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1. Introduction
Coronavirus disease 2019 (COVID-19) pandemic is one of the greatest disasters

witnessed by the world. It has not only devastated the economy but also caused a

long-lasting effect on people. COVID-19 is caused among people of all age groups and

its causative agent is the novel severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2). This virus belongs to the family Coronaviridae that has been into existence since

the 1980s and is also the family of SARS and Middle East respiratory syndrome (MERS)

virus. The name corona refers to the virus’ physical appearance under the

microscopedcrownlike projections called spikes. Researchers around the world are

trying their best to come up with a treatment regimen that could beat the clinical trials in

the market. Currently, there is no treatment available for this virus. However, there are

proposed theories of treatment that could be made available. The main focus lies more

toward prophylaxis rather than treatment.

Rigorous trials have been conducted around the world to find a solution to this deadly

pandemic. Researchers have been ground toward finding more similarities between the

two other diseases spread in the past two decades, i.e., SARS and MERS. There are many

similarities in the SARS-CoV and SARS-CoV-2, including their mechanism of host cell

interaction, that is, their spike proteins. There lies a huge responsibility on the WHO for

selecting the right and efficacious agents to combat the alarming rate of infection among

countries. Some drugs and combinations have been approved by the WHO to use as an

emergency measure, while their trials are still in progress, including remdesivir (RDV),

interferon beta, chloroquine/hydroxychloroquine, and lopinavir/ritonavir.

New vaccine-related trials have also begun, and it is estimated that the vaccine will be

fully available within a year. This chapter aims to cover the structure of SARS-CoV-2, its

method of infection, its life cycle, and treatment approaches with developmental

measures.
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2. History and epidemiology
The history of coronavirus (CoV) in existence is traced back to the late 1960s when a

virologist, Tyrrel, worked with his colleagues on human stains and a number of other

human viruses. They inspected the bronchitis virus, mouse hepatitis virus, and gastro-

enteritis virus of transmissible origin. These appeared morphologically similar through

an electron microscope. This new group of the virus was later termed as corona virus

because of its crownlike surface projections. Corona was later determined as the genus of

these viruses [2]. The virus belongs to the Coronaviridae family, the subfamily is

Orthocoronavirinae, and the order is Nidovirales. This subfamily is classified into four

distinct genera: Alpha Coronavirus, Beta Coronavirus, Delta Coronavirus, and Gamma

Coronavirus. Beta CoV is further divided into four lineages; A, B, C, and D [10]. They were

first imaged by Scottish virologists, June Almeida et al. at St. Thomas Hospital in London

[1]. Before 2003, only two human CoVs were known; HCov-229E and HCoV-OC43. These

were reported to cause upper respiratory tract infections in humans. In 2004, another

group of previously recognized CoVs was reported and named as HCoV-NL63. It was

followed by HCoV-HKU1 in the year 2005, and it is a betaCoV of A lineage [3]. All these

viruses were known to cause mild upper respiratory tract infections. Other human CoV’s,

namely, SARS-CoV, SARS-CoV-2, and MERS-CoV, are also of beta origin but B and C

lineage, respectively. MERS-CoV was reported in the year 2012. By early June 2013, about

55 cases of MERS were confirmed, with about 31 deaths (56%) in Jordan, Saudi Arabia,

Qatar, and the United Arab Emirates. Reports concluded about 2500 cases and 800

deaths by the infection. SARS originated in the Guangdong province of China in 2002

and then spread to five continents through air and infected 8098 people and caused 774

deaths [1e3].

SARS-CoV-2, which is known to cause COVID-19, is now among the top three most

severe of seven CoVs that humans have encountered in the past 20 years. These three

viruses are said to cross special barriers and cause deadly pneumonia in humans. They

are fast-evolving viruses [1,3]. CoVs are capable of combining with different strains of

coexisting viruses and then produce novel strains; they are capable of crossing barriers.

According to the latest research findings on the COVID-19 genome, the novel CoV has a

longer genome than the flu virus, which means that there are fewer mutations. COVID-

19 has shown to mutate rather slowly. It has the proofreading mechanism that

minimizes the error rate and in turn slows down the speed of mutation. This is one

“saccharin pill” to the developers of vaccines and medicines because if the virus showed

mutation like other flu viruses, which is 24 times in a year or two times in a month, then

it will be highly required to upgrade the vaccine time to time [1].

In late December 2019, an outbreak of pneumonia of an unknown cause was reported

in Wuhan, China. It was considered the first case of an unknown cause. After the disease

started spreading, the WHO declared it to be because of CoV and named the disease as

COVID-19 [3,4,13]. It was renamed SARS-CoV-2 by the Coronaviridae Study Group (CSG)

on an International Committee on Taxonomy of Viruses (ICTV), while in the interim it
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was renamed HCoV-19 (common name) by a group of virologists in China. By February

24, 2020, approximately 73,331 cases were reported positive, including 2618 deaths in

China. It was the same time when 27 other countries started showing their first symp-

toms of the disease [13]. It is seen that the mutations in CoVs do not interfere with their

potency; they are small and can be neglected for a while [1]. The report presented by the

WHO shows there are 4,494,873 confirmed cases of COVID-19 around the world,

including 305,976 reported deaths (Table 20.1A,B).

Table 20.1A The present status of the pandemic around the world [79].

Daily cases region-wise by the WHO No. of reported cases The daily increase in cases as of May 17, 2020

The United States 1,966,932 12,434
Europe 1,848,445 3275
Western Pacific 323,055 39
Eastern Mediterranean 167,546 130
South-East Asia 129,520 311
Africa 58,663 298

The region-wise data generated by the WHO till May 17, 2020, is shown.

CHART 20.1 The region-wise data generated by the WHO till May 17, 2020.

CHART 20.2 The total deaths reported.
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3. Structure of SARS-CoV-2
SARS-CoV2 is an enveloped, positive, single-stranded RNA virus with nucleocapsid sized

65e125 mm in diameter [3,4]. In CoVs, the genomic structure is organized in a þþsingle-

stranded RNA of approximately 21e32 kb in length; they are the largest known RNA

viruses (Fig. 20.1). They have a 50- cap structure and 30- poly-A tail [4]. Furthermore, the

genomic characterization reveals that bats and rodents are the carriers of alpha CoVs

(a-CoVs) and beta CoVs (b-CoVs), whereas the avian species showcase the gamma CoVs

and delta CoVs [10]. Only a-CoVs and b-CoVs are known to affect human beings [6,9,10].

Studies have shown that SARS-CoV-2 has a similar genomic structure as the beta CoVs,

comprising of a 50-untranslated region (UTR), a replicase complex encoding for

nonstructural proteins (NSPs), a spike protein gene(S), an envelope protein gene (E), a

Table 20.1B The highest cases by country/territory/area, generated by the WHO till
May 17, 2020.

Highest cases by country/territory/area No. of reported cases Deaths reported

The United States 1,409,452 85,860
Russian Federation 272,043 2631
The United Kingdom 236,715 33,998
Spain 230,183 27,459
Italy 223,885 31,610
Brazil 218,223 14,817
Germany 173,772 7881
Turkey 146,457 4096
France 139,646 27,482
Iran 118,392 6937
India 85,940 2872
Peru 84,495 2523

FIGURE 20.1 Structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ssRNA, single-stranded
RNA.
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membrane protein gene (M), a nucleocapsid protein gene (N), 30-UTR, and various

unidentified nonstructural open reading frames [9]. S glycoprotein of SARS-CoV-2 shares

approximately 80% identity with the bat SARS-CoV ZXC21 S and ZC45 S glycoprotein.

The two species are found in Rhinolophus sinicus (Chinese horseshoe bats) [6,7,9]. SARS-

CoV-2 and SARS-CoV share 89.8% sequence identity in their spike (S) proteins. Spike

proteins belong to the class of glycoproteins containing two subunits: S1 subunit and S2

subunit. The S2 subunit mediates the membrane fusion process, and the S1 subunit

utilizes angiotensin-converting enzyme 2 (ACE2) as a receptor to infect the host cell [13].

Spikes can be seen under the electron microscope as a clear, 20-nm-long, bulbous

surface projections [11]. The structure of CoV plays an important role in understanding

the available treatment options that have been developed and those which are yet to be

developed.

Spike proteins are clove-shaped projections on the surface of CoVs. They are divided

into three distinct regions, namely, ectodomain (ED) region, transmembrane (TM)

region, and intracellular domain. Both S1 and S2 subunits on the C-terminal compose

the ED region. N-terminal domain and C-terminal domain are the main components of

the S1 subunit. It also has a receptor-binding domain. On the contrary the S2 subunit

includes two regions: two heptad repeat regions (HR1 and HR2) and a hydrophobic

fusion peptide [39].

The E proteins are the smallest TM structural protein of CoV, ranging 8.4e12 kDa in

size [39,40]. E protein comprises of two domains: the hydrophobic domain and the

charged cytoplasmic tail. The structure may vary with different CoVs. There is no clarity

yet on the function of E protein ion channels in CoVs; however, they play a role in CoV

assembly and budding [39].

The M protein has the function of maintaining the shape of the virus, interacting with

other proteins, and stabilizing the nucleocapsid protein [39].

Nucleocapsid protein, on the other hand, helps in dimerization and RNA binding.

CoVs contain several proteases in their genetic material, comprising a replicase gene

that codes for 16NSPs in the form of two large polypeptides (PP1a and PP1b). For these

PPs to release NSPs, two enzymes act on them: the C-terminal end is cleaved by

chymotrypsin-like cysteine protease (3CLpro) and the N terminal is processed by

papain-like proteases (PLpro) [39,41].

4. Pathogenesis
SARS-CoV (S) and SARS-CoV-2 (S) are known to bind to ACE2 receptors [6]. They can

bind to ACE2 receptors of different animal species; this is how the virus jumps from

animals to humans [8]. ACE2 is a membrane-associated aminopeptidase expressed in

vascular endothelial, renal, cardiovascular tissues, and epithelia of small intestine

and testes. The extracellular portion of this receptor contains alpha-helix and lysine

353 and proximal residue of N terminus of beta-sheets 5, which interacts with
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the receptor-binding domain of the virus: the affinity of interaction is high. A study

reports that the SARS-CoV infection of human airway epithelia depends upon the state of

epithelial differentiation and ACE2 messenger RNA and protein expression. The virus

infects the well-differentiated ciliated epithelial cells expressing ACE2 [7].

There are structural similarities and sequence conservation among the two viruses,

which pose a way in which both recognize their entry into a cell through human ACE2

(Fig. 20.2).

Walls et al. conclude that most pathogenic bacteria exhibit S glycoprotein trimers in

open and closed conformations to infect. As in the case of CoVs, the highly pathogenic

virus has shown a partially open state, while the ones associated with common cold exist

in closed states [6]. The S glycoprotein is exposed on the surface and directs the entry of

the virus into a host cell. It can serve as a potential target of neutralizing antibodies (Abs)

upon infection and also as the focus of therapeutic and vaccine design [6].

Apart from ACE2 receptors on the host cell surface, there are other facilitators of

SARS-CoV-2 entry, including enzymes like furin, trypsin and other proproteins,

cathepsin, TM proteases like TMPRSS and elastase. Proteases like TMPRSS2 and

TMPRSS11a exist within the respiratory tract: TMPRSS2 is known to produce a complex

reaction with the ACE2 receptors, which aids an efficient penetration of the virus into the

cell. The enzyme activates the spike proteins, which then splits itself into S1 and S2 and

S20 subunits, promoting an endosome-independent cell entry [11,12]. They belong to the

family of TM serine proteases type II and are capable of cleaving influenza virus hem-

agglutinin protein epithelial cells [15,16]. In their findings, Kim et al. reported that

TMPRSS2 is indispensable for development and homeostasis, which makes an attractive

drug target.

FIGURE 20.2 Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 bind to the same
angiotensin-converting enzyme 2 (ACE2) receptor.
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To understand the exact alignment of receptors and virus entry and its replication, we

must understand the life cycle of SARS-CoV-2.

4.1 The life cycle of SARS-CoV-2

4.1.1 Virus entry
The invasion of the virus occurs in the cell via two ways: by endosome formation or

plasma membrane fusion. The spike proteins S1 and S2 attach to the ACE2 receptors of

the host cell. These receptors are exposed on the outer surface of the cell membrane and

are responsible for the cleavage of S1 and S2 subunits. This cleavage then permits the

entry of the virus into the cell.

During the uptake of the virus by the endosomes, cathepsin L activates the spike

protein; spike proteins can also be activated by TMPRSS2 (cellular serine protease), and

this initiates fusion of the viral membrane with the plasma membrane [17]. Studies have

shown that certain receptor-induced conformational changes are essential to either

expose the protease cleavage site or promote membrane fusion. This process occurs

before proteolysis and at low temperatures [18].

It is thought that SARS-CoV-2 may enter the cell through pH- and receptor-

dependent endocytosis [19].

4.1.2 Translation (virion replication machinery) and replication
After the viral RNA is released into the host cell, polyproteins (pp1a and pp1b) are

translated. The genomic RNA encodes for structural proteins and NSPs that have an

important role in virion assembly and viral RNA synthesis, respectively [68].

It starts with polyprotein translation: the cleavage is aided by papain-like protease

(Plpro) and 3C-like protease (3CL-pro). These form functional NSPs such as helicase or

the RNA replicase-transcriptase complex. It can function as one of the major inhibitory

pathways [69,70].

4.1.3 Translation (viral structural protein) and virion assembly
RNA-dependent RNA polymerase (RdRp) helps in the replication of structural protein-

RNA. Ribosomes that are bound to the endoplasmic reticulum (ER) aid in the trans-

lation of S proteins, envelope proteins, and membrane proteins [5]. The nucleocapsid is

formed from genomic RNA. It is studied that the replicase transcriptase machinery of the

CoV is found at the host ER and viral structural proteins assemble within the host ER,

which makes it a potential drug target to block both viral genome replication and capsid

assembly in the formation of new virus particles during infection [5,14].

4.1.4 Release of virus
Viruses are released out of the cell by exocytosis. There are drugs available that can

inhibit the virus release out of the cell, such as oseltamivir [71].

Fig. 20.3 shows a flowchart of the life cycle of SARS-CoV-2.

Chapter 20 � Essentials of COVID-19 and treatment approaches 403



5. Treatment approaches
At present, there are many theories proposed about the treatment, but none of them are

available for treatment. The entire treatment and prophylaxis lie on the detailed struc-

ture description we know about the virus. The first step of infection is the entry of the

virus into the host cell. As discussed earlier the S protein’s subunits, namely, S1 and S2,

FIGURE 20.3 Flowchart of the life cycle of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RdRp,
RNA-dependent RNA polymerase.
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attach themselves directly to ACE2 receptors or enter the cell via endosome formation. In

both cases the S protein has a major role to play, so if we can interfere with this S protein

activation, we might achieve an effective strategy for treatment. In this category, the

drugs chloroquine and hydroxychloroquine have been tested extensively in patients with

MERS, SARS, and SARS-CoV-2 infection.

5.1 Chloroquine and hydroxychloroquine

5.1.1 Pharmacology of chloroquine and hydroxychloroquine
Chloroquine is an antimalarial drug with the chemical name N4-(7-chloro-4-quinolinyl)-

N1,N1-diethyl-1,4-pentane diamine, and hydroxychloroquine is its hydroxyl derivative

[20e23] (Fig. 20.4). It exerts antimalarial action by integrating with the DNA and

inhibiting the polymerization of heme [23]. It also raises the endosomal pH, which is

required by the virus to invade into the cytosol. The availability of this medicine is in the

tablet form and under the name chloroquine phosphate 500 mg and hydroxycholorquine

sulfate 200 mg: both the drugs have long half-lives (20e60 days, respectively).

It can be detected up to 3 months in urine after administration. Hydroxychloroquine

reaches peak plasma concentration in about 3e4 h ,and chloroquine reaches its Cmax in

30 min. The major adverse effects are related to gastric upset, nausea, vomiting, and

diarrhea [21].

FIGURE 20.4 Chemical structures of (A) hydroxychloroquine and (B) chloroquine.
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On long-term use, severe side effects are reported, one of them is retinopathy, which

is nonreversible. Several drug interactions are also reported with antiepileptics, antacids,

cyclosporine, amiodarone, tamoxifen, etc. [21e23].

5.1.2 Mechanism of action
In the inhibition of SARS-CoV-2, chloroquine has played an important role. It is known

to inhibit the terminal glycosylation, which aids in ACE2 binding to the viral S protein.

Several pieces of research have proposed that hydroxychloroquine may prevent

SARS-CoV-2 binding to available ganglionic sides, which may inhibit viral contact with

ACE2. Both the drugs are known to incorporate into lysosome and endosomes, raising

the pH of intercellular compartments. However, the mechanism of action for the drugs is

still disputable and new studies are constantly trying to come up with more accurate

explanations. All the steps of binding, endocytosis, translation, replication, and exocy-

tosis are hence misconfigured [23]. Both the drugs carry side effects that cannot be

ignored. The most common side effect is the prolongation of QT interval leading to

malignant arrhythmias [24].

In studies, the drug showed inhibition of the virus in vitro but was ineffective in most

animal models [20]. Chloroquine was not approved by the European Medicines Agency,

and it restricted its use to clinical trials and through emergency use authorization

programs. It is still used in combination with azithromycin in many countries for

prophylaxis and treatment; however, there are no positive clinical trial shreds of evi-

dence to support such therapy [23]. The United States has also not promoted treatment

with the drugs, as they are showing normal than usual adverse effects in patients. It has

been studied that prolonged use of chloroquine may lead to blindness.

Other options include the suppression of TMPRSS2 enzyme present in the host cell

that aids in the inactivation of spike protein, which allows endosome-independent cell

entry.

5.2 Serine protease inhibitors (camostat mesylate, nafamostat, and
bromhexine)

Studies have reported the use of TMPRSS2 inhibitors in the treatment of COVID-19 [12].

In their findings, Kim et al. reported that TMPRSS2 is considered important for devel-

opment and homeostasis and thus marks as an attractive drug target [69]. Since the

enzyme is extensively responsible for the activation, it required the researchers to work

for the development of TMPRSS2 inhibitors. Camostat mesylate is one of the highly

researched drugs in this category. It is a nonselective serine protease inhibitor and was

approved first in Japan for the treatment of chronic pancreatitis and postoperative reflux

esophagitis [26]. It is supplied in the form of crystalline solid and marketed under the

name Foipan [27], which is manufactured by Nichi-lko Pharmaceutical co. Ltd. and Ono

pharmaceuticals, Japan [26].
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Camostat is well known to block the entry of the virus into the lung cell [27]. A study

group created the three-dimensional structure of TMPRSS2 using molecular docking and

the three drugs (camostat, nafamostat, and bromhexidine HCL) were made to interact

with it. The homology model showed proper folding patterns with cysteine-rich and

serine protease domains. The results of docking showed that active site residue His296

and Ser441 of TMPRSS2 interacted with the inhibitor camostat mesylate and nafamostat

by hydrogen bonding interactions (Fig. 20.5), while bromhexine showed hydrophobic

contacts due to its small structure [25]. Camostat is widely being evaluated in clinical

trials for its effects against blocking TMPRSS2 and if sufficient concentrations can be

attained in the lungs for treatment.

This led to the testing of other protease inhibitors like nafamostat mesylate, gabexate

mesylate, and bromhexine. Nafamostat was found to be 10 times more potent than

camostat [26e29]. It is shown to block the activation of SARS-CoV-2 aggressively

whereas, gabexate mesylate was shown to inhibit the activation but very slightly and was

not effective enough to stop the infection completely [28]. All three drugs are approved in

Japan for clinical use but with few restrictions.

The structures of these drugs are given in Fig. 20.6.

FIGURE 20.5 Mechanism of action for camostat/nafamostat and chloroquine/hydroxychloroquine. ACE2,
angiotensin-converting enzyme 2; CP, convalescent plasma; MAbs, monoclonal antibodies; SARS-CoV-2,
severe acute respiratory syndrome coronavirus 2.
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5.3 Remdesivir

SARS-CoV and SARS-CoV-2 have only 82% RNA sequence identity but their RdRp has a

96% sequence identity [30,35]. We are well aware that the replication of the SARS-CoV-2

virus is mediated by a multistep subunit replication/transcription complex of viral NSPs.

The core component of this complex is nsp12 of an RdRp. Nsp12 requires accessory

factors like nsp7 and nsp8, which increases the RdRp activity in template binding.

Inhibiting this can be an attractive target against COVID-19 [32e34], as it will cease the

replication phase. Little light in this context is available to completely understand the

working mechanism of this RdRp complex [32]. It was first evaluated and used against

viruses of the Filoviridae (Ebola virus) family and Nipah virus family. Studies have shown

that the triphosphate forms on RDV competes with ATP for binding to Ebola virus RdRp,

composed of L protein and VP35. ATP has a much higher selectivity than RDV-

triphosphate (RDV-TP) [33].

RDV is known to be a phosphoramidate prodrug of a 10-cyano substituted nucleotide

analog [33]. It is a known phenomenon of RDV to get converted into its triphosphate

form in the cell (RDV-TP). It is structurally similar to adenosine and is used as a substrate

for viral RdRp complexes [33,34]. Studies have also shown that ATP serves as the main

substrate for nsp12. This was confirmed in a study conducted by homology modeling of

COVID nsp12 with a sequence identity of 95.8% [34]. Another study revealed that the

relative binding free energy of ATP was calculated to be �4.14 � 0.89 kcal/mol in the

presence of Mg2þ, whereas the relative binding of RDV-TP was �8.28 � 0.65 kcal/mol,

which is stronger than ATP. Thise800-fold difference in Kd value is enough to block ATP

out of the binding pockets with RDV-TP [34]. The RDV-TP complex shows a delayed

FIGURE 20.6 (A) Camostat mesylate, (B) nafamostat mesylate, and (C) gabexate mesylate.
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chain termination at position iþ3; this is a favorable selectivity for the nucleoside ana-

logs (NAs) against SARS-CoV, MERS-CoV, and SARS-CoV-2. SARS-CoV-2 RdRp is known

to be a relatively stable enzyme that functions as a replicate upon binding with RNA

template [32].

Other drugs like favipiravir, ribavirin, penciclovir, galidesivir, and RDV can be used in

the effective treatment of CoVs [35]. SARS-CoV-2 RdRps can accommodate themselves in

a variety of chemical modifications of NAs, e.g., ribose, on the base, on both sides. The

CoV exonucleases (ExoN) can recognize these modifications; hence it is a potential

target, which can be explored for NA drug development [30]. This ExoN has the potential

to remove NA that is incorporated into RNA, destroying the therapy.

However, contraindicating this statement, a study showed that RDV cannot be

removed by nsp14-ExoN due to the addition of three more nucleotides after the first

addition [31,36]. It is explained in Fig. 20.7. The Wuhan Virus Research Institute

conducted some in vitro experiments for RDV on COVID-19 RNA synthesis and found

that it is the fastest acting and most powerful antiviral agent available to us.

FIGURE 20.7 Mechanism of RNA synthesis. RdRp, RNA-dependent RNA polymerase; RDV-TP, remdesivir
triphosphate.
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The mechanism can be understood from Fig. 20.7 [31].

Fig. 20.7 shows a priming strand and a template strand on an active SARS-CoV-2

RdRp complex. The triphosphate form of the drug, RDV, approaches the priming strand

and competes with ATP for binding. Upon successful binding of one RDV-TP, there is an

addition of three more analogues, leading to delayed chain termination of the priming

strand. Furthermore, it is suggested that to overcome the delayed termination reaction

here, high ratios of RDV-TP can be bombarded on the priming strand.

5.4 Interferon beta-1a

Interferons are a group of signaling proteins that are secreted by a host cell whenever it is

invaded by a virus. These are being extensively researched against SARS-CoV-2. Type 1

interferon (IFN-1) groups, belonging to cytokines, comprise of alpha and beta subtypes,

which are of our interest. IFN-1 is secreted by plasmacytoid dendritic cells as a response

to virus detection by pattern recognition receptors [60,61]. It is usually the first cytokine

produced during viral infections [67]. These are recognized by IFNAR receptors, which

are present on the outer surface of plasma membranes in most cell types. Due to binding

of interferon to these receptors, a series of phosphorylation of transcriptional factors

such as STAT1 starts to take over, and also they are relocalized to the nucleus, where they

activate interferon-stimulated gene [62].

These interfere with viral replication and spread by different mechanisms like slowing

down cell mechanisms or secretion of cytokines, which promote the activation of

adaptive immunity [67]. IFN-b was known to be effective in treating multiple sclerosis by

downregulating the MHC (major histocompatibility complex) type II expression in

antigen-presenting cells. It was then used in the treatment of SARS and MERS, either

alone or in combination with lopinavir/ritonavir [64]. In MERS, this combination helped

improve pulmonary functions but did not stop virus replication or lung pathologic

severity [60].

Several pieces of the research proposed that IFN-b is more potent than IFN-a in

treating the infection. Later on, it was seen that IFN-b-1a has more clinical efficacy than

other variables [63]. The activation of IFN-b in the lungs of an infected person upre-

gulates cluster of differentiation 73 (CD73) in pulmonary endothelial cells. This results in

the secretion of anti-inflammatory adenosine and also maintains the endothelial barrier

functions [60,64].

It is suggested to use the drug for prophylaxis rather than for treatment [65,66]. The

drug is now being used in China in combination with ribavirin. The efficacy of IFN-b has

already been established in SARS; hence it should be used to combat the pandemic

(COVID-19).

5.5 Favipiravir

It is an antiviral prodrug (T-705; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) that was

earlier used in the treatment of Ebola and influenza virus. It is a known inhibitor of RdRp

[81]. Current studies have reported the treatment time of COVID-19 with favipiravir was
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found to more than that of treating influenza. However, the doses were well tolerated and

showed very little adverse effects [80,81]. This makes this antiviral drug another effective

drug for the treatment of COVID-19 [81]. It acts as a pseudo purine nucleic acid in virus-

infected cells: like other NAs that inhibit viral RNA polymerase. It is licensed in Japan for

treating influenza virus infections. Although the precise mechanism of action is lacking

for the drug, it is still the drug of choice for clinical trials around the work due to its little

adverse effects [82]. The drug is now facing its phase 3 clinical trial in India, initiated by

Glenmark. If it gets approved then the drug will be available in India under the name

“FaviFlu.” The study is estimated to be complete by July or August this year [83].

5.6 Targeting the fusion machinery

Although much data is not available on the targeting of a fusion machinery, it is yet

another effective approach that researchers have been working upon. A study revealed

that SARS-CoV-2 exhibited a much higher capacity of plasma membrane fusion than

SARS-CoV, suggesting that the fusion machinery of SARS-CoV-2 can be an important

target for the development of CoV fusion inhibitors [37]. It further suggested that the

Pan-CoV fusion inhibitors are point inhibitors against all CoVs. A solved X-ray crystal

structure of six helical bundle (6HB) core of HR1 and HR2 domains in the SARS-CoV-2 S

protein, S2 subunit, showed that many of the mutated amino acid residues in HR1

domain may be linked to enhanced interaction with the HR2 domain. S2-mediated

fusion inhibitors can be effective in the treatment of SARS-CoV-2 [37,38].

EK1 is a Pan fusion inhibitor developed earlier and was used in this study. Many

lipopeptides were then created from EK1; among which, EK1C4 was reported as the most

potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion. It was

later proven effective against most of the known human CoVs such as SARS-CoV and

MERS-CoV. Intranasal application of EK1C4 in mice, before and after being infected by

the HCoV-OC43, protected mice from infection, showing signs of a potential area of

development [13,38].

Studies have also revealed that CoV spike protein can be classified as a class I viral

fusion protein. An important characteristic of this class is the cleavage of the precursor

by host cell proteases into membrane distal subunits and a membrane-anchored sub-

unit, an event that is essential for membrane fusion. The cleavage of S protein into S1

and S2 is known to enhance fusogenicity [37,38]. Hence this comprises another area of

opportunity to develop treatment alternatives.

5.7 Convalescent blood product therapy

Convalescent blood products (CBPs) have been used in the treatment of various infec-

tious viral diseases since the 1900s. They have been the most trusted resource for the

treatment of two great pandemics the world has witnessed. Among the CBPs,

convalescent plasma (CP) is the most exploited for treatment, as it has neutralizing Abs.
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CBPs can be manufactured by sampling the whole blood or apheresis plasma from the

convalescent donor. This therapy intends to clear viremia, which is developed

10e14 days after infection [50]. In the following sections, we will discuss more about the

therapy. SARS-CoV and SARS-CoV-2 have the same receptor for binding to host cells,

and hence results obtained on SARS-CoV were also extrapolated to yield important

information on SARS-CoV-2 [42,48].

Passive Ab therapy is among the most researched treatment against SARS-CoV-2. In

this therapy, Ab against a given agent is administered to an individual to prevent or treat

an infectious disease. It is thought to provide immediate immunity to susceptible

persons. The origin of passive Ab therapy can be traced back to the 1890s. Since then, it

has been used in SARS, MERS, Ebola, and other viral diseases. For SARS-CoV infection,

viral neutralization is necessary to avoid further damage. There are two available sources

of Ab for SARS-CoV-2: human convalescent sera from individuals who showed recovery

and monoclonal antibodies (MAbs) or preparations that are developed in certain animal

hosts, such as genetically engineered cows that can produce human Abs. Abs for human

use are usually only found Inhuman convalescent sera.

Researchers have focused more on using passive Ab therapy for prophylaxis than for

treatment. This is because it is seen that the Abs aim to neutralize initial inoculums,

which is smaller than the developmental stage of the disease [42e44] (Fig. 20.8).

Abs are developed at the onset of symptoms; that is, approximately 5 days after

symptoms appear in an infected individual [42,44,51]. The major challenge faced by the

researchers has been the requirement of high titers of neutralizing Abs needed to show

responses. A study conducted on 99 samples of convalescent sera (SARS) showed that 87

had neutralizing Abs with a geometric mean titer of 1:61. There were two conclusions

made on this basis: the Abs decline with time in recovered survivors and only a few

patients produce high titers [42,51].

Earlier, the convalescent sera were used to treat diseases like poliomyelitis, measles,

mumps, and influenza. Abs from apheresis were used here to treat severely ill cases of an

H1N1 influenza pandemic (2009e10) [42]. A study was also conducted in Hong Kong on

80 patients, which was the largest study conducted in the year 2003 that utilized

convalescent sera. Patients who were treated with the sera before 14 days showed

marked improvement and were discharged from the hospital before 22 days [52].

MAbs are the major class of available biotherapeutics for passive immunotherapy.

However, there are areas of concern in this therapy, including the availability of donors,

clinical conditions, viral kinetics, and host interactions of SARS-CoV [43]. MAbs have

been the preferred class owing to their specificity, purity, low risk of blood-borne

pathogen contamination, and safety compared to plasma therapy and intravenous

immunoglobulin (Ig) preparation [49]. The other agents that can be employed against

SARS-CoV-2 are vaccines, peptides, interferon therapeutics, and small molecule drugs.

This is a tedious process, as their use largely depends on clinical trial outcomes [43].

Neutralizing Abs can bind to either receptor binding domain of S proteins or specific

Abs that bind to ACE2; any approach can be used to block the entry of the virus into the

host cell [43] (Fig. 20.9). A study conducted by Coughlin and Prabhakar showed a series

412 Data Science for COVID-19



of human MAbs targeting the receptor-binding domain region of the S protein of SARS-

CoV-2. It yielded positive results in vivo and in vitro. Few such MAbs are 80R, CR3014,

M396 [53], 1A9 [54], 68 [55], 404 [56], S230 [57], and so on. These MAbs have been

successful in blocking S protein from binding to ACE2 receptors. To use in treatment, we

need the CP of neutralizing Ab titer greater than or equal to 1:160 to reduce mortality

rates [48]. It varies from patient to patient depending on the age, weight, state of health,

body response, and informed consent. A suitable donor could donate about 600 mL of

plasma every 14 days for 6 months [50].

In the year 2014, CP therapy was recommended by the WHO for the treatment of

Ebola virus. A study report prepared by Mair Jenkins showed that the mortality among

patients reduced after receiving CP for SARS, with no adverse events [44]. During pan-

demics, researchers need to grab and use every opportunity that can help eradicate the

FIGURE 20.8 Neutralizing antibody treatment to coronavirus disease 2019 (COVID-19) patients shows recovery
from symptoms when given as a prophylaxis therapy and not as treatment.

Chapter 20 � Essentials of COVID-19 and treatment approaches 413



disease as early as possible. CP helps suppress viremia that proceeds during the first

week of infection. Another study conducted by Schools and colleagues reported that

3BNC117-mediated immunotherapy, which is a broad neutralizing Ab to HIV-1,

enhanced host humoral immunity to HIV-1 [58]. Effects of this MAb not only illus-

trated free viral clearance and blocking of new infection but also included accelerated

infected cell clearance [44].

CP has proven to be effective in SARS and MERS and to some extent even in COVID-

19. A study was conducted at the Infectious Diseases department, the Shenzhen Third

People’s Hospital in Shenzhen, China, which included five critically ill patients who were

treated using plasma from recovered individuals. All the five subjects had severe respi-

ratory failure and three were on mechanical ventilation. The therapy was introduced

around day 20, and the treatment with antiviral drugs, ritonavir and lopinavir, and

interferon was continued. This therapy improved the symptoms in the patients after a

week. Symptoms improved like the body temperature became normal, and improve-

ment in sequential organ failure was seen [45,46,48]. A combination of CP with human Ig

can be an efficient way to reduce symptoms in patients. Most studies prefer cocktail Ab

approaches. It can be meaningful to generate neutralizing Abs targeting different epi-

topes on SARS-CoV-2. Computational simulations can be very effective in designing

such effective therapies against the virus [50].

In reducing the respiratory viral infections, IgA Abs are the main Ig isotype on the

mucosal surface. They are the key players. They are made up of two IgA molecules

FIGURE 20.9 Binding of spike protein to angiotensin-converting enzyme 2 (ACE2) receptor on the host cell sur-
face, inhibited by neutralizing antibodies (Abs). ER, endoplasmic reticulum; MAbs, monoclonal antibodies; SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2.
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(dimers), a joining protein that is also called the J chain and a secretory component [50].

IgA and IgM Abs appear after 5 days from the onset of symptoms, while IgG can be

detected only after 14 days [50].

While examining the symptoms, patients also have shown an increased level of

interleukin (IL)-6 and it was determined as an actionable target cytokine to treat COVID-

19-related acute respiratory distress syndrome [47]. The expression of IL-6 is related to

inflammatory cytokine storm verity [46]. Therefore, if we target IL-6 and its receptors

using siltuximab and tocilizumab, they could reduce the cytokine-storm-related symp-

toms [46,49].

There are certain adverse reactions reported for CP therapy in transfusion-related

events [59], involving chills, fever, anaphylactic reactions, circulatory overload, and

hemolysis [48].

6. Various approaches to design vaccine
Vaccines provide the right immune responses, which confer protection from diseases.

There are various challenges in developing the right type of vaccines. Also approaches

involving live-attenuated or inactivated viruses, or other protein-based methodologies,

viral vector-based Abs or nucleic corrosive based vaccines for developing the potential

SARS-CoV-2 Abs in the pipeline-Four include nonreplicating infections or protein de-

velops, four have a nucleic acid-based design, two contain live attenuated and one in-

cludes a viral vector [72]. However, live attenuated vaccine is not the best method for

patients who are in their old age and are suffering from severe disease having higher risks

[73]. Unfortunately, the knowledge of the immune responses is not enough for us to

accurately predict the safety and efficacy of the vaccine. What we need to do now is test

various methodologies. With the help of more results of good research, we will be able to

conclude the best methodologies to develop a vaccine.

6.1 Strategies of vaccine development

6.1.1 Whole virus vaccine
Live attenuated or whole inactive virus type represents a classical strategy. As indicated

by an industry bulletin, Johnson and Johnson is the only global organization setting out

for COVID-19 vaccine development [74]. Besides, scientists at the University of Hong

Kong have developed a live influenza Ab that can target SARS-CoV-2 proteins [74]. The

major significance of the whole virus vaccine is inherent immunogenicity and its

capability to stimulate toll-like receptors (TLRs, TLR3, TLR7/8, and TLR9). However,

there are many tests needed to confirm safety in the case of live virus vaccines. With the

abovementioned vaccination protocol, there is another issue in vaccine development,

which is increased infectivity with live attenuated or killed whole virus vaccines [75].
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6.1.2 Subunit vaccine
Subunit Abs for SARS-CoV and SARS-CoV-2 depend on evoking an insusceptible

immune response against the spike protein, preventing its docking with the host ACE2

receptor [74]. The University of Queensland, in collaboration with the Coalition

for Epidemic Preparedness Innovations, is working on incorporating viral surface pro-

teins to present them more effectively to the immune system. Novavax has developed

and delivered immunogenic viruslike nanoparticles dependent on the recombinant

expression of the S-protein [76].

6.1.3 Nucleic acid vaccine
A few significant biotechs have progressed in nucleic corrosive Ab stages for COVID-19.

Inovio Pharmaceuticals is developing a DNA Ab, along with others such as Moderna

Therapeutics and Cuevas. The methodology of immunization is started with DNA, with

promising outcomes in mice in 1993 indicating protective resistance against flu; these

studies have not expressed similar findings in humans. Recently, new modifications and

formulations have come up with an expectation of nucleic acid performance in humans,

and this approach might eventually lead to the first incorporated human nucleic acid

vaccine.

6.1.4 Problems with vaccine development
The development of vaccines without any preparations is ordinarily not a decent choice

for this ongoing pandemic. An average of approximately 10 years is required to provide a

safe and an effective vaccine for the prevention of disease in future recipients [77].

Vaccine advancement requires broad planning with regard to immunization develop-

ment, immunization design and purification, preclinical testing in animals (to confirm

safety and efficacy in humans), and numerous phases of clinical trials in humans (phase

1 for safety and phases 2 and 3 for efficacy). Approximately 13 industries are taking risks

in proceeding the development of vaccines for SARS-CoV-2 [72]. This methodology has

points, which are strategically and measurably complex, and designers usually stay away

from preliminary trials that may generate comparative information. Also, in a high-

mortality circumstance, most populations may not accept randomized controlled

trials with placebo treatment; however, other approaches represent such concerns may

be scientifically proven, they are ordinarily not as quick, and the outcomes can be more

enthusiastic to interpret [78]. This issue can be overcome by comparing results and early

immunization versus postponed vaccination, as in the “Ebola ça suffit!” trial. One

potential way is to forward the test of a few vaccines in a versatile preliminary trial plan

by using a single, shared control group, with the goal that more participants would get an

active immunization [79].

At last, pandemics will produce a synchronous interest for vaccine demand around

the globe. Clinical and serologic examinations will be expected to affirm which

populations stay at most risks once vaccination is accessible and to establish an inter-

nationally reasonable immunization designation framework. Some Group of Seven na-

tions have just called for such a worldwide framework, whose arranging must begin

while immunization advancement proceeds.
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7. Conclusions
COVID-19 is a pandemic that has affected over 4,819,337 people around the world (at

present). There is an emergence of treatment and vaccination protocol development.

SARS-CoV, MERS-CoV, and SARS-CoV-2 are all the viruses that share the same family

and also have some similarities that can provide a direction to researchers and save time

in return. Hence the studies conducted back then can be useful in optimizing a treat-

ment plan for COVID-19. Till today, there is no cure available for SARS-CoV-2 infection

and prevention remains the only cure. Prophylaxis should be the major aim of all the

investigational drugs, as the studies suggest that most drugs are used to treat patients

between 1 and 14 days of exposure and symptom development, proving clinically

beneficial and reducing symptoms, showing recovery, and even patients getting

discharged before 21 days of treatment. According to analysts, most of the clinical trials

that are being conducted are also showing positive results. The analytics firm of

GlobalData presented 16 positive data results from about 21 ongoing clinical trials.

About 69% of trails are still in phase 1 and phase 2. The major investigational agents are

RDV, sarilumab, and bevacizumab.

The US biotech firm Gilead has recently announced the drug RDV to have shown

about 31% faster recovery time than placebo treatment. Sarilumab is undergoing clinical

trials in parts of Europe, the United States, and Canada, whereas studies conducted for

drugs like hydroxychloroquine and chloroquine have reported adverse events like higher

mortality rates among patients and also heart rhythm problems, respectively. Although

they are permitted to treat severely ill patients, their clinical benefits are not established

in animal models yet. There are several RdRp inhibitors that are being preferred for

treatment in different countries. As much as CP therapy sounds appealing, it will pose a

challenge to the healthcare sector because of its requirements of patient consent and

high titers of Abs for treatment. With the rapid spread of COVID-19, it is evident that

there is an urgent need for a vaccine or treatment but also there is a need to constantly

monitor the mutations of this virus.

There are new studies aligned that suggest the S and L strains are now affecting

different parts of the same country, and this can be differentiated based on the mortality

rate in that particular area. This briefs us about the changes that might be needed even

once the vaccines and treatments are fully available for clinical use. Hence until the

results of ongoing clinical trials are published, we need to follow the precautionary

measures and rely on local standards of healthcare.
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