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ABSTRACT A Broad bean mottle virus (BBMV) isolate (S52) obtained from an infected
Vicia faba leaf sample from Syria was sequenced using Oxford Nanopore long-read
sequencing at the Australian border. The genome had 95.6%, 98.2%, and 93.4% nucleotide
sequence identity to BBMV strains RNA1 (Bawden), RNA2 (Mo), and RNA3 (Bawden).

Broad bean mottle virus (BBMV) (Bromovirus, Bromoviridae) is a tripartite linear single-
stranded RNA (ssRNA) (1) seed-borne virus that infects several temperate pulses. It

is found in Africa, Asia, Europe, and the Middle East, where it causes severe damage in
pulses (1–3) and constitutes a threat to crop improvement programs (4). BBMV is a quaran-
tinable pathogen in Australia; consequently, it is mandatory for the imported seeds to be
screened within post-entry quarantine (PEQ) (5).

Isolate S52 was obtained from Vicia faba (faba bean) material imported from Syria in
2003 and mechanically inoculated into faba bean plants in a PEQ controlled glasshouse.
The inoculated plants revealed mottling and chlorotic blotch symptoms; the leaves were
sampled and tested positive for BBMV by tissue blot immunoassay (6). Total RNA was extracted
from the positive leaf material using a ZR plant RNAminiprep kit (Zymo Research), and a quality
control check was conducted as previously described (7). The RNA was converted to cDNA
using random primers (8), followed by library preparation using a ligation sequencing kit (SQK-
LSK109; ONT); the sequencing was conducted on the MinION platform using a FLO-MIN106D
(R9.5) flow cell. Base calling was performed using MinKNOW version 20.10.3 in high accuracy
mode. A total of 101,000 reads were generated, ranging in length from 1.2 to 5.3 kb, and
imported into CLC Genomics Workbench (CLCGW) version 20 (CLC bio; Qiagen) for quality con-
trol, followed by de novo assembly using default settings with double polishing. In addition, the
reads were mapped onto a reference BBMV genome using Minimap2 version 2.0.0 (9).

The consensus genome segments had 351 to 610 reads mapping onto each entire
coding genome segment, with average depths of 22�, 31�, and 48� and GC contents of
43%, 42%, and 44% for RNA1 to RNA3, respectively. The consensus sequence was subjected
to a BLASTN search using BLAST1 version 2.7 and MUSCLE (10, 11). The new genome had
95.6%, 98.2%, and 93.4% nucleotide identity (nt) to BBMV strains RNA1 (Bawden), RNA2
(Mo), and RNA3 (Bawden), respectively (12, 13). Primers were designed from the newly gen-
erated BBMV RNA3 coat protein (CP) region, targeting 250 to 500 bp, and amplified the
expected amplicon band size. Annotation of the BBMV genome (5) revealed that both RNA1
and RNA2 encoded open reading frames 1a and 2a, typical of the genus Bromovirus, to which
BBMV belongs (13). Further, RNA3 encoded the CP gene, which is required for virus systemic
movement and associated with cell-to-cell spread (14). The 93.4% nt between S52 and
Bawden suggests that the CP might be a hotspot for BBMV genome variability. Nevertheless,
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considering the data quality score (15), this deduction should be confirmed further by Illumina
reads.

BBMV vectors have not been reported in Australia, and imported germplasm remains
the major introduction pathway. Imported seeds serve as a source of genetic diversity
for Australian grain-breeding programs. Therefore, it is plausible that the importation of
this new germplasm into Australia poses a significant threat in introducing damaging exotic
viruses and their variants. As such, persistent surveillance and the integration of robust
diagnostic genomics tools at the PEQ border are vital in safeguarding the Australian grains
industry.

Data availability. The data described here were deposited in the DDBJ under accession
numbers LC683787 to LC683789. The raw reads were deposited at the SRA under accession
number SRR16883245 and BioProject accession number PRJNA778895.
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