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differential expression of key genes in human
placenta-derived venous and arterial
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Abstract

Background: The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established
prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning
this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA
methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells.

Results: Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA
methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000
annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between
the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial
function. An inverse relationship was observed between gene expression and promoter methylation levels for a
limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase.

Conclusion: Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key
regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent
potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular
disease risk later in life.

Keywords: Endothelial cells, DNA methylation, Epigenetics, Placenta, NOS3, Gene expression, HPAEC, HPVEC,
Reprogramming differentially methylated region
Background
Mounting evidence linking environmental exposures in
early life to later risk of cardiovascular disease has led to
intense interest in the process of vasculature develop-
ment in utero [1-3]. Primarily, arteries and veins are de-
fined by physiologic factors such as the direction and
pressure of blood flow and by functional and anatomical
differences such as the arrangement of smooth muscle
cells around the vessels. In general, arteries carry
* Correspondence: richard.saffery@mcri.edu.au
1Cancer and Disease Epigenetics, Murdoch Childrens Research Institute, Royal
Children’s Hospital, Flemington Road, Parkville, Melbourne, Australia
4Department of Paediatrics, The University of Melbourne, Melbourne,
Australia
Full list of author information is available at the end of the article

© 2013 Joo et al.; licensee BioMed Central Ltd
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
oxygenated blood, and have tighter endothelial junc-
tions, whilst veins carry deoxygenated blood and have
looser endothelial junctions [4]. The feto-placental vas-
cular system differs from that of most other human or-
gans, because the arteries carry the deoxygenated blood
coming from the fetus whilst the veins carry the oxygen
enriched blood.
Not surprisingly, given their different physiologic func-

tions, the identity of arterial and venous endothelial cells
is established before the onset of circulation [5-7] in as-
sociation with distinct gene expression signatures that
define endothelial cell identity [8-10]. This includes
endothelial nitric oxide synthase (eNOS) encoded by
NOS3, von Willebrand factor (vWF), vascular endothelial
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cadherin (VE-cadherin, CDH5), intracellular adhesion
molecular-2 (ICAM-2), endothelial growth factor receptor
tyrosine kinases VEGF-R1 (Flt-1) and VEGF-R2 (Flk-1,
KDR), angiopoietin receptors Tie-1 and Tie2 (TEK) and
NOTCH4 [Reviewed in [11,12]]. In addition, a number of
transcription factors have been shown to be preferentially
expressed in endothelial progenitor cells and mature
endothelial cells and have been argued to orchestrate the
expression of such genes [11]. Despite this, the associated
epigenetic regulators determining this specific gene ex-
pression profile are largely unclear.
Numerous lines of evidence suggest that the endothe-

lial compartment represents a potential target tissue for
transmission of environmentally mediated risk of complex
disease, potentially via a process of epigenetic disruption
in early development [2,13]. Epigenetic mechanisms, in-
cluding DNA methylation, are now widely accepted to
underpin developmentally regulated changes in cell
morphology and function [14], however little is known
about the role of such modifications, and their relative
plasticity, during endothelial cell development. It is clear
that one of the key regulators of vascular function, endo-
thelial nitric oxide synthase (eNOS) is under epigenetic
control by several mechanisms, including DNA methyla-
tion [15]. Indeed the chromatin structure of the eNOS
promoter is transcriptionally permissive only in cells of
the endothelial compartment, such as those isolated from
human umbilical vein, mouse aortic, and pooled human
dermal microvascular endothelial cells [15,16]. Altered
chromatin has also been reported for other endothelial-
specific genes including vWF [17], NOTCH4 [18]. Further-
more, studies have shown changes in epigenetic marks
induced by oxidative stress (i.e. hypoxia) in VEGF [19]
and NOS3 [20], supporting the potential epigenetic roles
in tissue-specific regulation of those genes. Recent
genome-scale comparison of DNA methylation in dermal
derived lymphatic and blood-derived endothelial cells
has highlighted the role of differential methylation in the
specification of endothelial function [21], but beyond
these limited data, little is known about the relationship
between epigenetic modifications and gene expression
underpinning endothelial phenotype or developmental
stage at the genome-wide level. As a first step towards
addressing these questions, we have examined the rela-
tionship between genome-scale DNA methylation and
gene expression in purified human placental arterial and
venous endothelial cells (HPAEC and HPVEC).

Results and Discussion
Placenta-derived venous and arterial endothelial cells
play especially important functional roles (e.g. nutrition,
cholesterol delivery) as part of the fetal-maternal supply
line [22,23]. Furthermore, several physiological differ-
ences exist between these two cell types [24] and they
differ in their degree of maturity. Whereas placental ar-
terial endothelial cells have a mature arterial phenotype
(fully differentiated), venous derived cells show a juvenile
(less differentiated) phenotype, potentially representing a
pool of endothelial progenitor cells [9].
We compared DNA methylation in 9 purified cell pop-

ulations each of Human Placental Arterial Endothelial
Cells (HPAEC) and venous equivalents (HPVEC). After
removing probes that did not pass a quality control cut-
off (i.e. probes with >0.05 p-value detection) and probes
on sex chromosomes, a total of 351,952 probes remained
that were common to all datasets for inclusion in sub-
sequent analyses. β-values (DNA methylation values be-
tween 0 and 1, approximating 0-100% methylation)
were calculated for each probe in HPAEC and HPVEC
samples.

General hypomethylation in placental venous relative to
arterial endothelial cells
As a first comparison of methylation within the two cell
types, we calculated an average β-value across the entire
dataset as a proxy for global methylation levels in venous
and arterial cell samples as previously described [25].
Interestingly, we found clear evidence for a general
hypomethylation in HPVEC (average β = 0.434) relative to
HPAEC (average β = 0.479), with the latter comparable to
peripheral blood average methylation, whereas HPVEC
levels were more similar to that of buccal cells taken at
birth. Both HPAEC and HPVEC were generally more
methylated on average than placental tissue (Figure 1).

Widespread epigenetic differences in placental arterial
and venous endothelial cell compartments
Importantly, where tested, HM450 DNA methylation
levels showed strong correlations with those derived using
locus-specific SEQUENOM MassARRAY EpiTYPER plat-
form (Additional file 1: Figure S3), validating the HM450
platform, in accordance with other recent studies [26-29].
Unsupervised hierarchical clustering of variable probes in
this dataset (SD/mean > 0.4; 151453 probes) clearly dis-
criminated arterial from venous samples (Additional file 1:
Figure S1) highlighting the genome-wide DNA methyla-
tion differences between these endothelial compartments.
HPAEC were more variable as a group than HPVEC in
terms of DNA methylation profile. This discriminatory
capacity was maintained following unsupervised clustering
of the 1000 most highly variable probes (Figure 2). Further,
a similar comparison with recently reported methylation
datasets generated from cultured adult dermal blood and
lymphatic endothelial cell populations [21] with our
dataset, along with unpublished Human Umbilical Vein
Endothelial cell (HUVEC) data, highlights the distinct
DNA methylation profile of endothelial source from dif-
ferent vascular compartments. HPVEC show the most
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Figure 1 Comparison of average DNA methylation levels across >300,000 CpG sites in HPAEC (n=9) and HPVEC (n=9). The average β-value
across the entire dataset was generated as a proxy for global methylation levels as previously described [25]. Hypomethylation of HPVEC was observed
(average β = 0.434) relative to HPAEC (average β = 0.479). Peripheral blood (n=40), Buccal (n=59) and Placenta (n=19) were included for comparative
purposes.
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unique methylation profile, clustering separately from
lymphatic and blood derived endothelial cells, HUVECs
and HPAEC cells (Additional file 1: Figure S2).
To identify sets of differentially methylated probes

(DMPs) between HPAEC and HPVEC, average β-values
were calculated for each probe in HPAEC and HPVEC
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Figure 2 Unsupervised hierarchical clustering (dendrogram)
and heatmap of 1000 most highly variable probes in HPAEC
and HPVEC samples. Despite evidence of variability in DNA
methylation profile within each cell type, HPAEC and HPVEC samples
are clearly discriminated according to methylation profile.
groups. Linear regression analysis revealed a large set of
significantly differentially methylated probes (95,266 in
total; Benjamini-Hochberg adjusted p-value ≤ 0.05). A
total of 15,115 probes, associated with 5,142 genes,
showed elevated methylation in HPVEC relative to
HPAEC (average β-value difference ≥0.10; Additional file 2:
Table S2) whereas 53,725 probes associated with 12,659
genes showed the reciprocal pattern (Additional file 3:
Table S3). These data highlight the coordinated nature of
methylation change, with blocks of probes (differentially
methylated regions – DMRs), showing a common shift in
the direction and magnitude of methylation change be-
tween cell types.
In order to examine the potential for altered DNA

methyltransferase activity to explain the observed global
DNA methylation differences described above, we ex-
tracted methylation and gene expression data for found
evidence for differential methylation of both the
DNMT1 and DNMT3A (but not DNMT3B) genes, with
elevated average methylation in both promoter regions
in HPVEC relative to HPAEC (Additional file 4: Table S1).
Further, this was associated with a reciprocal pattern of
gene expression specifically for DNMT3A consistent with
methylation induced down regulation of DNMT activity
in the placental venous compartment (Additional file 4:
Table S1).
Of particular interest to endothelial cell biology, many

DMP/DMRs were identified in genes previously impli-
cated in endothelial functioning, including nitric oxide
synthase 2 (iNOS) [12,30] and NOS3 (encoding eNOS)
[15,31], von Willebrand Factor (VWF) [11], NOTCH4
[18], VEGFA, VEGFC [32], SELE [33], FLT [34], and
KDR [35] genes, although the number of DMPs and
direction of methylation difference between cell types
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was variable (Additional file 2: Tables S2 and Additional
file 3: Table S3).
Interestingly, many genes showed a reciprocal effect

on methylation profile according to genomic location
relative to the transcription start site. For example,
NOS3, showed two regions of highly significant differen-
tial methylation. The first, located in the major promoter
previously described to drive endothelial expression,
encompassed 4 probes with higher mean methylation in
HPVEC relative to HPAEC cells, while a reciprocal mean
methylation pattern was observed for 5 probes in a
downstream exon-associated region in a previously de-
scribed, placenta-specific variant of this gene (Figure 3).
Locus-specific analysis of methylation confirmed highly
differential methylation across each of these regions
(Figure 3D), however the regulatory function (if any) of
this second region remains to be determined. Such com-
plex patterns of methylation within individual genes
have recently emerged as a common feature in gene
regulation in humans [36-38].
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Figure 3 NOS3 gene methylation levels vary according to genomic loca
NOS3 showing chromosomal coordinates (Chr7 - chromosome 7), location of
variants including differential exons (blue bar) and introns (arrowed lines), CpG
methylation of the NOS3 gene between HPAEC and HPVEC. C. Graphical sum
n=9) relative to HPVEC (closed squares; n=9) for HM450 probes 1–14 in A. (x-a
(i) and reciprocal hypomethylation of a downstream CpG island (iii) in HPVEC
asterisks denote level of significance of array data according to adjusted p-val
by Sequenom EpiTYPER around the two regions corresponding to the HM450
the major NOS3 promoter in HPVEC (i) and the reciprocal hypomethylation of
NOS3 is constitutively expressed in the vascular endo-
thelium and plays a critical role in cardiovascular phy-
siology as evidenced by systemic and pulmonary
hypertension, abnormal vasculature, defective angiogen-
esis, poor healing in response to injury and impaired
mobilization of stem cells, in eNOS-null mice [reviewed
in [39]]. Disruption of methylation in either of these re-
gions early in development could be a modifiable risk
factor for disease in later life.

Complex interplay between endothelial DNA methylation
and gene expression
Extensive epigenetic studies have highlighted the com-
plex relationship between DNA methylation and gene
expression levels. In addition to the well documented
role of elevated methylation at promoter-associated CpG
islands in down-regulation of gene expression, it is also
apparent that some methylation marks at these (and
other) sites may be independent of gene expression sta-
tus, or even predict active expression, as observed in
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several DMRs of imprinted genes or in the case of gene-
body methylation [36-38]. Thus, in order to examine the
relationship between DNA methylation and gene expres-
sion, we integrated the methylation and gene expression
data sets. For each HM450 probe, differences in β-values
between the two groups (Δβ) were calculated and these
were compared with corresponding gene expression dif-
ferences (Additional file 1: Figure S5). By setting cutoffs
in average methylation difference higher than 10% (Δβ >
0.1) and log2 fold change in gene expression of ~1.4 (0.5
logFC), we identified a subset of genes that showed a re-
ciprocal relationship between methylation and expres-
sion level in HPVEC and HPAEC (Figure 4; Additional
file 1: red dots in Figure S5), consistent with a role of in-
creasing methylation in down-regulation of gene expres-
sion. This includes 866 HM450 probes showing lower
methylation in association with elevated expression of
306 genes in arterial cells (Additional file 5: Table S6),
and 2388 probes covering 513 genes showing the same
relationship in venous cells (Additional file 5: Table S7).
In order to test for any pattern regarding genomic lo-

cation and likelihood of regulating gene expression, we
examined the proportion of each probe type showing co-
ordinate changes in differential methylation and gene ex-
pression, according to annotation (promoter-associated,
location within 1500 bp of transcription start site, gene-
body, and enhancer-associated). This revealed that the
majority of probes were located in enhancer or upstream
regulatory (TSS1500, promoter) regions (Table 1, Additional
file 1: Figure S6).
Figure 4 Scatterplot of DNA methylation (x-axis) and gene expression
showing reciprocal methylation/gene expression change. Gates were s
expression +/− 0.5 fold change). Each set of HM450 probe datapoints (x-ax
gene likely to be under epigenetic regulation by DNA methylation with de
HPAEC relative to HPVEC (A) and vice versa (B). Genes highlighted in red in
multiple HM450 probes for each gene expression measure.
Interestingly, endothelial genes likely to be directly
regulated by DNA methylation in our dataset included
NOS3, vWF, APOLD1, ANGPTL2 genes. Many endothe-
lial genes show both differential methylation at upstream
regulatory regions and gene expression differences, but
not always in the anticipated reciprocal direction
(Table 2A, Additional file 5: Table S8; Additional file 1:
Figure S5).
The FLT1 and KDR genes code for two different sub-

types of VEGF receptors. These genes have previously
been shown to be expressed in most endothelial cells in-
cluding aortic, vein, microvessel and in many tumors, al-
beit variably across tumors and individuals [40-42].
FLT1 and KDR are postulated to play a significant role
in angiogenesis and/or tumor progression by influencing
the activity of VEGF [43,44]. These genes are shown to
be hypermethylated in some cancer cell lines (e.g. colon,
stomach) [41]. In our study, FLT1 showed differential
promoter methylation and gene expression in HPAEC
and HPVEC, however expression and methylation were
positively correlated rather than anti-correlated (Table 2).
In contrast, the KDR gene was differentially expressed
between two cell types but this was independent of any
DNA methylation differences in the vicinity of the tran-
scription start site. These findings are interesting given
that previous studies have shown down regulation of
each of these genes in association with promoter methy-
lation in various cell lines, while cell lines expressing
KDR (including HUVECs) appear universally unmeth-
ylated [41,45].
(y-axis) differences between HPVEC and HPAEC for genes
et at the limits of technical noise (methylation +/− 10%, gene
is) with a common set of gene expression values (y-axis) represents a
creased methylation associated with elevated gene expression in
cluded NOS3 and vWF. Note that in many instances, genes contain



Table 1 Number of differentially methylated probes sorted by genomic region

All probes Probes located within 1500 bp
upstream, 5'UTR and 1st Exon
(“non‐gene body” probes)

5'UTR and 1st Exon
(“non‐gene body” probes)
Transcription Start Site

(Excludes 5’UTR/1st Exon)

Quadrant number
Additional file 1: Figure S4)

Probe
Count

Proportion to
total probes
in group

Probe
Count

Proportion to
total probes
in group

Proportion to all
analysable probes

Probe
Count

Proportion to
total probes
in group

Proportion to all
analysable probes

351952 100.00% 184099 100.00% 52.31% 130656 100.00% 37.12%

Q1 866 0.25% 462 0.35% 0.13% 292 0.22% 0.08%

Q2 3441 0.98% 955 0.73% 0.27% 619 0.47% 0.18%

Q3 2388 0.68% 1011 0.77% 0.29% 627 0.48% 0.18%

Q4 711 0.20% 301 0.23% 0.09% 179 0.14% 0.05%

Probes on Enhancer Regions Promoter Associated Probes Gene Body Only
(not 5’UTR or 1st Exon)

Probe Count Proportion
to total probes

in group

Proportion to
all analysable

probes

Probe
Count

Proportion to
total probes
in group

Proportion to all
analysable probes

Probe
Count

Proportion to
total probes
in group

Proportion to all
analysable probes

59317 100.00% 16.85% 91601 100.00% 26.03% 146423 100.00% 41.60%

275 0.46% 0.08% 97 0.11% 0.03% 359 0.25% 0.10%

1239 2.09% 0.35% 145 0.16% 0.04% 2220 1.52% 0.63%

960 1.62% 0.27% 214 0.23% 0.06% 1221 0.83% 0.63%

286 0.48% 0.08% 65 0.07% 0.02% 379 0.26% 0.11%

Q1, probes showing less methylation (<-10%) and higher expression (>0.5 LogFC); Q2, probes showing higher methylation (>10%) and expression; Q3, probes
showing higher methylation and less expression (<-0.5 LogFC); Q4, probes showing less methylation and expression in HPAEC relative to HPVEC, Genomic regions
may overlap between one or more categories (e.g. a probe can be located in 1500 bp from upstream and also be associated with Enhancer and/or Promoter).
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The TLR2 gene has previously been shown to be
expressed in endothelial cells in a cell-type specific man-
ner [46]. We found no significant gene expression differ-
ence in TLR2 in HPVEC relative to HPAEC (average log
FC < 0.073) despite significant differences in promoter
methylation levels, with HPVEC having higher regional
methylation (average Δβ = 0.213), spanning seven HM450
probes, located proximal to the transcription start site.
The activity of this gene in HUVECs has previously been
shown to be regulated by inflammation in the absence of
altered DNA methylation in HUVECs [47].
In combination these data highlight the differential

and complex role of epigenetics in the regulation of gene
expression in endothelial cells of different origin, with
several genes likely to be regulated by alternative epigen-
etic mechanisms (such as histone modification and/or
non-coding RNAs) in a cell context-dependent manner.
Differential utilization of genomic regulatory elements
or expression of upstream transcription factors may also
contribute to the observed pattern of expression.

Epigenetic regulation of miR expression in endothelial
cells?
Multiple examples of miRNA gene differential methylation
were apparent in HPAEC and HPVEC cells (Additional
file 5: Table S9), including miRs previously implicated in
regulation of endothelial function and/or angiogenesis
such as miR-126 and miR-130A [48]. Interestingly miR-
200 family members (miR200-A, –B and –C), involved in
regulation of VEGF signaling in endothelial cells [49], were
found to be more highly methylated in HPAEC than
HPVEC. Furthermore, miR-10A-associated probes, previ-
ously linked with arthero-function, were specifically
hypermethylated in HPAEC relative to HPVEC [50]. In
contrast, the gene encoding miR-125B, a translational sup-
pressor of VE-cadherin [51], were hypermethylated in
HPVEC, relative to HPAEC. Despite the clear evidence of
differential methylation, an examination of miR expression
profiles failed to reveal a corresponding difference in gene
expression between the two cell types (data not shown).
Thus, the biological significance of the methylation differ-
ences remains.

Ontology of genes associated with DMRs
In order to more fully understand any biological/cellular
functions subject to coordinated regulation in endothe-
lial cells, we performed gene ontology and Ingenuity
Pathway Analyses (http://www.ingenuity.com) on differ-
entially methylated genes. Prior to the analysis, the list
of DMPs was selectively culled to focus on those probes
predicted to play a role in gene regulation according to
genomic location (associated with gene promoters, en-
hancers, 5’ UTR, or TSS associated regions as specified
by the HM450 manifest annotation file HM450_V1.2).

http://www.ingenuity.com


Table 2 DNA Methylation of probes located near transcription start sites of selected genes associated in endothelial
function and corresponding gene expression levels

Selected genes showing changes in both promoter methylation and gene expression

Gene symbol Description Gene expression LogFC
(HPAEC ‐ HPVEC

Average β of
HPAEC ‐HPVEC

Probes located in promoter
region / total number of probes*

NOS3 Nitrix Oxide Synthase -1.233 0.314 6/28 (21%)

vWF von Wildebrand Factor -2.523 0.124 4/38 (11%)

MGP Matrix Gla protein -3.202 0.225 1/3 (33%)

GJA5 Connexin40 -3.434 0.122 7/15 (47%)

APOLD1† apolipoprotein L domain containing 1
[Homo sapiens]

-0.061 0.684 7/32 (22%)

HIF3A† Hypoxia Inducible Factor 3, alpha subunit -0.599 -0.161 8/23 (35%)

EphB1† Ephrine type-B receptor 1 1.050 0.284 2/36 (6%)

ANGPTL† Angiopoietin-like 2 0.768 -0.178 2/6 (33%)

SELE† E-Selectin 0.934 0.165 2/3 (67%)

FLT1 (VEGFR1) † Vascular Endothelial Growth Factor Receptor 1 0.930 0.333 3/28 (11%)

COL6A3 Collagen, type VI, alpha 3 4.117 -0.128 9/53 (17%)

HSD11B1 Hydroxysteroid (11-beta) Dehydrogenase 1 1.092 -0.177 8/9 (89%)

VEGFC Vascular Endothelial Growth Factor C 0.662 -0.101 5/13 (38%)

HGF Hepatocyte Growth Factor
(hepapoietin A; scatter factor)

3.973 -0.092 7/10 (70%)

ANGPT1 Angiopoietin 1 1.172 -0.210 2/16 (13%)

Genes showing expression changes but no changes in DNA methylation

Gene symbol Description Gene expression LogFC
(HPAEC ‐ HPVEC

Average β of
HPAEC ‐HPVEC

Probes located in promoter
region / total number of probes*

ARG2 Arginine 2 0.445 <0.001 11/15 (73%)

DLL1 Delta like protein 1 precursor 0.077 0.005 12/38 (32%)

JAG1 Jagged 1 precursor 0.605 <0.001 10/24 (42%)

JAG2 Jagged 2 precursor 0.369 <0.001 8/47 (17%)

KDR (VEGFR2) Kinase Insert Domain Receptor 1.552 0.003 9/16 (56%)

HEY2 hairy/enhancer‐of‐split related with YRPW motif 2 1.506 <0.001 11/21 (52%)

NOTCH neurogenic locus notch homolog
protein 4 preproprotein

0.429 0.024 3/160 (2%)

EphB2 neurogenic locus notch homolog
protein 4 preproprotein

0.262 0.007 5/46 (11%)

NRP1 Neuropilin 1 0.529 0.002 6/29 (21%)

EphB4 Ephrine type‐B receptor 4 0.732 <0.001 7/29 (24%)

EphB4 Intercelluar adhesion molecule‐2 0.808 0.029 11/15 (73%)

* denotes number of probes located near promoter regions of each gene where highly differential DNA methylation patterns were detected between two cell
types out of total numbers of probes associated with each gene. † denotes probes where strong DNA methylation differences and gene expression patterns were
detected but not inverse relationship. It may indicate there exists other regulatory regions or gene expression is regulated by epigenetic mechanism other than
DNA methylation.
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Ingenuity Pathway Analysis revealed an enrichment of
genes involved in biological functions such as “Tissue De-
velopment”, “Cardiovascular System Development and
Function”, and “Tissue Morphology” as differentially
methylated in HPAEC and HPVEC (Additional file 5:
Table S4). Many of these genes warrant further investiga-
tion in the development of arterial or venous endothelial
cell phenotype. Gene Ontology Analysis performed by
DAVID (http://david.abcc.ncifcrf.gov/, [52]) highlighted re-
lated biological processes associated with the “Extracellular
matrix”, previously shown to be critical for proper vascular
development [53], and “Plasma membrane” and “Vascula-
ture Development” (Additional file 5: Table S5). Import-
antly, coordinated regulation of genes involved in specific
cellular pathways such as “cardiovascular pathway genes”
was apparent (Additional file 1: Figure S4).

http://david.abcc.ncifcrf.gov/
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Conclusion
Placenta-derived arterial and venous endothelial cells
differ in both their functional characteristics [24] and
differentiation state [9]. Whereas arterial cells are ma-
ture and fully differentiated, their venous counterparts
have been regarded as immature, representing a juvenile
phenotype with a high degree of plasticity. We speculate
that differential phenotype of these cells is largely driven
by distinct gene expression changes, many of which are
mediated by promoter methylation differences in key
genes identified here. At present it is not possible to dis-
tinguish which epigenetic changes are associated with
the degree of maturity of the cells, and which drive more
general distinct differences in venous vs arterial charac-
teristics. This will require further investigation.
The two cell types examined show a distinct difference

in global DNA methylation level, with the HPVEC
hypomethylated relative to HPAEC, and other endothe-
lial cells from a variety of tissues. The low average
methylation seen in the venous compartment is reminis-
cent of the hypomethylation seen in placental tissue and
may be one of the underlying mechanisms by which en-
vironmental cues modulate their phenotype to adapt to
the microenvironment. Indeed, the HPVECs are more
sensitive to changes in their local environment in vitro
relative to the HPAEC counterparts [53].
To the best of our knowledge this is the first study

comparing global gene expression and DNA methylation
of primary arterial and venous endothelial cells isolated
from the same organ. In general our data have revealed
a highly coordinated series of DNA methylation events,
many of which are directly implicated in regulating
underlying gene expression levels, while the functional
significance of others is less apparent. Included in our
dataset are numerous genes previously not studied in re-
lation to endothelial function, that warrant such an in-
vestigation in future studies. The combination of DNA
methylation and gene expression profiling of early life
endothelial cells represents a powerful approach to iden-
tify candidate loci potentially subject to environmentally
mediated epigenetic disruption, in association with
modified risk of later complex diseases involving cardio-
vascular dysfunction.

Methods
HPAEC and HPVEC: isolation and culturing
Primary HPAEC and HPVEC were isolated from arteries
and veins, respectively dissected from placentas after un-
complicated vaginal delivery as described previously [9].
Each of the 9 venous and arterial endothelial cell pairs
used here was isolated from the same vascular loop of 9
full term human placentas. Cells were cultured on 1%
(v/v) gelatin-coated plates using Endothelial Basal
Medium (EBM, Cambrex, Clonetics™, Walkersville, MD)
supplemented with the EGM™-MV BulletKit (Clonetics™).
They were characterized by internalization of acetylated
low-density-lipoprotein and immunohistochemical stain-
ing for the endothelial cell marker von Willebrand factor
and negative staining for fibroblast-specific antigen and
smooth muscle actin [9]. Only HPAEC and HPVEC pairs,
i.e. isolated from the same placentas, were used in order
to minimize variance.
Nucleic acid purification and QC
Total RNA from HPAEC and HPVEC was isolated with
RNeasy mini kit (QIAGEN, Dusseldorf, Germany) and
scrutinized for quality on the BioAnalyzer BA2100
(Agilent, Santa Clara, CA, USA) with the RNA 6000
Nano Chip Kit (Agilent, Cat No 5067–1511). The RIN
(RNA Integrity Number) of the samples ranged between
8.7 and 10. Genomic DNA from HPAEC and HPVEC
was isolated using phenol/chloroform density gradient
centrifugation method as described previously [54].
Genome-scale DNA methylation analysis: data acquisition
and processing
A total of 1 μg of DNA isolated from 9 HPAEC and 9
HPVEC cell populations was bisulphite converted using
the MethylEasy™ bisulphite modification kit (Human
Genetic Signatures, Sydney, Australia), according to the
manufacturer’s instructions. Unpublished HUVEC data
used for unsupervised hierarchical clustering were
obtained from purified cells isolated as previously de-
scribed [55]. Unpublished HM450 data from buccal
cells, peripheral blood and placental tissue, used for a
comparative analysis of average β values across over
300,000 genomic loci, was kindly provided by Drs Jeff
Craig and Boris Novakovic, Murdoch Childrens Re-
search Institute. Conversion efficiency was assessed by
bisulphite-specific PCR. Hybridization of bisulphite-
treated samples to Illumina Infinium Human Methyla-
tion450 (HM450) Beadchips was performed at the
Australian Genome Research Facility (AGRF). Raw data
files were exported from Genome Studio (Illumina, San
Diego, CA) into the R statistical environment (http://cran.
r-project.org/index.html). Infinium HM450 data was
normalised using the SWAN method from the minfi pack-
age available from Bioconductor [56,57]. This has been
specifically designed for such platform where a bias from
the two types of probes is apparent. M-values were calcu-
lated after removing probes on the sex chromosomes to
eliminate any potential gender bias and any poor
performing probes, defined as those with a detection p-
value cut-off > 0.05 in any sample. β-values were derived
from intensities as defined by the ratio of methylated to
unmethylated probes given by β =M / (U+M) and were
used as a measure of effect size.

http://cran.r-project.org/index.html
http://cran.r-project.org/index.html
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Gene expression array analysis: data acquisition and
processing
Total RNA was labeled using Affymetrix GeneChip®
Whole Transcript (WT) Sense Target Labeling Kit
(Affymetrix, Santa Clara, CA, USA; Cat No. 900652) and
then prepared for hybridization. For expression analysis
RNA was hybridized against GeneChip® Human 1.0 ST
arrays (Affymetrix, Cat No. 901087) according to the
manufacturer’s instructions. Labeling and hybridization
controls were evaluated with Expression Console EC 1.1.
Hybridizations and analysis were carried out at the Div-
ision Core Facility for Molecular Biology at the Centre
of Medical Research at the Medical University of Graz.
Microarray data were analysed with Partek Genomic
Suite v6.4 software (Partek Inc, St Louis, MO, USA).
The import process of the CEL files contained RMA
normalization (robust multi-chip average) including
background correction, quantile normalization across all
arrays and median polished summarization based on log
transformed expression values. Significant different
genes were extracted with FDR5% / p<0.005 / p<0.05
using ANOVA. Annotations were obtained from NetAffx
(Affymetrix).

Statistical analysis and bioinformatics
The Benjamini–Hotchberg method was used for control-
ling the false discovery rate and correct for multiple test-
ing when comparing HPAEC and HPVEC methylation
[58]. The HM450 data (M-value) underwent unsuper-
vised hierarchical clustering analysis using the lumi
package [59]. Linear regression analysis was performed
using the limma package [60]. For combined gene ex-
pression and DNA methylation analysis, Δβ values (aver-
age β-values of HPVEC subtracted from average values
of HPAEC) were plotted against the average Log2 fold
gene expression change of HM450 gene-associated
probes. To determine the association between genomic
location and differential methylation status, HM450
probes were exclusively assigned to one of the following
groups based on the HM450 manifest annotation file
version 1.2: promoter associated; enhancer associated;
within 1500 bp upstream of a transcription start site
(TSS); within 1500 bp upstream of a gene, 5’UTR and
first exon; and probes located in gene body and 3’UTR
only. Gene Ontology and pathway analysis was
performed using the DAVID bioinformatics tool (david.
abcc.ncifcrf.gov/) [61] and Ingenuity Pathway Analysis
(www.ingenuity.com) under the default settings.

Gene specific DNA methylation
NOS3 locus-specific methylation was performed using
the Sequenom EpiTYPER MassARRAY platform
(Sequenom, San Diego, USA) as previously described
[62,63]. Amplicons were designed using EpiDesigner
software (http://www.epidesigner.com/) and amplifica-
tion conditions were as follows: 95°C for 10 min; 95°C
for 10 s, 56°C for 30 s, and 72°C for 1 min 30 s for
40 cycles; 72°C for 7 min. Primer and target se-
quences, along with amplification cleavage product
patterns and analyzable CpG units are provided in
Additional file 1: Figure S7.

Ethics declaration
Human placental tissue was obtained at term of gesta-
tion from uncomplicated pregnancies. All women were
lean (BMI 20–24.9), non-smokers and with blood pres-
sure in the normal range. All underwent an oral Glucose
Tolerance Test between weeks 24 and 28 and their
blood pressure was measured at each visit. Values were
in the normal range (ie. did not exceed threshold levels
to classify the women as being diabetic/gestational dia-
betic or having pregnancy-induced hypertension/pre-
eclampsia). Informed consent was obtained and ethical
approval was granted by the ethics committee of the
Medical University of Graz. This study meets the princi-
ples of the Declaration of Helsinki.
Additional files

Additional file 1: Figure S1. Unsupervised hierarchical clustering of
probes showing variable DNA methylation levels (coefficient of variation
>0.4) in HPAEC and HPVEC samples. Figure S2. Unsupervised hierarchical
clustering of probes showing variable DNA methylation levels (coefficient
of variation >0.4) in endothelial cells derived from different tissue
compartments. Figure S3. Correlation between the HM450 and
Sequenom EpiTYPER. Infinium HumanMethylation450 methylation
accurately reflects DNA methylation levels in HPAEC and HPVEC.
Figure S4. Coordinated gene expression and DNA methylation in
“Cardiovascular System Development and Function, Connective Tissue
Development and Function, Skeletal and Muscular System Development
and Function” pathway genes in HPAEC and HPVEC. Figure S5.
Scatterplot showing relationship between DNA methylation and gene
expression in venous and arterial cells. Figure S6. Proportion of probes
associated with specific gene expression change by genomic
location. Figure S7. NOS3 Sequenom Assays used to measure
regional methylation in HPVEC and HPAEC for Assay 1 (A), and
Assay 2 (B).

Additional file 2: Table S2. All probes showing higher average β values
by 10% or more in HPVEC than HPAEC.

Additional file 3: Table S3. All probes showing higher average β values
by 10% or more in HPAEC HPVEC.

Additional file 4: Table S1. DNMT-associated DNA methylation values
in HPAEC and HPVEC cells.

Additional file 5: Table S4. IPA (Ingenuity Pathway Analysis) in
differentially methylated probes by 10% (DNA methylation) and
differentially expressed by 0.5 Log FC (located near transcription start
sites). Table S5. Gene Ontology analysis in differentially methylated
probes by 10% (DNA methylation) and differentially expressed by 0.5
Log FC (located near transcription start sites). Table S6. List of probes
showing coordinated methylation (less methylated) and gene
expression (higher expression) in HPAEC. Table S7. List of probes
showing coordinated methylation (less methylated) and gene
expression (higher expression) in HPVEC. Table S8. List of selected
probes associated in genes shown in Table 1. Table S9. List of probes
on selected miRs.
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