
RESEARCH ARTICLE

Computational Study of the Binding
Mechanism of Actin-Depolymerizing Factor
1 with Actin in Arabidopsis thaliana
Juan Du1*, XueWang1, Chun-Hai Dong1, Jian Ming Yang1, Xiao Jun Yao2

1 Key Laboratory of Plant Biotechnology of Shandong Province, College of Life Science, Qingdao
Agricultural University, Qingdao, China, 2 College of Chemistry and Chemical Engineering, Lanzhou
University, Lanzhou, China

* dujuannx@126.com

Abstract
Actin is a highly conserved protein. It plays important roles in cellular function and exists

either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depoly-

merizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital

roles in actin dynamics by manipulating the rates of filament polymerization and depolymeri-

zation. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing

factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin

monomer. To investigate the binding mechanism and dynamic behavior of the ADF1–actin

complex, we constructed a homology model of the AtADF1–actin complex based on the

crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a

mouse actin monomer. The model was then refined for subsequent molecular dynamics

simulations. Increased binding energy of the mutated system was observed using the

Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface

Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions

to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine

scanning analyses were performed, which provided more detailed information on the bind-

ing mechanism. Root-mean-square fluctuation and principal component analyses con-

firmed that the S6D and R98A/K100A mutants induced an increased conformational

flexibility. The comprehensive molecular insight gained from this study is of great impor-

tance for understanding the binding mechanism of ADF1 and G-actin.

Introduction
Actin is a highly conserved protein. As one of the most abundant proteins in most eukaryotic
cells, actin plays important roles in cellular functions such as endocytosis, organelle movement,
cell division, cell mobility, and maintenance of cell shape [1–3]. Those functions are influenced
by rapid transitions between monomeric (G-actin) and filamentous (F-actin) states regulated
by a large number of actin-binding proteins (ABPs) in the cell, such as capping proteins and
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severing proteins. Actin-capping proteins bind to actin and enhance filament depolymeriza-
tion, and actin-severing proteins enhance fragmentation. Actin-depolymerizing factor (ADF)/
cofilin proteins are actin-severing proteins, and are highly conserved among eukaryotes [4–8].
They bind to both monomeric and filamentous actin, and play vital and complicated roles in
actin dynamics by controlling the rate of filament polymerization and depolymerization [9].
The ADF/cofilin proteins are involved in primary filament depolymerization, and facilitate
actin turnover by severing actin filaments and increasing the rate of dissociation of actin mono-
mers from the pointed ends of actin filaments [8, 10–12]. The activity of ADF/cofilin proteins
is tightly controlled in response to various cellular activities. In plants, the activity of ADF is
regulated by several factors such as N-terminal phosphorylation and pH [13–16].

In the genus Arabidopsis, there are 11 expressed members of the ADF family that are
grouped into four ancient subclasses [17]. AtADF1 belongs to subclass I, and is strongly
expressed in an extensive range of tissues including flowers, seedlings, roots, and mature leaves
[10, 17, 18]. In 2000, the crystal structure of ADF1 from Arabidopsis thaliana was determined
by Bowman et al.; it was the first ADF/cofilin structure from the plant kingdom to be deter-
mined [19]. However, the structure of an ADF in complex with actin was not determined until
2008 when Paavilainen et al. reported the crystal structure of the twinfilin C-terminal ADF-H
domain in a complex with a mouse actin monomer (PDB ID: 3DAW), which indicated that
the ADF-H domain binds to G-actin with the long α-helix inserted into the hydrophobic cleft
between subdomains 1 and 3 of actin [20]. By then, numerous crystal structures of ADF/coffin
from different organisms had been determined [21–28].

Dong et al. (2013) reported that in A. thaliana ADF1 is predominantly phosphorylated by
AtCDPK6 at serine 6, which prevents ADF1 from binding to actin. The subsequent mutation
experiment demonstrated that the S6D and R98A/K100A mutants of ADF1 in A. thaliana
decreased the binding affinity of the ADF for both actin monomers and filaments [29, 30].
Others have explored the mechanism of interaction between ADF/cofilin and actin using
computational methods. Wriggers et al. built a structure model of an ADF/cofilin-G-actin
complex based on the crystal structure of the actin-gelsolin segment-1 complex by docking and
molecular dynamics (MD) simulations [31–36]. Sept et al. then studied the association rate of
actin monomers bound with ADF based on this model using the Brownian dynamics method
[32]. The molecular interaction mechanism between cofilin and actin filaments has also been
investigated using all-atomMD simulations, coarse-grained MD simulations, and normal
mode analysis, which provided insight into the overall mechanism how ADF/cofilin binding
influences the structure and mechanical properties of actin filaments [33–36]. However,
detailed understanding of the direct molecular interactions between ADF and G-actin, and the
dynamic behavior after ADF1 mutation in A. thaliana, were still lacking.

Here, we modeled an AtADF1 actin monomer complex structure based on the crystal struc-
ture of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with an actin
monomer. We then refined the features of the model in order to perform MD simulations.
Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface Area
(MM-GB/PBSA) methods were used to calculate the binding free energy between ADF1 and
actin. Per-residue decomposition and computational alanine scanning analyses were per-
formed to determine the residues that make decisive contributions to ADF1 and actin binding
affinity. Root-mean-square fluctuations (RMSFs) and principal component analysis confirmed
that S6D and R98A/K100A mutations increased conformational flexibility. Our study provides
a comprehensive molecular insight into the binding mechanism of ADF1 and G-actin, and
gives an explanation for the reduced binding affinity of mutated ADF1 to G-actin at atomic
level. Moreover, such information provides novel clues for further mutation experiments on
the ADF/cofilin family.

Binding of ADF1 with Actin in Arabidopsis thaliana
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Materials and Methods

Construction of simulation systems
The ADF–actin complex was built using A. thaliana ADF1 and actin1, based on the twinfilin
C-terminal ADF-H domain in a complex with a mouse actin monomer (PDB ID: 3DAW). The
crystal structure of AtADF1 (PDB ID: 1F7S) was obtained from the Research Collaboratory for
Structural Bioinformatics (RCSB) Protein Data Bank [37] and aligned to the twinfilin C-termi-
nal ADF-H domain. The missing residues (2-ANA-4, 129-MDLDVFRSRAN-139) were also
built based on this structure by Modeller [38]. The sequence of actin1 (accession number:
AEC09427.1) was downloaded from the National Center for Biotechnology Information
(NCBI) [39]. A homology model of actin1 was built using the actin monomer of 3DAW as a
template (protein sequence identity = 88%) by Modeller [38].

Molecular dynamics simulation
The model was then refined to eliminate bad contacts by using Amber 14. The force field param-
eters for Mg2+ ion and ATP were downloaded from the Amber parameter database [40, 41]. A
standard AMBER ff03.r1 force field was assigned to the protein [42, 43]. In the experimental
work, the purification for ADF1 and actin were performed under different pH conditions
(pH = 7 for ADF1 and pH = 8 for actin) [29]. The ionizable residues were predicted with the
same protonation states under both conditions based on the pKa values calculated by the H+
+ server [44] and PROPKA3.1 [45, 46], which were consistent with the default set of AMBER.
The protonation state of ionizable residues was set at the default value for pH 7. Systems were
neutralized by adding Na+ ions. The built complex was solvated in a rectangular box filled with
TIP3P water molecules [47], maintaining a 10-Å distance between any solute atom and the
boundary. In the first stage, the water molecules and ions were relaxed by restraining the whole
protein and ligands (5000 cycles of steepest descent and 2000 cycles of conjugate gradient mini-
mizations); second, the side chains of the protein were relaxed by restraining the backbone of the
proteins and ligands (5000 cycles of steepest descent and 2000 cycles of conjugate gradient mini-
mizations); third, the whole system was relaxed without any restrains (5000 cycles of steepest
descent and 5000 cycles of conjugate gradient minimizations). After minimization, the model
was gradually heated from 0 to 300 K within 50 ps with the backbone of proteins restrained (500
kcal/mol/Å2) in the NVT ensemble. Then, the model was relaxed within 2.55 ns from 500 to 0
kcal/mol/Å2 in the NPT ensemble. The final equilibration phase lasted 1 ns without restraints.

All molecular dynamics simulations were performed using the GPU version of the PMEMD
engine provided with Amber 14. First, the initial model was subjected to a 40 nsMD simulation to
reach equilibrium. A snapshot was then extracted from the equilibrium stage as the wild type (WT)
and the mutation was carried out. Four systems, ADF1-WT, ADF1-S6D, phosphorylated form
ADF1-S6phos and ADF1-R98A/K100A in a complex with actin, were subjected to simulations. The
detailed protocol was mentioned above. MD simulations were conducted in theWT, ADF1-S6D,
ADF1-S6phos and ADF1-R98A/K10A systems at 100 ns to produce trajectories, respectively.

The covalent bonds to hydrogen atoms were constrained using the SHAKE algorithm, and the
Particle Mesh Ewald (PME) method [48] was employed to calculate long-range electrostatic inter-
actions. The cut-off for van derWaals interactions was set to 10 Å. The time step used for the sim-
ulations was set to 2 fs. The atom coordinates were saved every 10 ps for subsequent analysis.

Binding free energy calculation
The MM-GB/PBSAmethods were applied to calculate the binding free energies between ADF1
and actin [49–51]. For each system, 500 snapshots were collected from the 10 ns of the trajectory
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after equilibration with 20 ps intervals. The binding free energy between ADF1 (receptor) and
actin (ligand) was calculated as follows:

DGbinding ¼ Gcomplex � Greceptor � Gligand ¼ DGgas þ DGsolv ð1Þ

DGgas ¼ DHgas � TDS � DEMM � TDS ð2Þ

DGbinding � DEMM þ DGsolv � TDS ð3Þ

DEMM ¼ DEint þ DEvdw þ DEele ð4Þ

DGsolv ¼ DGGB=PB þ DGSA ð5Þ

DGSA ¼ g �DAþ b ð6Þ

SE ¼ STD
ffiffiffiffi

N
p ð7Þ

Gcomplex, Greceptor, Gligand are the free energies of complex, receptor, and ligand, respectively.
According to MM-PBSA and MM-GBSA theory, the binding free energy (ΔGbinding) is com-
posed of two parts: the gas phase molecular mechanical (MM) energy (ΔGgas) and the solvation
free energy (ΔGsolv). It can also be decomposed into three terms: the molecular mechanical
energy term (ΔEMM, a sum of the changes of ΔEint, ΔEele, and ΔEvdw), the solvation energy term
(ΔGsolv), and the vibrational entropy term (TΔS). ΔEint, ΔEele, and ΔEvdw are given as internal
energy contribution, electrostatic, and van der Waals interaction terms, respectively. ΔEint is
canceled between ligand, receptor, and complex by using a single trajectory strategy, and it can
significantly reduce the noise in most cases. The change of solvation energy (ΔGsolv) comprises
the polar component (ΔGGB/PB) and the nonpolar component of the desolvation energy
(ΔGSA). The polar solvation contribution (ΔGGB/PB) can be calculated using the Poisson–Boltz-
mann (PB) and Generalized Born (GB) equation. The dielectric constant for solvent was set to
80 and for solute was set to 1, 2 or 4, respectively. The nonpolar component of the desolvation
energy (ΔGSA) can be estimated using Eq 6, where ΔA represents the change of the solvent-
accessible surface area (SASA) of the system calculated using the LCPO algorithm [52], and the
fitting coefficients γ and β were set to 0.0072 kcal/mol�Å2 and 0 in GB [53], and 0.00542 kcal/
mol�Å2 and 0.92 kcal/mol in PB, respectively [53–55]. The term (TΔS) in Eq 2 is the change in
the conformational entropy upon ligand binding. Here, normal-mode analysis (NMA) was
used for the calculation of the conformational entropy [56], which was calculated from the
sum of translational, rotational, and vibrational components, and as there was high computa-
tional demand, only 125 snapshots extracted from the 10 ns of the MD trajectories after equili-
bration with 80 ps intervals were used. All the atoms in ADF1-actin complex were used for the
normal mode calculation. Each snapshots were subjected to energy minimization for 10000
steps in the presence of a distance-dependent dielectric of 4r(i,j) (where r(i,j) is the distance
between two atoms) until the root-mean-square of the elements of the energy gradient vector is
less than 0.001 kcal mol-1 Å-1. The mass-weighted Hessian matrix for each minimized snapshot
was calculated and diagonalized by using normal mode analysis. The obtained frequency of the
normal mode was used to calculate the entropy.

The calculation error bars are standard errors (SE) calculated using Eq 7; the STD is the
standard deviation and N is the number of trajectory snapshots used in the calculation.

Binding of ADF1 with Actin in Arabidopsis thaliana
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To further investigate the molecular determinants of ADF1 binding to actin, the effective
binding energies calculated using the MM-PBSA method were decomposed into the contribu-
tions from individual residues [57].

Computational alanine scanning
The computational alanine scanning method involves replacing the side chain of a given resi-
due (except glycine or proline) with a methyl group (alanine), then recalculating the absolute
binding free energy of the mutated system [58, 59]. In this work, the binding free energy of the
alanine mutant was calculated using the MM-PBSA approach described above, with the snap-
shots for the wild type complex. All energy terms were calculated for 500 snapshots along the
last 10 ns trajectory with 20 ps intervals. ΔΔGbind was defined by the following equation, where
ΔGbind is the summation of the molecular mechanical energy term (ΔEMM) and the solvation
energy term (ΔGsolv).

DDGbind ¼ DGmutant
bind � DGwildtype

bind

Principal component analysis
Principal component analysis was carried out using the PTRAJ module of AmberTools. Five
thousand snapshots were taken from the MD simulation trajectories. To obtain the proper tra-
jectory matrix, overall translation or rotation motion were removed by fitting the coordinate
data to the average structure. The trajectory data were then utilized to generate a covariance
matrix between the Cα atoms i and j, defined as:

Cij ¼< ðxi� < xi >Þðxj� < xj >Þ > ði; j ¼ 1; 2; 3; . . . ; 3NÞ

Where xi and xj are Cartesian coordinates of the ith and jth Cα atom, N is the number of the
Cα atoms considered, < xi > and< xj > represent the time average over all the configurations
obtained in the MD simulation [60–62].

Results and Discussion

Dynamics behavior of the WT and mutant systems
ADF1 is composed of four α-helices and six β-strands (Fig 1). ADF1 binds to actin with the
long α-helix inserted into the hydrophobic cleft (groove) between subdomains 1 and 3 of the
actin. The constructed complex was subjected to a 40-ns MD simulation to reach equilibrium.
Subsequently, a snapshot was extracted from the equilibrium stage as the WT, and used as a
starting point for the mutations. The protein stability of the four systems (ADF1-WT,
ADF1-S6D, ADF1-S6phos and ADF1-R98A/K100A in complex with actin) during the MD sim-
ulations was monitored by root mean square deviation (RMSD) of the backbone atoms (S1
Fig). The WT system reached equilibrium after 60 ns with average RMSDs of 1.80 Å. The
ADF1-S6D and ADF1-S6phos systems reached equilibrium after 30 ns with average RMSDs of
1.80 Å and 1.96 Å, respectively. However, the ADF1-R98A/K100A system stabilized after 70 ns
with a larger average RMSD value of 2.56 Å. Thus, based on the RMSD results, our MD simula-
tions are reliable enough for further investigation.

To identify which parts of the complex contributed most to protein mobility, the RMSF of
the four systems versus the residue number was investigated (Fig 2). Three major sites were dis-
tinguished in ADF1 that interact with actin: the N-terminal loop, the α3-helix, and the β6–α4
loop [43]. It suggests that the R98A/K100A mutation in ADF1 induces a larger fluctuation on
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almost the whole ADF1 protein compared with the WT, especially in the N-terminal loop (res-
idues 2–8) and the β6–α4 loop (residues 116–139) (Fig 2A). The protein mobility of ADF1 in
the S6D mutation is slightly larger than in the WT. The residues with higher flexibility include
residues 16–29 (belonging to the α1 helix) and Gln122 (belonging to the β6-strand). The pro-
tein mobility of ADF1 with phosphorylated Ser6 varies not significant from the WT, compared
with the mutated systems. The flexibilities of the actins in the three systems are similar except
for residues 36–50, which constitute a long loop belonging to subdomain 2 that is far away
from the binding interface. Residues 349–354, which interact with the N-terminal loop of
ADF1, became more flexible after ADF1-R98A/K100A mutation (Fig 2B).

As can be seen from the RMSD and RMSF results, ADF1 was more flexible after mutation.
To further explore the dynamic behavior of the complex, representative structures from the
last 30 ns of the MD simulation trajectories of the mutation systems were superimposed on the
WT according to the secondary structure of actin (Fig 3A). A noticeable rigid rotation of ADF1
versus actin was observed, which brought the N-terminal loop in ADF1 away from the actin
subdomain 1, and brought the α4-helix in ADF1 close to the actin subdomain 3 in the
ADF1-R98A/K100A system. The angle, represented by the Cα atoms of the three residues
(Lys293 in actin, Ser102 and Ser136 in ADF1) was measured to represent the degree of this
rotation (Fig 3A). The rotation angles of the four systems were monitored during the MD

Fig 1. The overall structure of actin-depolymerizing factor 1 (ADF1) in complex with actin1 monomer.
ADF1 is depicted with colored secondary structure (cyan for α-helix, magenta for β-sheet, and salmon for
random coil). Actin is colored green. The mutated residues are shown as spheres.

doi:10.1371/journal.pone.0159053.g001
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simulation (Fig 3B), which shows that the rotation angle in the WT system was larger than in
the ADF1-R98A/K100A system and smaller than that in ADF1-S6D system. The averaged
rotation angle during the equilibrium stage of the WT, ADF1-S6D, ADF1-S6phos and
ADF1-R98A/K100A systems were 31.74±2.58°, 35.25±2.23°, 29.62±2.96° and 23.21±2.19°,
respectively.

Total binding free energy and per-residue contributions between ADF1
and actin predicted by MM-GB/PBSA methods
Generally, a low dielectric constant of ε = 1 is used for solute in Molecular Mechanics General-
ized Born Surface Area and Poisson–Boltzmann Surface Area (MM-GB/PBSA) methods [63].
Larger values ε = 2 or ε = 4 are also reported [50, 64].

Fig 2. Root-mean-square fluctuation (RMSF) plots of Cα atoms for wild type (WT) (black), ADF1-S6D
(red), ADF1-S6phos (green cyan) and ADF1-R98A/K100A (blue) during the molecular dynamics (MD)
simulations. (A) RMSF of ADF1; (B) RMSF of actin.

doi:10.1371/journal.pone.0159053.g002

Fig 3. The rigid rotation of actin-depolymerizing factor 1 (ADF1) relative to actin. (A) The representative
structure from the last 30 ns of the molecular dynamics (MD) trajectories of the mutation system (ADF1-S6D,
salmon; ADF1-S6phos, green cyan; ADF1-R98A/K100A, marine) superimposed on the wild type (WT) (green) by
the secondary structure of actin; (B) Time-dependent rigid rotation angles of ADF1-WT (black), ADF1-S6D (red),
ADF1-S6phos (green cyan), and ADF1-R98A/K100A (blue) systems.

doi:10.1371/journal.pone.0159053.g003
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We compared the binding free energies calculated using three different solute dielectric con-
stants, 1, 2 and 4. The results were listed in S1 Table. The predicted binding free energy for the
WT system is always smaller than the ADF1-R98A/K100A system under three settings. The
predicted binding free energy for the WT system is smaller than the ADF1-S6D system with
the setting of ε = 1. When ε = 2 and 4, the predicted binding free energy for the WT system is
larger than the ADF1-S6D system, which is not consistent with the conclusion in the experi-
mental work [29]. The optimal value of the protein dielectric constant is still an problem need
to be discussed in the literature [65]. In this work, ε = 1 made the best predictions. Based on
the best results, the predicted binding free energy with the setting of ε = 1 is summarized in
Table 1.

As shown in Table 1, both the MM-GBSA and MM-PBSA results suggest that the phos-
phorylation of Ser6, S6D and R98A/K100A mutations of ADF1 led to reduced binding affinity.
The predicted results are in agreement with the experimental findings that after mutation the
binding affinity of ADF1 and actin decreases [29, 30]. Further analysis suggested that the main
differences in binding free energy between the WT and the mutations arose from van der
Waals interactions and the electrostatic energy (sum of the electrostatic solvation free energy
and MM electrostatic energy, ΔGGB/ΔGPB + ΔEele) contribution. The calculated van der Waals
contributions in the WT, ADF1-S6D, ADF1-S6phos and ADF1-R98A/K100A systems were
-107.15 kcal/mol, -111.78 kcal/mol, -113.34 kcal/mol and -107.49 kcal/mol, respectively. The
electrostatic energy values for the WT, ADF1-S6D, ADF1-S6phos and ADF1-R98A/K100A sys-
tems were 32.19/47.96 kcal/mol, 38.55/56.07 kcal/mol, 36.69/59.76 kcal/mol, and 36.09/57.01
kcal/mol in MM-GB/PBSA, respectively.

Therefore, to achieve a more precise quantitative interpretation of binding affinity, per-resi-
due basis binding free energy decomposition was performed to determine the individual energy
contribution to the interaction energy (S2 Table). A residue was reported only if the per-resi-
due energy contribution difference between the WT and the mutation systems was larger than
1.00 kcal/mol (Fig 4). The ADF1 S6D mutation affected binding affinity mainly through resi-
dues Asp26, Asp27, Ser147, Arg149, Asp294, Lys328, Lys330, Arg337, Gln356, Lys375 and
Phe377 in actin, and residues Ala2, Ser/Asp6, Asp93, Arg98, Lys100 and Thr124 in ADF1 (Fig
4A). The summation of the energy contribution of Glu128 (ADF1) and Arg149 (actin) is -5.19
kcal/mol in the WT system versus 5.35 kcal/mol in the ADF1-S6D system (S2 Table). These
two residues form hydrogen bond interactions in theWT system. The summation of the energy
contribution of Ser6/Asp6 (ADF1) and Phe354 (actin) is -7.03 kcal/mol in the WT system ver-
sus -3.02 kcal/mol in the ADF1-S6D system (S2 Table). These two residues form OH-π interac-
tions in the WT system. To calculate the OH-π interaction strength, 5000 snapshots were
extracted to measure the angle of OH with the center of the benzene and the distance between
the H atom of OH and the center of the benzene. Only an angle between 65° and 90° and a dis-
tance between 2.0 Å and 3.5 Å indicated a strong interaction. We observed that the hydroxyl of

Table 1. Binding free energy for the four systems according to the MM-GB/PBSAmethods.

Method MM-GB/SA MM-PB/SA

System ΔEele ΔEvdw -TΔS ΔGSA ΔGGB ΔGbinding
a ΔGSA ΔGPB ΔGbinding

a

WT -572.37±2.70 -107.15±0.24 47.44±0.74 -14.29±0.03 604.56±2.56 -41.82 -13.81±0.03 620.33±2.59 -25.56

S6D -583.14±2.40 -111.78±0.27 51.31±0.71 -15.45±0.04 621.69±2.22 -37.37 -14.90±0.02 639.21±2.33 -19.30

S6phos -369.87±3.68 -113.34±0.23 50.80±0.71 -15.70±0.04 406.56±3.49 -41.56 -14.48±0.03 429.63±3.70 -17.25

R98A/K100A -465.62±2.45 -107.49±0.29 49.00±0.78 -14.98±0.04 501.71±2.31 -37.38 -14.98±0.04 522.63±2.42 -16.46

aAll energies are in kcal/mol.

doi:10.1371/journal.pone.0159053.t001
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Ser6 in ADF1 formed a stable OH-π interaction with the benzene ring of Phe354 in actin in
most of the MD trajectories in the WT system (S2A Fig). In the S6D mutation, the hydroxyl
group (-OH) was substituted with a carboxy group (-COOH). The electrostatic energy contri-
butions of Phe354 and Ser/Asp6 were 0.13 kcal/mol (WT) and 4.75 kcal/mol (ADF1-S6D),
which means that a charged residue is unfavorable for the binding affinity. After S6D mutation,
most of the interaction residues became unfavorable to the binding affinity except Asp26,
Lys328 and Lys330 in actin, and Ala2 and Arg98 in ADF1.

The phosphorylation of Ser 6 affected binding affinity mainly through many residues (Fig
4B). The significant changes included the following interactions between ADF1 and actin. The
summation of the energy contribution of Glu128 (ADF1) and Arg149 (actin) is -5.19 kcal/mol
in the WT system versus 2.94 kcal/mol in the ADF1-S6phos system (S2 Table). The summation
of the energy contribution of Ser6 (ADF1) and Phe354 (actin) is -7.03 kcal/mol in the WT sys-
tem versus 1.85 kcal/mol in the ADF1-S6phos system (S2 Table). The electrostatic energy con-
tributions of Phe354 and Ser6 were 0.13 kcal/mol (WT) and 9.34 kcal/mol (ADF1-S6phos).

We can see that with the R98A/K100A mutation, more residues changed the energy contri-
bution (Fig 4C). The significant change was the increase of the summation of the energy contri-
bution of Glu128 (ADF1) and Arg149 (actin), which is -5.19 kcal/mol in the WT system versus
4.36 kcal/mol in the ADF1- R98A/K100A system (S2 Table). Another significant change was
the increase of the energy contribution of Ser6 (belonging to the ADF1 N-terminal loop), and
T353, F354, and Q356 (belonging to actin subdomain 1). The significant reduction in the
energy contribution was caused by the rigid rotation of ADF1, which brings the N-terminal
loop away from the interaction surface and breaks the interactions between the residues men-
tioned above. In particular, the OH-π interaction between Ser6 in ADF1 and Phe354 in actin
disappeared in most of the trajectories in the ADF1-R98A/K100A system (S2B Fig). The rigid

Fig 4. Per-residue energy contribution plots. The residues displayed as purple belong to actin1 and the
green residues belong to ADF1. (A). Comparison between wild type (WT) and ADF1-S6D systems of per-
residue energy contributions; (B). Comparison between wild type (WT) and ADF1-S6phos systems of per-
residue energy contributions; (C). Comparison betweenWT and ADF1-R98A/K100A systems of per-residue
energy contributions.

doi:10.1371/journal.pone.0159053.g004
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rotation of ADF1 brings the α4-helix, the β6-strand, and some residues in the α3-helix close to
subdomain 3 in actin, forming new interactions, including residues Gln122 (belonging to the
β6-strand) and Arg137 (belonging to the α4-helix) and residues Asp290 and Asp294 in actin
subdomain 3, and residues Lys107 and Lys111 (belonging to the α4-helix) and residue Glu169
in actin subdomain 3. The summation of the energy contribution of these residues changed
considerably, which is also unfavorable for the binding of the ADF–actin complex. The overall
energy contributions from the residues mentioned above were -3.56 kcal/mol (WT system)
and 0.18 kcal/mol (R98A/K100A mutation system) (S2 Table).

Computational alanine scanning on ADF1 residues
Residues at 8 Å around the binding surface in ADF1 were calculated except for glycine and
proline. The results of computational alanine scanning for ADF1 residues are shown in Fig 5.
A positive ΔΔGbind value means that the residue was energetically more favorable than the cor-
responding alanine residue. The residues with a ΔΔGbind value larger than 2.00 kcal/mol were
considered hot spots. As can be seen, there are twelve “hot spot” residues on ADF, which
belong to the α3-helix (residues 97–111), namely Lys96, Val97, Arg98, Met101, Ile102, Lys107,
and Lys111. The top five hot spots, with ΔΔGbind larger than 4.00 kcal/mol, were Lys98,
Met101, Lys107, Thr124 and Glu128. Some of the predicted hot spots, including Arg98,
Met101, and Ile102, are supported by a previous site mutagenesis study [66]. The other resi-
dues, including Lys96, Val97, Lys107, Lys111, Thr124 and Glu128, which were not identified
in the former study [66], are worthy of verification by further mutagenesis experiments.

Larger magnitudes of the atomic fluctuations in the mutation systems
than the WT system
Principal component analysis identifies and quantifies which collective atomic motions con-
tribute most to the overall motion of the molecule during simulation. PCA on the conforma-
tions of the WT, phosphorylated and mutation systems highlighted significant differences in
the motion as a result of the mutations and phosphorylation. From the PCA plot, it is clear that
eigenvectors computed from the MD trajectory for the WT/ADF1-S6D, WT/ADF1-S6phos and
WT/ADF1-R98A/K100A systems varied greatly, which clearly indicates the difference in pro-
tein motions as a result of mutations and phosphorylation (Fig 6). To get a direct observation
of protein motion after equilibrium, we performed PCA and presented the results as porcupine
plots. We can observe that the motions of the four systems were qualitatively different (Fig 7).
The magnitudes of the atomic fluctuations in ADF1-S6D, ADF1-S6phos and ADF1-R98A/
K100A systems were larger than that in the WT system. The mutation systems also induced

Fig 5. ΔΔGbind for eachmutated residue of actin-depolymerizing factor 1 (ADF1) obtained from
computational alanine scanning.

doi:10.1371/journal.pone.0159053.g005
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large atomic fluctuations in actin. The ADF1-S6D had a more complicated motion direction
that resulted from contributions of the N-terminal loop, the α1-helix, and the β4–β5 loop (Fig
7A). The motion of ADF1-S6phos varies from the WT and ADF1-S6D, which mainly resulted
form the contributions of the α4-helix, and the β4–β5 loop (Fig 7B). It is clear that the motion
of ADF1-R98A/K100A primarily resulted from contributions of the N-terminal loop, the β4–
β5 loop, and the β6–β4 loop (Fig 7C).

Conclusion
In the present study, the binding mechanism of ADF1 with actin1 was explored using a com-
bined computational protocol. Based on the snapshots from the MD simulations, the binding

Fig 6. Principal component analysis (PCA) plot of wild type (WT) (black), ADF1-S6D (red),
ADF1-S6phos (green), and ADF1-R98A/K100A (blue).

doi:10.1371/journal.pone.0159053.g006

Fig 7. Porcupine plots of the eigenvectors. Actin and actin-depolymerizing factor 1 (ADF1) shown in cyan
and yellow, respectively. The arrows attached to each backbone atom indicate the direction of the
eigenvector and the size of each arrow shows the magnitude of the corresponding eigenvalue. (A).
Comparison of wild type (WT) (black arrow) and ADF1-S6D (red arrow) systems; (B). Comparison of wild
type (WT) (black arrow) and ADF1-S6phos (red arrow) systems; (C). Comparison of WT (black arrow) and
ADF1-R98A/K100A (red arrow) systems.

doi:10.1371/journal.pone.0159053.g007
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free energy between WT, mutated and phophorylated ADF1 and actin was calculated by the
MM-PB/GBSA method, which indicated that the binding between ADF1 and actin was tighter
in the WT than in the mutated and phosphorylated forms (ADF1-S6D, ADF1-R98A/K100A
and ADF1-S6phos). The van der Waals and electrostatic energy (the sum of the electrostatic sol-
vation free energy and MM electrostatic energy) contribution differences were the main factors
affecting the binding affinity. Further computational alanine scanning found critical residues,
such as Arg98, Met101, Lys107, Thr124 and Glu128, and interactions that are important for
ADF1 and actin binding affinity. The dynamic behavior studies using RMSF and PCA showed
that ADF1-S6D and ADF1-R98A/K100A induced larger flexibility to the protein compared
with the WT. Rigid rotation was triggered, which broke the interaction between the N-terminal
loop and residues 353–356 in actin subdomain 1. In summary, the present study underlines the
use of MD simulations in combination with MM-GB/PBSA free energy calculations to provide
a detailed description of the binding mechanism of ADF1 and actin at the atomic level.
Through per-residue decomposition and computational alanine scanning, a list of the impor-
tant residues for ADF1 and actin binding were determined, which provides clues for further
mutation experiments on the ADF/cofilin family.

Supporting Information
S1 Fig. Backbone RMSDs are shown for WT (A), ADF1-S6D (B), ADF1-S6phos (C) and
ADF1-R98A/K100A system (D), respectively.
(TIF)

S2 Fig. Comparison of the OH-π interaction in WT and ADF1-R98A/K100A systems.Dots
in red square indicate snapshots with strong OH-π interaction. (A). The OH-π interaction of
WT system; (B). The OH-π interaction of ADF1-R98A/K100A system.
(TIF)

S1 Table. Binding free energy for the WT and mutated systems according to the MM-GB/
PBSA methods based on different protein dielectric constants (kcal/mol).
(DOCX)

S2 Table. The contributions of the important residues for the binding of ADF1 with actin
(kcal/mol).
(DOCX)
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