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Abstract 

Background:  Several bioinformatics pipelines have been developed to detect 
sequences from viruses that integrate into the human genome because of the health 
relevance of these integrations, such as in the persistence of viral infection and/or in 
generating genotoxic effects, often progressing into cancer. Recent genomics and 
metagenomics analyses have shown that viruses also integrate into the genome of 
non-model organisms (i.e., arthropods, fish, plants, vertebrates). However, rarely studies 
of endogenous viral elements (EVEs) in non-model organisms have gone beyond their 
characterization from reference genome assemblies. In non-model organisms, we lack 
a thorough understanding of the widespread occurrence of EVEs and their biological 
relevance, apart from sporadic cases which nevertheless point to significant roles of 
EVEs in immunity and regulation of expression. The concomitance of repetitive DNA, 
duplications and/or assembly fragmentations in a genome sequence and intrasample 
variability in whole-genome sequencing (WGS) data could determine misalignments 
when mapping data to a genome assembly. This phenomenon hinders our ability to 
properly identify integration sites.

Results:  To fill this gap, we developed ViR, a pipeline which solves the dispersion of 
reads due to intrasample variability in sequencing data from both single and pooled 
DNA samples thus ameliorating the detection of integration sites. We tested ViR to 
work with both in silico and real sequencing data from a non-model organism, the 
arboviral vector Aedes albopictus. Potential viral integrations predicted by ViR were 
molecularly validated supporting the accuracy of ViR results.

Conclusion:  ViR will open new venues to explore the biology of EVEs, especially in 
non-model organisms. Importantly, while we generated ViR with the identification of 
EVEs in mind, its application can be extended to detect any lateral transfer event pro-
viding an ad-hoc sequence to interrogate.
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Background
The transfer of genetic material between separate evolutionary lineages is a recog-
nized event that occurs not only among prokaryotes, but also between viruses and 
eukaryotic cells [1]. Somatic integrations of different viral species, among the best 
of known of which are the human papilloma virus, hepatitis B and C viruses and 
the Epstein-Barr virus, have been linked to genotoxic effects possibly progress-
ing into cancer [2]. Consequently, several pipelines have been developed to identify 
viral sequences integrated into the human genome using whole-genome sequencing 
(WGS) data (i.e. HIVID, SummonChimera, Vy-PER; HGT-ID, ViFi, VirTect, BS-virus-
finder, Seeksv) [3–10]. Each of these computational methods is versatile in terms of 
data input format (e.g., RNA-seq, DNA-seq or bisulfite sequencing data), reference 
viral databases or customization opportunities, sensitivity and accuracy and CPU 
requirements. All these pipelines have in common the fact that they were designed 
for the well-annotated human genome. Viruses can also integrate into the genome of 
germline cells. The persistence and the outcome of these integrations, which are ver-
tically transmitted, depend on their effects on the fitness of the host [11]. The exist-
ence of these Endogenous Viral Elements (EVEs) has long been known, with studies 
focusing mainly on EVEs from retroviruses in mammalian genomes [12, 13]. The 
recent development of modern genomic sequencing approaches has opened to the 
study of non-model organisms. The genomes of organisms as different as arthropods, 
fish, snakes, birds, vertebrates and plants were shown to host EVEs, which derive not 
only from DNA viruses and retroviruses, but also from nonretroviral RNA viruses 
[14–22]. In these non-model organisms, EVEs range widely in numbers and tend 
to occur in repetitive DNA, mostly in association with transposable element (TE) 
sequences [20, 23, 24]. EVEs of non-model organisms have been increasingly recog-
nized as important players in different biological processes such as antiviral immunity 
and regulation of expression [25, 26]. However, rarely studies of EVEs in non-model 
organisms have gone beyond their characterization from reference genome assem-
blies. The lack of bioinformatic tools able to account for repetitive DNA when map-
ping WGS data to a genome sequence is hindering our ability to detect integration 
sites different than those already annotated in the assembly. As a consequence, it is 
difficult to understand the widespread occurrence and polymorphism of EVEs using 
WGS data from wild-collected samples and testing hypothesis on EVE function using 
WGS data from samples collected under hypothesis-driven experimental conditions. 
To ameliorate this issue, we have developed a new bioinformatic pipeline, ViR. ViR 
works downstream of any currently available EVE prediction tool using paired-end 
reads to improve the characterization of integration sites by solving the dispersion 
of reads in genome sequences that are rich of repetitive DNA. We tested ViR with 
low- and high-coverage WGS data from Aedes albopictus, to date the mosquito spe-
cies with the largest genome size and highest TE content among Culicinae [27, 28], 
followed by molecular validation of the predicted insertion sites. Additionally, the 
performance of ViR was tested using in silico WGS data.

Importantly, ViR can be adopted to interrogate any genome for the presence of non-
host sequences, showing its applicability beyond the identification of viral integration 
sites and facilitating studies of lateral gene transfer (LT).
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Results
Overview of the ViR pipeline

Any of the currently available tools to identify viral integrations from paired-end 
sequencing data operates by selecting chimeric pairs, in which one read maps to the host 
genome (the host read) and the other to the viral genome (the viral read) [29]. If the inte-
gration site occurs in a repeated region, host reads may potentially map to all the regions 
in which this repeat occurs in the reference genome. As a consequence, host read sup-
porting a viral integration, will distribute across these “equivalent” mapping genomic 
positions, and the signal for the integration site, expressed in terms of host reads cov-
erage, may not reach the threshold of detection. This situation is exacerbated in non-
model organism, with genome assemblies in which a sequence may have been assembled 
into different contigs or scaffolds and that are rich of repetitive DNA. To ameliorate 
the prediction of viral integration sites, we developed ViR, a pipeline composed of four 
scripts divided into two modules (Fig. 1).

The first script of the pipeline is ViR_RefineCandidates which requires two input 
files: the SAM file of the WGS data alignment to the host genome and a file with 
chimeric reads. The script identifies the “best candidate” pair of reads supporting a 
potential viral integration through subsequent filtering steps (Fig.  1a). The output 
directory of ViR_RefineCandidates is used as input of the next script, ViR_SolveDis-
persion. Using the script ViR_SolveDispersion, host reads that map to “equivalent” 
genomic positions are grouped together (Fig.  1b). Each group includes chimeric 
reads in which the host reads map to equivalent regions and the viral reads map to 
the same viral species. Additional information on these regions can be collected by 
providing input files with custom data (i.e., mapping coordinates of EVEs annotated 
in the reference genome, of TEs, etc.). This additional information is useful to distin-
guish between polymorphisms of EVEs versus new integrations from the same virus. 
ViR_SolveDispersion includes the usage of the script ViR_AlignToGroup, which for 

Fig. 1  Overview of ViR. ViR comprises four scripts, organized into two modules. Module 1 starts with the 
ViR_RefineCandidate script, which uses the SAM file of the WGS data alignment to the host genome and a 
file with the list of chimeric reads. a ViR_RefineCandidates filters the viral mate of the chimeric reads pairs to 
identify the best candidate viral reads. In chimeric reads, the host read is shown in in gray, the viral read, in 
red. Flags of alignment and sequence quality information are extracted for the identified best candidates. 
The output directory of ViR_Refine Candidates is the input of ViR_SolveDispersion. b ViR_SolveDispersion 
is designed to identify groups of host reads supporting a potential integration site in equivalent genomic 
regions (step 1). Read groups are compared in a pair-wise mode to merge groups sharing a certain 
percentage of reads (step 2). Remaining read groups support potential viral integrations (step 3). The 
usage of ViR_AlignToGroup script is embedded in ViR_SolveDispersion. c For each identified read group 
ViR_AlignToGroup extracts the reads from the SAM file of the selected reads by ViR_RefineCandidates (step 1) 
and the sequence of the equivalent region of the group in FASTA format (step 2). Then, reads are re-aligned 
to the sequence of the equivalent region and flags of alignment are used to identify the left and right side 
of the integration site (step 3). Examples of flags supporting the right (i.e., 73, 133) and left (i.e., 117, 185) 
ends of the integration site are shown (step 4). All the reads are represented by arrows with standard or not 
standard terminal part. The direction of the arrow is 5′–3′. In Module 2 the FASTQ file of the sample WGS and 
the FASTA file of the viral genome(s) are the input for ViR_LTFinder script. d ViR_LTFinder align WGS raw reads 
to the viral genome(s) (step 1). Aligned reads are extracted, converted into FASTQ (step 2) and used for local 
de-novo assembly (step 3). Aligned reads include mates in which both reads map to the viral genome (in red), 
chimeric reads (viral read in read and host read in dashed grey) and mates in which one is a soft clipped read 
(viral portion in red, the rest in dashed gray). Mates are indicated by continuous thin line

(See figure on next page.)
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each detected group, extract the sequence of the equivalent genomic region and re-
align host reads to it. This procedure allows to predict the left and right sides of the 
integration site through the use of alignment flags (Fig. 1c).

ViR comprises an additional script, ViR_LTFinder, which runs independently 
from the others (module 2). This script uses WGS data to map against a non-host 
sequence (i.e. entire genomes, genes, transposable elements, viruses). Aligned reads 
are extracted and used for a de novo assembly using Trinity. Resulting assembly/ies 
may include the consensus sequence for the LT event (Fig. 1d).
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Implementation of ViR with WGS data from Aedes albopictus

ViR was run using WGS data from wild-collected Ae. albopictus mosquitoes. Aedes 
albopictus has the largest mosquito genome sequenced to date, the majority of which 
is repetitive DNA [27, 28]. For Ae. albopictus, three genome assemblies are available, 
which differ greatly in the number of scaffolds and are all larger than the expected 
size of the genome based on cytofluorimetric estimates, suggesting duplications [27, 
28, 30]. We selected to run ViR using two assemblies, AaloF1 and AalbF2, which have 
154,782 and 2197 scaffolds, respectively. Hundreds of EVEs from various taxonomic 
viral categories are annotated in AaloF1 and AalbF2 [23, 28], giving further complex-
ity in the identification of novel integration sites from WGS of wild-collected samples, 
especially considering that integration events are expected to be rare and in repetitive 
DNA [25].

We generated WGS data from DNA of both single and pooled samples and at differ-
ent coverage to compare the results of ViR across different conditions (Fig. 2a). Sin-
gle sample mosquitoes (SSMs) consisted of twenty-two mosquitoes whose genomes 
were analyzed independently [31]. Pool samples were 6 samples consisting each of the 
DNA from 30 mosquitoes. Three samples were sequenced at an approximate coverage 
of 30 × and called pool30; the remaining samples were sequenced at an approximate 
coverage of 60 × and called pool60. A list of chimeric pairs, indicative of potential 
integration sites, were obtained for each sample running Vy-PER [5] with a custom-
made database of viral genomes (Additional file  1). The number of chimeric reads 
identified by VyPER ranges from 0 to 2134 (Additional file 2); these host read of these 
pairs are spread across different regions of the host genomes (Fig. 2a) and viral reads 
include homopolymers or low-complexity sequences.

Testing module 1

ViR_RefineCandidates and ViR_SolveDispersion were run with standard parameters 
for all samples using both AaloF1 and AalbF2 (Fig. 2a). Publicly available annotations 
of EVEs and TEs were used to define the genomic context of each equivalent region 
[23, 28].

Overall, across all samples, a total of seven integrations, all of viruses from the 
Flaviviridae family were identified, with a different support of reads (Fig.  2a). Both 
the right and left sides of the integration were resolved bioinformatically for nrEVE-
new-7. Only the left or right sides of the integration were bioinformatically predicted 
from nrEVEnew-1, nrEVEnew-2 and nrEVEnew-6 or nrEVEnew-4, nrEVEnew-5 and 
nrEVEnew-8, respectively. nrEVEnew-2, nrEVEnew-4, nrEVEnew-6 and nrEVEnew-7 
were detected when running ViR using both AloF1 and AalbF2; nrEVEnew-1, nrEVE-
new-5 and nrEVEnew-8 were detected only when running ViR with AalbF2, possibly 
because of the higher completeness of AalbF2 [28] versus AaloF1 [27]. These predic-
tions were molecularly validated, with the exception of nrEVEnew-8 (Fig.  2b). The 
presence of nrEVE-new-8 is supported by three reads in one of the pool60 samples. 
As a consequence, we cannot exclude that the absence of amplification of nrEVE-
new-8 in the tested samples, is not due to its rarity and/or population-specific occur-
rence, as observed in Ae. aegypti [25].
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Testing module 2

ViR-LTFinder was designed to detect LT events from sequences with no similarity to 
host genomes. We reasoned that the above-described novel viral integrations, which 

Fig. 2  Implementation of ViR with WGS data from Ae. albopictus. a ViR was run with WGS data generated 
from DNA of both single and pool DNA samples using two assemblies, AaloF1 and AalbF2 [27, 28] and 
a custom database of viral genomes (Additional file 1). A list of chimeric pairs, indicative of potential 
integration sites, were obtained for each sample running Vy-PER [5]. Running Module 1 using the chimeric 
reads identified by Vy-PER resulted in a total of seven potential viral integrations. b Scheme of potential 
viral integrations and their molecular validation. Each lane is the result of a PCR on mosquito genomic DNA 
with primers that were designed to check the left or right integration sites. ‘+’ indicates the presence of 
the viral integration and ‘−’ the absence. c Identification of exact integration sites of nrEVEnew-7 running 
ViR_LTFinder; d ViR_LTFinder was run with WGS data and the viral sequences of nrEVEnew-4 and nrEVEnew-6 
showing that they correspond respectively to the right and left regions of the same integration, which was 
molecularly validated. ‘+’ indicates the presence of the viral integration and ‘−’ the absence
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can be unambiguously differentiated from EVEs annotated in the reference genome 
assembly, are novel LT events. Thus, for each of the novel viral integration predicted 
using the scripts of the module 1, we run ViR_LTFinder using as non-host sequence 
the viral sequence supported by the chimeric reads.

Running ViR_LTFinder with our WGS data and using as anchor the viral portion of 
nrEVEnew-7 built to a consensus sequence of 1237 bp identifying the left and right side 
of the integration event (Fig. 2c). ViR_LTFinder was further tested for nrEVEnew-1, nrE-
VEnew-2, nrEVEnew-4, nrEVEnew-5 and nrEVEnew-6. While our WGS data did not 
include reads able to solve the right or left integration site for nrEVEnew-1and nrEVE-
new-2 or nrEVEnew-5, respectively, results of ViR_LTFinder showed that nrEVEnew-4 
and nrEVEnew-6 correspond respectively to the right and left regions of the same inte-
gration, including a 534 bp viral sequence. This viral integration was molecularly vali-
dated (Fig. 2d). Viral integrations identified running ViR, including both module 1 and 
module 2, in the genome of Ae. albopictus mosquitoes, are described in Table 1.

ViR performance in solving dispersion of host reads

We tested the benefits of running ViR by calculating the solve dispersion gain param-
eter. For each sample, we considered as dataset the whole list of reads resulting from 
ViR_RefineCandidates. We quantified the gain comparing the host-mapping loci iden-
tified by Vy-PER and the read groups created by ViR_SolveDispersion. As an exam-
ple, in replicate 11 among SSMs, seven pairs of reads were identified by Vy-PER as 
potential viral integrations. ViR solved the dispersion of these seven reads by group-
ing them into one group supporting nrEVEnew-4; two reads remained ungrouped, 
resulting in a Solve Dispersion Gain value of 0.65 (Fig.  3a). In SSMs, the median 
values of the solve dispersion gain were 0.47 and 0.5 when using AaloF1 and Aalb2, 
respectively. In pool samples, the median values in pool60 were 0.36 and 0.42 and in 
pool30 were 0.58 and 0.48 when using AaloF1 and Aalb2, respectively (Fig. 3b). Thus, 
we noticed a significant gain in using ViR, also in the improved version of the Ae. 
albopictus assembly, AalbF2 [28]. Dispersion gain values were not different between 
single vs pools or between pools 30 vs pools 60 samples, indicating the gain is not 
influenced by the sequencing of pools or single samples nor the depth of sequencing.

In each dataset a certain number of chimeric reads identified by Vy-PER could not 
be grouped. These reads have alignments in the genome distant from the others and 
cannot be used to predict potential viral integrations. Even if they are not useful for 

Table 1  Viral integrations identified running ViR with  WGS data from  Ae. albopictus 
mosquitoes

nrEVE Length (bp) Virus (blastx id %) Viral protein

nrEVEnew-1 295 KRV (70%) NS1-NS2A

nrEVEnew-2 578 KRV (82%) NS3

nrEVEnew-4/6 534 AeFV (75%) NS5

nrEVEnew-5 880 KRV (78%) NS5

nrEVEnew-7 318 AeFV (91%) E
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the discovery of viral integrations, it is important to isolate them to avoid wasting 
time trying to interpret them, for this motif we included these ungrouped reads in the 
calculation of the Solve Dispersion Gain. These ungrouped reads were more abundant 
when testing ViR with AaloF1 than AaloF2 as a result of the higher fragmentation of 
the AaloF1 assembly [28].

Evaluation of ViR performance using in silico dataset

We tested the performance of ViR with simulated dataset, including samples 
sequenced singly and in pools (Additional file 3). Performance of module 1 and mod-
ule 2 were tested separately considering five different sequencing coverage depths 
and simulating three different integration events in unique genomic loci or repeated 
genomic regions. For pools, different pool sizes were also analyzed. ViR performance 
was computed based on the confusion matrix [32], through the following parame-
ters: accuracy, sensitivity, specificity, precision, F1, balanced accuracy and Matthews 
Correlation Coefficient (MCC) [32, 33]. Overall results are summarized in Additional 
file 3.

ViR module 1 showed 100% sensitivity and 100% specificity in all cases with SSMs. 
Across all tested conditions in SSMs, the performance of module 2 reached an overall 
accuracy and specificity of 93.75% and 78.94%, respectively. This result was driven by the 
situation in which the integration site occurred in a highly repeated (100 times) genomic 
sequence, giving a ViR accuracy of 83.33% and a specificity of 55.55%. When using pools, 
the sensitivity and the accuracy greatly varied with the size of the pool (pools of 50 indi-
viduals had accuracy and sensitivity < 50% in both modules), the sequencing coverage 
(with a 30X coverage accuracy was 55% and 38% in module 1 and 2 respectively, but 
increased to 72%, in module 1, and 64%, in module 2, for a 60X coverage), the length and 
the site of the integration event. Integrations shorter than 300 bp will not be able to be 
sensitively detected.

Fig. 3  Testing ViR performance in solving read dispersion. a Seven pairs of reads were identified by Vy-PER 
as potential viral integrations in SSM 11. ViR grouped five of these reads into a single group which led to 
the identification of nrEVEnew-4 and resulting in a Solve Dispersion Gain value of 0.65. b Values of Solve 
Dispersion Gain were calculated for all single and pool samples
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Discussion
The purpose of ViR is to provide reliable identification of EVEs using WGS data, 
especially when viral integrations occur in repetitive regions of host genomes 
or when using genome assemblies rich in repetitive DNA and/or suffering from 
fragmentations.

Currently available EVE identification tools are mostly based on the identification of 
chimeric reads. ViR works with the list of these chimeric reads and ameliorates EVE 
prediction. The step of improving EVE prediction is important because the advent of 
next-generation sequencing technologies and metagenomic analyses showed that viral 
integrations occur in non-model organisms as frequently as in model organisms (i.e. 
human, mouse and Dr. melanogaster) [20, 23–25, 28], but genome assemblies of many 
non-model organisms are often still fragmented or richer in repetitive DNA [23, 27, 28, 
34–36]. Both these elements generate intra-host variability when trying to map short 
paired-end reads and identifying chimeric reads to predict integration sites. To over-
come this limitation, we have developed ViR, a bioinformatic pipeline suited to account 
for intrasample variability to ameliorate predictions of viral integrations. We evaluated 
ViR performance using in silico WGS data. In SSMs, ViR always detected viral integra-
tions except for integration events occurring in a highly (> 100 times) repetitive genomic 
region. This result is probably due to the intra sample variability that affects the genera-
tion of de novo assemblies. In pooled sample sequencing, ViR limits are based on the 
size of the pools and the sequencing depth. A pool of 50 individuals, sequenced at a 
30 × coverage will be problematic. Additionally, the site of the integration event will be 
reliably identified unless it occurs in a highly (> 100 times) repeated genomic sequence 
and it includes a short (< 300 bp) viral portion.

We further implemented ViR on WGS data from Ae. albopictus, the mosquito 
with the largest genome to date, a TE content > 50% of the genome and two assem-
blies differing in completeness [27, 28]. In the absence of a true set of viral integra-
tions, ViR performance with real data was tested by calculating the dispersion gain, 
a parameter from the Information Theory [37] and molecularly validating predicted 
viral integrations.

We demonstrated that ViR is able to solve the dispersion of reads supporting a 
viral integration similarly when using WGS data from single and pool samples and 
with a coverage of between 30 and 60x. We anticipate ViR will open new venues 
to explore the biology of EVEs, especially in non-model organisms. The design of 
ViR makes it compatible with any list of putative chimeric reads produced by any 
currently available EVE identification tool [3–9, 29], giving users great flexibility. 
Importantly, while we show the applicability of ViR to detect EVEs, this pipeline can 
be adopted to detect any LT event providing an ad-hoc sequence to interrogate.

Conclusions
In summary, we show that ViR is a robust method to account for intrasample variabil-
ity when annotating LT events into host genomes in analysis of both real and simulated 
data. By releasing ViR as an open-source pipeline we aim to provide an accurate tool for 
interrogating genomes, extending the analyses of LT events to non-model organisms.
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Methods
Pipeline implementation

The pipeline is composed of four scripts, which work in two modules. The first module 
includes three scripts, ViR_RefineCandidates, ViR_SolveDispersion and Vir_AlignTo-
Group, which work together to overcome the dispersion of reads due to intrasample var-
iability. The second module includes one script, ViR_LTFinder, designed to test for LT 
events of non-host sequences which have none or limited (defined by the user) sequence 
similarity to sequences of the host.

ViR_RefineCandidates. This script selects from a list of chimeric reads the best candi-
date pairs supporting a viral integration by filtering reads. The filtering criteria include: 
(1) filter reads based on their sequence complexity, expressed as percentage of dinu-
cleotides (default < 80%); (2) imposing a minimum length recognized as viral (default 30 
nucleotides); (3) removing mates that can align within a defined window in the refer-
ence genome (default 10,000) based on Blast and BEDtools packages, respectively [38, 
39] (Fig. 1a).

Inputs for ViR_RefineCandidates are a text file of paired-end chimeric reads and the 
SAM file of the reads aligned to the host genome. Paired-end chimeric reads are pairs in 
which one read maps to the host genome (hereafter called host read) and its pair maps 
to a virus (hereafter called viral read) [29]. The script is versatile and accepts as input the 
text file listing chimeric pairs, independently of the used tools. If no pair of reads pass 
the filtering steps, the script prints a stop message. Otherwise, an output file is gener-
ated, which collects information on both the viral and host read (Additional file 4).

ViR_SolveDispersion. This script solves the dispersion of host reads by grouping 
together reads that map to regions of the genome with the same sequence (Fig.  1b). 
These reads are called “read groups”; regions of the genome to which these reads can 
equivalently map because they contain the same repetitive element, or it is a sequence 
that has been erroneously assembled into different contigs or scaffolds, are called “equiv-
alent regions”. The script acquires as inputs a file listing all samples to analyze and the 
output directory of ViR_RefineCandidates. Reads mapping within equivalent regions are 
grouped together using the function “merge” from bedtools (Fig. 1b, step 1). The length 
of the equivalent region is defined by the user by setting the maximum distance among 
host reads and the minimum number of host reads within each region; defaults for these 
two parameters are 1000 base pairs (bp) and 2 reads, respectively. Then, identified read 
groups are compared in a pairwise mode in an iterative process in which read groups 
sharing more than a user-defined percentage of reads are collapsed in one (default 
is 80%) (Fig.  1b, step 2). This procedure allows to identify the best candidate anchor 
genomic region of a potential viral integration site (Fig. 1b, step 3). Options to describe 
the genomic context of each region are available by proving adequate input files.

ViR_AlignToGroup. This script predicts the right and left sides of the potential inte-
gration site by realigning reads supporting each potential viral integration against the 
sequence of the equivalent region. First, for each candidate, this script extracts the host 
reads with their viral pair from the SAM file of the reads analyzed by ViR_RefineCan-
didates using the command-line utility “grep” (https​://www.gnu.org/softw​are/grep/
manua​l/grep.html); the SAM file is converted into a BAM file using the function “view” 
of SAMtools [40]; the BAM file is converted into a FASTQ format using the function 

https://www.gnu.org/software/grep/manual/grep.html
https://www.gnu.org/software/grep/manual/grep.html
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“bamtofastq” from BEDtools [38] (Fig. 1c, step 1). Then, the script obtains the sequence 
of the equivalent region in fasta using the BEDtools function “getfasta” [38] (Fig. 1c, step 
2). Reads from step 1 are re-aligned to the sequence of the equivalent region using “bwa 
mem” with default parameters [41]. By taking advantage of the flags of alignment of each 
read of all chimeric pairs and eventual soft clipped reads, the left and right sides of the 
potential integration point can be predicted using Trinity (Fig.  1c, step 3). Even if no 
assemblies are created, flags of alignment are used to predict the direction of the poten-
tial integration sites (https​://broad​insti​tute.githu​b.io/picar​d/expla​in-flags​.html) (Fig. 1c, 
step 4).

ViR_LTFinder. This script is designed to test for an integration from non-host 
sequences which have a user-defined percentage of similarity to host sequences. WGS 
reads are mapped to a selected non-host sequence (i.e. an entire genome or selected por-
tions) using “bwa mem” with default parameters [41]. Mapped reads are extracted using 
the function “view” of SAMtools [40] (Fig. 1d, step 1). The aligned reads are converted 
into FASTQ format using the function “bamtofastq” from BEDtools [38] (Fig. 1d, step 
2) and used for de-novo local assembly using Trinity [42] (Fig. 01d, step 3). A consensus 
sequence is built if any instances of LT are identified. Output of ViR_LTFinder include 
files for visualization of the aligned reads using the Integrated Genomics Viewer (IGV) 
tool [43].

Estimating the gain in solving read dispersion

The utility of ViR in solving read dispersion was assessed using the concept of the ‘Gain 
Index’ parameter from the Information Theory [37]. This index estimates the weight that 
each attribute has in building a classification of entities, given n entities each defined 
through various attributes [37]. The maximization of the Gain index reflects the power 
of an attribute in segregating entities to different classes. In our case, we used this index 
to evaluate the gain of enclosing in a single ‘equivalent region’, reads that had been origi-
nally assigned to different loci, our classes. The attribute is the “equivalent region’ iden-
tified by ViR_SolveDispersion and the entities are all the reads supporting potential 
integrations (i.e., output of ViR_RefineCandidates).

The gain of running ViR is estimated through the formula:

where I is the entropy and Ires is the residual information.
The entropy I is the dispersion of the reads supporting each locus ID in a sample and it 

is quantified by the formula:

where l is the locus ID, meaning the host genomic coordinates of the potential integra-
tion identified before ViR. p(l) is the relative frequency of the reads assigned to the locus 
ID l . Entropy is 0 when only one locus ID (i.e., one potential integration site) is identified 
in the sample (i.e. WGS dataset). Entropy is > 0, when more than one locus ID is identi-
fied in the sample.

Normalised DispersionGain =
I − Ires

I

I = −
∑

l

p(l) ∗ logep(l)

https://broadinstitute.github.io/picard/explain-flags.html
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The residual information Ires is defined by the formula:

where g is the ID of the equivalent region identified by ViR_SolveDispersion, p
(

g
)

 is the 
relative frequency of the reads in the equivalent region g and p

(

l|g
)

 is the relative fre-
quency of reads assigned to the locus ID l in the equivalent region g.

The difference between I and Ires is evaluated for each sample. The ratio of the differ-
ence with respect to the initial entropy is calculated to normalize across samples, which 
were obtained using different experimental set ups (i.e., WGS from single or pools). 
This operation results in a NormalisedDispersionGain , which ranges between 0 and 1. 
The closer the value of NormalisedDispersionGain is to 0, the higher is the gain of ViR 
in solving the dispersion of reads. To favor intuitive interpretation of results, we show 
Solve Dispersion Gain as:

Values of SolveDispersionGain > 0 are found when ViR was able to identify a unique 
equivalent region for at least two different reads previously assigned to two different loci 
ID. The higher the value of SolveDispersionGain , the higher is the performance of ViR.

Whole‑genome sequencing data

Sequencing data of SSMs are as previously described [31]. Sequencing data from pool 
samples derive from pools of 30 Ae. albopictus mosquitoes each. Mosquitoes were col-
lected on the island of La Reunion Island, France in 2017. DNA was extracted using 
the DNAesy Blood and Tissue Kit following manufacturer’s recommendations (Qia-
gen, Hilden Germany). DNA-seq library preparation and sequencing on an Illumina 
HiSeq4000 was performed at Biodiversa srl (Rovereto, Italy).

Molecular validation of ViR‑predicted integration sites

PCR primers were designed on the basis of the potential viral integrations that we iden-
tified running ViR on WGS data from Ae. albopictus (Additional file 5). These primes 
were used on DNA extracted from different mosquitoes than those used as source of 
WGS data. Aedes albopictus mosquitoes are reared at the insectary of the University of 
Pavia as previously described [23]. Genomic DNA was extracted from individual mos-
quitoes using the Promega Wizard® Genomic DNA Purification Kit, according to man-
ufacturer’s protocol. PCR reactions were carried out with the DreamTaq Green PCR 
Master Mix (ThermoFisher) using 1 μl of genomic DNA. Amplified bands were purified 
with ExoSAP-IT kit (ThermoFisher) and send to Macrogen (Madrid, Spain) for Sanger 
sequencing. Sequences were analyzed with Bioedit [44].

In silico dataset generation

Several parameters were considered to generate in silico data, including sequencing 
coverage and viral integration length. A single viral sequence (Dengue virus 2, NCBI 
reference sequence: NC_001474.2) was selected and portions of different length 

Ires = −
∑

g

p
(

g
)

∑

l

p
(

l|g
)

∗ logep
(

l|g
)

Solve DispersionGain = 1− Normalised DispersionGain = 1−
I − Ires

I
=

Ires

I
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(300, 600 or 900 bps) of this sequence were in silico integrated in different genomic 
regions of the Ae. albopictus genome, AalbF2 [28]. Three different integration loci 
were selected among transposon sequences annotated in the genome of the mosquito, 
based on their frequency: a region present in single copy (UL), a transposon present 
in 10 copies (Rep10) and a transposon present in 100 copies (Rep100) (Additional 
file 6). Single samples were simulated at five different average coverages: 5, 15, 30, 45 
and 60x. Pool samples were simulated using the same conditions as above (integra-
tion loci: UL, Rep10 and Rep100; integration length: 300, 600 and 900 bps) by pooling 
single sample data, at three different pool coverage, 30, 45 and 60x, and with different 
pool size (10, 30 and 50 individuals), with the assumption that a single sample carry-
ing a viral integration was introduced in each pool.

Dataset were simulated using WGSIM reads simulator (https​://githu​b.com/lh3/
wgsim​), with read length of 2 × 150 and fragment length of 700 bps. Read number was 
dynamically adjusted to obtain the desired coverage. The obtained synthetic FastQ 
were analyzed with Vy-PER, ViR module 1 and ViR module 2. Confusion matrixes 
were generated, and commonly used performance metrics were calculated (Addi-
tional file 3).
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