly resolved from the receptor and actin shown in Fig. 4 in the 
heavy plasma membrane domain (PM-H). 
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Discussion 

The purpose of the investigation described in this paper was 
to explore the molecular basis for regulation of chemotactic 
receptors of human neutrophils at the plasma membrane 
level. Our particular emphasis was to investigate the role of 
the cytoskeleton in receptor modulation in the plasma mem- 
brane. We hoped to relate this function to the desensitization 
of human neutrophils to chemoattractants and conversion of 
these chemotactic receptors to a high affinity, very slowly 
dissociating and Triton X-100-insoluble form previously de- 
scribed (16, 17, 35). In this study we were able to show 
that the high affinity ligand-binding sites for N-formyl pep- 
tides observed after incubation of neutrophils with such pep- 
tides at 15°C were due to bona fide receptors identified by 
their Mr on SDS-PAGE and that these receptors were local- 
ized to the cell surface by several independent criteria. The 
most interesting result from our study suggests that these 
receptors are translocated from a plasma membrane domain 
enriched guanyl nucleotide regulatory protein to a domain 
depleted in these proteins but enriched in proteins of the 
membrane skeleton, actin, and fodrin. 

The interpretation of these results relies on the assumption 
that the N2 cavitation of human neutrophils in sucrose at 
low ionic strength fragments the plasma membrane into at 
least two vesicle populations of differential composition. The 
PM-L (light) fraction cosediments with a number of plasma 
membrane marker activities including alkaline phosphatase, 
surface iodinatable and surface lectin-labeling proteins, and 
G-proteins. The PM-H fraction is characterized as the major 
sedimentable actin and fodrin locus of the cell and in similar 
preparations the locus of a surface NADPH-dependent su- 
peroxide generating enzyme system (Quinn, M. T., C. A. 
Parkes, and A. J. Jesaitis, unpublished results). In addition, 
occupied N-formyl peptide receptors can be moved from 
PM-L to PM-H without significantly affecting their pre- 
cavitation sensitivity to extracellular proteases, accessibility 
to fluorescence quenching by rapid extracellular acidifica- 
tion (30), or their localization by electron microscopy auto- 
radiography. Although the likelihood is very small, without 
application of specific alternative probes (e.g., antibodies) 
which can clearly show the extracellular orientation of the 
receptor-binding sites, we cannot rule out localization of 
these receptors to a subsurface, vesicular pool which is rap- 
idly accessible to papain or hydrogen ions at 4°C. 

Reports of isolation of structural domains of plasma mem- 
brane in platelets (8) and lymphoid cells (10, 19) have been 
published as have reports of actin-rich domains associated 
with the phagocytic process (32). In neutrophils, the domain 
we describe appears to preexist in membrane and appears 
functionally related to control of surface chemotactic recep- 
tors. In addition our results suggest that all the latent alkaline 
phosphatase activity originating from intracellular pool re- 
ported by Borregaard et al., (6) has been expressed during 
isolation of the cells and has no apparent relationship to the 
fractions under study. 

We have interpreted the translocation of occupied recep- 
tors from PM-L to PM-H as another manifestation of the 
conversion of receptors to the Triton X-100-insoluble, high 
affinity form found in preponderance in cells desensitized by 
prior incubation with ligand at 15°C. Their physiological rel- 
evance derives from our kinetic studies of these latter events 

at 37°C both in isolated membrane and isolated cytoskele- 
tons. Recent work by Painter and associates (25) suggesting 
that this form is insensitive to guanyl nucleotides has now 
been confirmed by our own studies using membranes con- 
raining such high affinity receptors bound noncovalently with 
the tritiated form of F-Met-Leu-Phe. In these unpublished 
studies we showed that tritiated/ZMet-Leu-[3H]Phe, could not 
be induced to dissociate, by GTP-gamma-S from membrane 
obtained from cells preincubated with the radioligand (Cupo, 
J. E,  and A. J. Jesaitis, unpublished results). Together these 
results suggest that the high affinity form of the occupied re- 
ceptors found on the surface of cells at 15 ° and 37°C are in- 
capable of interacting with the G-proteins. Our results, in 
contrast with those of Painter et al. (24) however, suggest that 
the demonstrated insensitivity of receptors to guanyl nucleo- 
tides might alternatively or additionally arise from a lateral 
segregation of receptors from their G-protein transducing 
partners. If such segregated receptors could be reconstituted 
in membrane vesicles containing G-proteins and demonstrate 
guanyl nucleotide sensitivity in their binding characteristics, 
then the lateral segregation observed could be invoked as a 
possible mechanism of control of chemoattractant activation 
of human neutrophils. 
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