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Atrial fibrillation (AF) is the most common clinical tachyarrhythmia. In Europe, AF is

expected to reach a prevalence of 18 million by 2060. This estimate will increase

hospitalization for AF to 4 million and 120 million outpatient visits. Besides being an

independent risk factor for mortality, AF is also associated with an increased risk of

morbidities. Although there are many well-defined risk factors for developing AF, no

identifiable risk factors or cardiac pathology is seen in up to 30% of the cases. The

heritability of AF has been investigated in depth since the first report of familial atrial

fibrillation (FAF) in 1936. Despite the limited value of animal models, the advances in

molecular genetics enabled identification of many common and rare variants related

to FAF. The importance of AF heritability originates from the high prevalence of lone

AF and the lack of clear understanding of the underlying pathophysiology. A better

understanding of FAF will facilitate early identification of people at high risk of developing

FAF and subsequent development of more effective management options. In this review,

we reviewed FAF epidemiological studies, identified common and rare variants, and

discussed their clinical implications and contributions to developing new personalized

therapeutic strategies.
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INTRODUCTION

Atrial fibrillation (AF) is themost common clinical arrhythmia with a rapidly increasing prevalence
(1). By 2050, the prevalence of AF is expected to rise to 5.6–15.6 million in the USA (2, 3). AF is
associated with an increased risk of complications such as stroke and heart failure (4). Many risk
factors are related to the incidence of AF such as age, sex, valvular heart diseases, obesity, alcohol
consumption, and hypertension. However, up to 30% of AF cases have no known cardiac pathology
or known risk factors (Lone AF) (1). Inherited AFwas first reported in the thirties of the last century
(5). Recently, the heritability of AF has been recognized and investigated in depth (6–8).

The importance of studying the genetic contribution to AF comes from the high percentage
of lone AF cases and the prevalence differences according to gender and among certain ethnic
groups. Understanding the heritable component of AF will also facilitate early identification of
people at high risk of developing AF later in their lives. For a long time, the limited value of
AF animal models especially murine ones obfuscated the investigation of inherited AF. However,
after emerging advances in the molecular genetics, many studies identified both rare and common
genetic variants related to AF.
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In this review, we highlight the findings of familial
AF epidemiological studies, the role of both rare and
common genetic variants as well as their clinical and
therapeutic implications.

EPIDEMIOLOGICAL STUDIES

In the Framingham offspring study, those who had one parent
with a history of AF had a 1.8-fold increase in the risk of
developing AF. Interestingly, the risk was 3-fold higher in
subjects <75 years (9). In the Mayo clinic AF registry, 5% of
all patients and 15% of lone AF patients had a family history of
AF (10). Among 5,000 Icelanders, the first degree relatives of AF
patients were 1.77 times more at risk of developing AF than the
general population (7). This relative risk reached 4.67 in patients
<60 years. In the Danish twins’ study, recurrence risk of AF was
12% for monozygotic twins and 22% for dizygotic twins (8). In
another Danish cohort, the incidence rate ratio for lone AF was
3.48 in subjects who had affected first degree relatives and 1.64 in
those whose second degree relatives were affected (11).

RARE GENETIC VARIANTS

In the past two decades, many researchers tried to elucidate
the genetic base of AF by using different types of studies such
as linkage analysis, candidate gene analysis, and whole-genome
next-generation sequencing. In 1997, Brugada and his coworkers
reported the first genetic locus (10q22-q24) related to AF using
the linkage analysis approach (12). A few years later, similar
studies reported more genetic loci related to AF, namely 6q14-16,
5p13, 10p11-q21, 20q12-13, and 5p15 (13–16).

In 2003, Chen et al. reported the first gain of function
mutation (KCNQ1) in the potassium voltage-gated channel in
affected Chinese family. However, the candidate gene analysis
was costly, time-consuming and restricted to a small number of
scanned genes. Also, the causality effect theory of these variants
was not clear as more than 30 different variants have been
discovered in potassium channels genes.

POTASSIUM CHANNEL VARIANTS

Since 2003, many studies reported gain of function mutations in
genes coding potassium channels (Table 1). Most of the reported
variants were gain of function mutations though, loss of function
mutationwas also reported. The gain of functionmutations result
in shortening of the effective refractory period thereby increasing
AF vulnerability. Other gain of function mutations have also
been identified in KCNE1, KCNE2, KCNE, KCNE5, KCNQ1, and
KCNJ2 genes (17, 20, 21, 23, 24, 57–59).

Mutations of KCNE1 and KCNQ1 affect Iks potassium
channels by a gain of function effect which accelerates
repolarization and hence, shortens the refractory period.
However, mutations of KCNA5 affect Ikur potassium channels
but with a loss of function mutation (30, 60). This mutation
introduced an alternative mechanism for AF including delayed
repolarization and prolongation of the effective refractory period.

TABLE 1 | Summary of gene loci associated with familial atrial fibrillation.

Gene Locus Mode of inheritance Functional effect

KCNQ1 11p15.5 Autosomal dominant Gain of function

(17–19)

KCNE1 21q22.1 Autosomal dominant Gain of function (20)

KCNE2 21q22.1 Autosomal dominant Gain of function (21)

KCNE3 11q13.4 Autosomal dominant Gain of function (22)

KCNE5 Xq23 X-linked Gain of function (23)

KCNJ2 17Q23.1 Autosomal dominant Gain of function (24)

KCNJ5 11q24.3 Autosomal dominant Gain of function (25)

KCNJ8 12p12.1 Autosomal dominant Gain of function (26)

KCNH2 7q36.1 Autosomal dominant Gain of function (27)

Loss of function (28)

KCNA5 12p13.32 Autosomal dominant Gain of function (29)

Loss of function (30)

KCND3 1p13.2 Autosomal dominant Gain of function (31)

HCN4 15q24.1 Autosomal dominant Loss of function (32)

MYH6 14q11.2 Autosomal dominant Loss of function (33)

ABCC9 12p12.1 Autosomal dominant Loss of function (34)

RYR2 1q43 Autosomal dominant Gain of function (35)

CACNB2 10p12 Autosomal dominant Loss of function (36)

CACNA2D4 12p13.33 Autosomal dominant Loss of function (36)

CAV1 7q31.2 Autosomal dominant Loss of function (37)

SCN1B 19q13.11 Autosomal dominant Gain of function (38)

Loss of function

SCN2B 11q23.3 Autosomal dominant Loss of function (39)

SCN3B 11q24.1 Autosomal dominant Loss of function (40)

SCN4B 11q23.3 Autosomal dominant Loss of function (41)

SCN5A 3p22.2 Autosomal dominant Gain of function (42)

Loss of function

SCN10A 3p22.2 Autosomal dominant Gain of function, Loss

of function (43, 44)

GATA4 8p23.1 Autosomal dominant Loss of function (45)

GATA5 20q13.33 Autosomal dominant Loss of function (46)

GATA6 18q11.2 Autosomal dominant Loss of function (47)

GJA1 6q22.31 Autosomal dominant Loss of function (48)

GJA5 1q21.2 Somatic mutation Loss of function (49)

ZFHX3 16q22.2-q22.3 Autosomal dominant Loss of function (37)

GREM2 1q43 Autosomal dominant Gain of function (50)

JPH2 20q13.12 Autosomal dominant Loss of function (51)

LMNA 1q22 Autosomal dominant N/A (52)

NUP155 5p13.2 Autosomal dominant Loss of function (53)

SYNE2 14q23.2 Autosomal dominant N/A (37)

NKX2-5 5q34 Autosomal dominant Loss of function (54)

NKX2-6 8p21.2 Autosomal dominant Loss of function

NPPA 1p36.22 Autosomal dominant Loss of function (55)

PITX2c 4q25 Autosomal dominant Loss of function (56)

SODIUM CHANNEL VARIANTS

In 2005, Olson et al. was the first to report an SCN5A mutation
related to AF (61). These reported mutations are encoding α-
subunit in Na 1.5 sodium channel. α-subunit gene mutations
including genes encoding the four regulatory β-subunits (SCN1B,
SCN2B, SCN3B, and SCN4B) are all related to AF (Table 1)
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(42, 61, 62). Uncovering the underlying mechanisms of these
mutations has multiple challenges such as the mixed phenotypes
reported, how both loss and gain of function mutations could
cause these different phenotypes and the lack of an animal model
with pure AF phenotype. Mutations in the SCN10A gene are
related to AF. This gene encodes the NA 1.8 sodium channels
which is believed to be responsible for late sodium currents and
can be modulated by SCN5A level of expression (63).

INTRACELLULAR CALCIUM CHANNEL
VARIANTS

Increased diastolic Ca2+ leak is one of the pathophysiological
pathways to AF. Phosphorylation of RyR at PKA or CAMKII sites
would lead to increased RyR opening probability and increased
Ca2+ leak from sarcoplasmic reticulum (SR). Recently, a study
showed that AF patients have less miRNA-106b-25 cluster with
consequent increase in RyR expression and Ca2+ leak (64).

NON-ION CHANNEL VARIANTS

Gollob et al. described the first three somatic mutations in GJA5
gene related to AF; these mutations are responsible for impaired
cell to cell coupling (49). This impairment is caused by depletion
of atrial specific connexin 40. Moreover, Christophersen et al.
described a germline mutation in the same gene. Mutations
in gene encoding atrial natriuretic peptide (ANP) have been
reported to be related to AF. It is believed that this mutation
in ANP protein would shorten the action potential. In 2008,
a mutation in the NUP155 gene encoding nucleoporin of
the nuclear envelope was discovered. This mutation leads to
alteration in nuclear envelope permeability. Many mutations
in transcription factors genes have been reported to be related
to AF such as NKX2-5, PITX2, ZFHX3, GATA4, GATA5, and
GATA6 genes. GATA and PITX2 genes affect the development
of the pulmonary venous myocardium which is involved in
the initiation of AF (Table 1). Several studies reported an
increased risk of AF with polymorphism of RAAS system genes
encoding angiotensin converting enzyme inhibitor, angiotensin
gene promotor, and angiotensinogen (24, 65).

LIMITATIONS OF IN VITRO METHODS

in vitro methodologies for functionally characterizing the role
of ion channels variants have drawbacks. For instance, AF
cell lines continuously proliferate and are affected by rapid
maturation, increased number of cells, and disorganized three-
dimensional structure. In addition, not all areas within cell
lines have the same metabolic activity. The evolving induced
pluripotential stem cells is one step closer to the optimal in
vivo conditions such as conduction properties, contraction and
relaxation velocity, action potential duration, and repolarization
fraction. Repolarization fraction is a parameter to distinguish
between atrial and ventricular like human induced pluripotent
stem cells (hiPSCs) and it is calculated based on the following
equation: (APD90–APD50)/APD90), APD90; is action potential

duration at 90% repolarization and APD 50 is action potential
duration at 50% repolarization. However, these type of cells are
electrophysiologically different from adult atrial cardiomyocytes
in respect to Ca2+ handling and the predominance of ventricular
like cells; ventricular contribution to the cell population can be
minimized to <10% by using timed retinoic acid exposure.

MURINE MODELS

In recent decades, murine models have drawn the attention
of many investigators attempting to decode electrophysiological
mechanism underlying AF. Murine models were considered a
good candidate because of the conservation of development and
signaling pathways between homo sapiens and mice, the ease of
genetic manipulation, and rapid maturation.

Potassium channels mutation models have been studied
such as the knockout models for KCNE1and SK2 channels
(66–69). Moreover, sodium channel genes have been a target
for transgenic models. 1KPQ-SCN5A models showed more
susceptibility to atrial arrhythmia (70–74). SCN3B subunit
knockout models also showed conduction disturbances (75).
Non-ion channels models also showed promising results such
as connexin 40 and 43 models (76–78), Ankyrin B (79), and
PITX2 (80). Knock out mice of spinophilin-1 leads to increased
RyR phosphorylation and increases Ca2+ leak (81). The same
results were also shown in junctophilin and FKBP-12.6 knock out
models (51, 82).

Despite the value of these murine models, they have several
limitations. One of the main limitations of these models is
that AF was always induced in a non-physiological way. Other
factors involved in clinical AF such as environmental factors, diet,
and abuse of toxic substances were omitted. Although there is
similarity in signaling pathways between mice and humans, there
are important differences in heart rate, ion currents, calcium
handling, and predominant myosin isoform.

GENOME WISE ASSOCIATION STUDIES
(GWAS)

In 2007, the first GWAS study on AF was published. By using
a p-value of <5 × 10−8 to minimize false positives, variant
frequencies were compared between affected and non-affected
subjects. The first detected locus was on chromosome 4q25
(83). However, this locus is in a non-coding area; studies
revealed its role in regulating the closest gene (PITX2). This
gene is essential for cardiac development and suppression of
a sinus node development in pulmonary vein myocardium
(left-right asymmetry). PITX2 knockout mice model showed
a decrease in sodium and potassium channels expression and
caused a conduction block at the atrioventricular node (84).
Herraiz-Martínez et al. recently investigated whether chr4q25
risk variants alter the intracellular calcium homoeostasis. Patients
carrying the rs13143308T risk variant show increased SERCA2a
expression, SR calcium load, and RyR2 phosphorylation. These
changes lead to excessive calcium release and a higher risk for
AF (85).
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In 2009, a novel locus on chromosome 16q22 was described in
a cohort of European descent (86). The closest single nucleotide
polymorphism (SNP) to this locus was intron to the zinc finger
homeobox 3 (ZFHX3). This motif binding factor is required for
regulation of the Pituitary-specific positive transcription factor
1 (POU1F1) which interacts with the PITX2 gene. In 2010,
Ellinor et al. described a novel locus on chromosome 1q21.
This SNP is located near KCNN3 gene which encodes voltage-
independent calcium-activated potassium channel protein. These
SK3 channels are essential for the repolarization phase of the
cardiac action potential (87). These SK3 channels are also located
in the inner mitochondrial membrane and opening of these
channels using agonists have a protective effect against oxidative
stress-induced injury resulting from Ca2+ overload (88).

Chromosome 15q24 also contained a locus related to AF and
sinus node dysfunction. The closest gene to this SNP was HCN4
which encodes channels proteins regulating funny current of
the sinoatrial node in the left atrium (89). Recently, two SNPs
were discovered in the Japanese population on chromosome
12q24. The first SNP is located near NEURL gene. Knocking out
this gene in zebrafish lead to action potential prolongation. The
other SNP was intronic to CUX2 gene, however, the mechanism
leading to AF is not clear yet.

An AF GWAS risk SNP on chr14q23 in the SYNE2 encodes
nesprin-2 which is part of nuclear outer membrane and
sarcomere (90, 91). Another non ion channel gene showed AF
related SNP on chromosome 7q31, this locus is intronic to CAVI
(caveolin-1) which has a role in repolarization phase of action
potential and also has a structural role by regulating TGF-β-1 and
fibrosis (92).

Recently, many studies investigated the role of cytoskeletal
proteins in the pathogenesis of FAF. Two Islandic cohorts
reported two novel SNPs in MYH6 and MYL4 genes (93, 94).
MYH6 encodes the alphamyosin heavy chain subunit. Mutations
in this subunit have been reported to affect cardiac contractility
and muscles fibers integrity (95, 96). MYL4 encodes the essential
myosin light chain subunit which is known as atrial light chain1.
In vitro experiments on zebrafish with mutant MYL4 revealed
loss of cardiac contractility and absence of sarcomere structure
(97, 98). Another study supported the role of myocardial
structure in FAF by the discovery of a missense variant in
the PLEC gene (99). This gene encodes a cross-linking protein
(plectin) which has a role in keeping the integrity of cardiac
muscles. These studies suggest a strong role of cytoskeletal
proteins in the pathogenesis of AF. A recent large GWAS
meta-analysis showed that AF is associated with variants in 18
structural genes and also variants in 13 genes with a cardiac
fetal developmental role such as ARNT2 and EPHA3 (100). This
could explain the pathophysiology of AF as a result of atrial
cardiomyopathy via cardiac structural remodeling either during
fetal development or during adult life.

Another large GWAS study identified 134 AF associated
loci among 93,000 AF cases and more than 1 million referents
(101). This study showed that TBX3, TBX5, and NKX2-5 genes
encode transcriptional factors that regulate development of the
cardiac conduction system. This study also highlights the overlap
between AF and other atrial arrhythmias and the pleiotropy

of genes which are responsible for cardiac morphology and
function. Nielsen et al. showed the relationship between AF
and cardiac development and suggested that AF variants play
a role in the developing heart or in reactivating fetal genes
or pathways during adulthood as a response to stress and
remodeling (100).

Despite the revolutionary output of GWAS studies, this
approach of investigating heritability of FAF has several
limitations. A large number of detected loci has only explained
a small fraction of the missing heritability. This fact limits the
clinical usage of outcomes of GWAS studies and urges the
need for studies investigating gene-gene and gene-environment
interactions. Another challenge is that approximately 80% of
the discovered SNPs are in non-coding regions of the genome
and this requires additional research to explore the exact causal
variant by deploying techniques such as fine mapping, functional
analyses, and evolutionary genetics.

CLINICAL IMPLICATIONS

There is no doubt that FAF is part of the uprising field
of personalized medicine. Technological advances in genetics
and a large amount of newly available data have encouraged
many researchers to investigate the possible clinical value of
this data to develop more efficient prediction models and
personalized management strategies. The ORBIT-AF registry
showed that FAF patients experienced more symptoms than
non-FAF patients. However, there was no difference between
the two groups regarding AF recurrences, hospitalization rate,
complications, and all-cause mortality (102, 103). On the other
hand, risk stratification based on genotype showed promising
results. Husser et al. and Shoemaker et al. showed that patients
with 4q25 SNP rs2200733 had an increased risk of developing
recurrent AF after ablation (104, 105). Another study showed
that AF patients with the same 4q25 SNP also had higher risks
of developing AF recurrences after direct current cardioversion
(HR:2.1, 95%CI: 1.21–3.3; P= 0.008) (106). Themain limitations
of these results are the small sample sizes and using the time
to the first symptomatic episode which is a poor quantitative
metrics for AF. Time to the first symptomatic AF episode does
not take into account the frequency and length of AF episodes.
Advances in continuous rhythm monitoring devices and AF
detection algorithms will facilitate using AF burden as a more
realistic, accurate and quantitative parameter for AF and also
as a surrogate outcome after treatment. The effect of genotype
on the success of ablative therapy was tested; likewise, response
to antiarrhythmic drugs. Parvez et al. showed that the SNP
rs10033464 at 4q25 is an independent predictor for success
in rhythm control in both discovery and validation cohorts.
Furthermore, they showed this same SNP is a predictor for AF
recurrence in the same cohorts (107). Another study showed
that flecainide potency is increased in AF patients with β1AR
Arg389Arg genotype (108). Also, AF patients with the same
genotype have a better response to rate control therapy and
required lower doses of these drugs (109). One of the main
limitations of these studies is the lack of randomization. Data
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were analyzed retrospectively and drug response was evaluated
a priori without knowledge of the genotype.

Few studies tried to implement genotype into prediction
models of de novo AF. In 2013, AF-genetic risk score (AF-GRS)
was introduced. This score consisted of 12 risk alleles in nine
loci. They investigated the predictive value of this score in 20000
females without cardiovascular disease at baseline. Adding this
score to the main prediction model increased the area under the
curve to (0.74) (110). In 2014, Tada and his colleagues showed
that multiple single nucleotide polymorphisms can improve the
prediction to develop AF and ischemic stroke. GRS score showed
a potential value as an indicator for anticoagulant therapy (111).
The main limitation of these studies is their lack of external
validity to other ethnic groups such as Africans or Asians.

For postoperative AF, few studies have tried to replicate this
approach but results are still controversial to improve prediction
models performance as these studies lacked large sample sizes
and did not use continuous ECG monitoring to identify AF
episodes (112–114). In 2016, Lin and his colleagues investigated
if gene-gene interaction would affect AF susceptibility. However,
this study could not find any significant association and a
larger cohort containing participants from other ethnic groups
is indeed justified (115).

TRANSLATIONAL CHALLENGES

Translating the advances achieved in genetic technology into
clinical practice still has many limitations with respect to genetic
based prediction models and personalized therapeutic strategies.

Firstly, prediction models still have insufficient discriminative
ability between low and high-risk individuals for several reasons
such as testing small number of variants, potential gene-gene
interactions, and gene-environment interactions. Moreover, the
cost and logistic aspects have to be considered while moving
this prediction model into clinical use. Secondly, applications of
pharmacogenetics guided therapy are limited.

Another limitation is that pathophysiological pathways
underlying AF genetic variants are not clear which delays
attempts to target certain pathways caused by specific genetic
variants. The multifactorial complex nature of AF could also

limit the efficacy of any new drug development. In addition,
involvement of multiple genetic variants in a patient is more
challenging for a personalized efficient treatment strategy.

FUTURE DIRECTIONS

Despite the advances in our understanding of FAF, there are still
many challenges and questions to be addressed. Firstly, large
cohorts are needed to study the effect of gene-gene and gene-
environment interactions on AF. These cohorts should consider
larger sample sizes, participation of non-European ancestry and
analyzing interactions betweenmore than two variants. Secondly,
randomized controlled trials are needed to validate the effect
of genotype guided treatment strategies. Advances in rhythm
monitoring devices and rhythm detection algorithms are needed
in addition to using AF burden as a reliable parameter to
quantify AF.

Larger cohorts are needed to investigate the effect of genotype
guided prediction models of AF incidence, AF complications
and mortality. Last but not least, large and effective screening
studies for families with FAF is advised to uncover part of
the missing heritability of FAF. For instance exome sequencing
and whole genome sequencing projects would discover more
missing rare and structural variants which GWAS studies
cannot identify.

CONCLUSION

Genetic basis and heritability of AF is part of the complexity of
this arrhythmia and a lot of progress has been achieved in many
aspects such as risk stratification for AF, identification of novel
therapeutic targets, and genome-based prediction models. There
is no doubt that better understanding of AF heritability will not
only improve AF prediction models but will also be the next step
toward more efficient personalized treatment strategies.
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