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Abstract
Filamentous fungi have proven to be a better-suited model system than
unicellular yeasts in analyses of cellular processes such as polarized growth,
exocytosis, endocytosis, and cytoskeleton-based organelle traffic. For
example, the filamentous fungus  develops a variety ofNeurospora crassa
cellular forms. Studying the molecular basis of these forms has led to a better,
yet incipient, understanding of polarized growth. Polarity factors as well as Rho
GTPases, septins, and a localized delivery of vesicles are the central elements
described so far that participate in the shift from isotropic to polarized growth.
The growth of the cell wall by apical biosynthesis and remodeling of
polysaccharide components is a key process in hyphal morphogenesis. The
coordinated action of motor proteins and Rab GTPases mediates the vesicular
journey along the hyphae toward the apex, where the exocyst mediates vesicle
fusion with the plasma membrane. Cytoplasmic microtubules and actin
microfilaments serve as tracks for the transport of vesicular carriers as well as
organelles in the tubular cell, contributing to polarization. In addition to
exocytosis, endocytosis is required to set and maintain the apical polarity of the
cell. Here, we summarize some of the most recent breakthroughs in hyphal
morphogenesis and apical growth in  and the emerging questions thatN. crassa
we believe should be addressed.
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Introduction
Polarity is the key feature in all living cells and allows the 
asymmetrical transport of components to precise cellular sites.  
Filamentous fungi present one of the most extreme cases of  
polarized tip growth, among the different cell types that also extend 
apically (for example, pollen tubes, neurons, and root hairs). Fungal  
tubular cells, so-called hyphae, extend by continuous expansion 
of their apices through a complex mechanism that involves the  
coordinated directional supply of material needed for plasma 
membrane (PM) and cell wall growth. This process, hyphal  
morphogenesis, has increasingly been in the spotlight of fungal 
biology research in recent years.

Neurospora crassa, “the orange bread mold” discovered in French 
bakeries in the 19th century1, has been at the vanguard of biochem-
istry, genetics, and biological research for nearly a century. Several 
reviews have highlighted the historical contribution of N. crassa 
to many areas of biology, including pioneering work on DNA  
silencing and circadian rhythms2,3. The genetic basis of the transi-
tion from single spherical conidia (asexual spore) to a large net-
work of filamentous tubular hyphae4 has been at the forefront of 
fungal biological research, elucidating both fungal morphogenesis 
and polarized growth. Most research aimed at identifying key play-
ers in hyphal morphogenesis before the availability of genome data 
involved forward genetics screens—bottom-up approaches—in 
which randomly generated mutants were analyzed to discover 
the function of a gene. This in fact was the basis for the leading 
work of the Nobel laureates George Beadle and Edward Tatum that  
established the relationship between genetics and biochemistry5. 
When this strategy was followed, many N. crassa morphological 
mutants were generated6.

The increasing availability of sequenced genomes made it possible 
to apply reverse genetics screens—top-down directed approaches—
to silence or mutate specific genes and evaluate the resulting pheno-
types. Sequencing of the N. crassa genome7,8, along with other key 
developments (expression plasmids for protein tagging9,10, recipient 
strains deficient in non-homologous end joining11, and knockout 
cassettes for all annotated open reading frames12,13), revolutionized  
the field of fungal biology and quickly accelerated the number 
of studies on N. crassa, which set out to analyze the distribution, 
dynamics, and function of subcellular components14. Needless to 
say, this led to significant advances in our understanding of fungal 
morphogenesis.

Research in genetics, biochemistry, and more recently “omics” 
conducted on N. crassa clearly contributed to many important 
insights into how fungal hyphae are shaped. This review focuses on 
the most recent findings on key subcellular structures determining  
hyphal ontogenesis in N. crassa.

Hyphal morphogenesis
N. crassa exhibits a variety of cell morphologies corresponding to 
different developmental stages. The morphogenetic changes initiate 
when a conidium begins to grow isotropically during the first hours 
of hydration; soon after, the symmetry is broken, growth becomes 
polarized, and the resulting germ tube continues extending by apical  
polarized growth until it becomes a fully mature hypha. Further 

branching from subapical compartments generates new hyphal tips 
capable of fusing with each other and generating a mycelium6,15–18.

Some remarkable differences in growth and intracellular  
organization have been described between germ tubes and mature  
vegetative hyphae in N. crassa. The most prominent characteris-
tic of the apex in mature hyphae of N. crassa is the Spitzenkörper 
(Spk), a conspicuous accumulation of vesicles, ribosomes, actin 
microfilaments, and amorphous material of undefined nature19. 
During the early stages of development, no Spk can be perceived 
at the germling apex20 and this is most likely because of the insuf-
ficient number of tip-directed secretory vesicles21. In addition, 
organelle distribution is disorganized in germlings and cytoplasmic 
microtubules (MTs) are less abundant, shorter, and differently dis-
tributed compared with mature hyphae20. A widely accepted fungal  
morphogenesis model proposed that the Spk behaves as a  
vesicle supply center (VSC)22. According to this model, the forward 
advancement of the VSC and the concomitant release of vesicles 
would generate an ideal hypha23. An alteration of the number of 
released vesicles, the rate of advancement of the VSC, or a sus-
tained displacement of its central position would generate several 
cell shapes, including branches and meandering hyphae24. Growth 
of N. crassa in confined microfluidic structures, which mimic some 
of the characteristics in the natural environment, has allowed analy-
sis of the thigmotropic response of individual hyphae and tip growth 
to changes in the environment25 and has enabled long-term tracking 
to monitor, in real time, fluorescent reporters of molecular mech-
anisms such as circadian rhythms26. In germlings with structures 
associated with cell fusion, so-called conidial anastomosis tubes 
(CATs), the displacement of activated GTPase clusters initiates 
repositioning of the apical secretory vesicle delivery machinery in 
response to chemotropic cues, offering an explanation of how direc-
tional tip growth is accomplished in cell types that lack a Spk27.

Prior to symmetry breakage of an N. crassa spore, there is accumu-
lation and localized activation of the small Rho GTPase CDC-42 
and its guanidine exchange factor (GEF) CDC-2427,28. Once a 
polarized germ tube has emerged, a second RHO GTPase, RAC, is 
recruited at the incipient tip forming a crescent28. CDC-42 and RAC 
regulate the negative chemotropism exhibited during germ tube 
development and the positive chemotropism observed during CAT 
formation and cell fusion27. In mature hyphae, CDC-42, CDC-24, 
and RAC are localized at the apical dome28 (Figure 1A). The 
homologues of the polarisome components BUD-6 and SPA-2 are 
required for the maintenance of apical growth and cell morphology 
of N. crassa germlings and hyphae but not for cell symmetry break-
age during conidial germination28,29. SPA-2 accumulates at apices of 
hyphae adopting a fan shape, whose base co-localizes partially with 
the Spk core30. BUD-6 accumulates at the apical PM, excluding the 
very tip. In addition, the formin BNI-1 (an F-actin polymerization 
protein), another polarisome putative component, has a distribution  
similar to that of BUD-6 but also co-localizes with the Spk29 
(Figure 1A). Polarisome proteins are possibly involved in the  
thigmotropic response of N. crassa by mediating the reorientation 
of actin microfilaments, thereby regulating the vectorial flow of 
vesicles to the tip31. It has been proposed that to convey information  
from the sensing apex to the transcriptional machinery that is 
located several micrometers behind the tip (11 μm in Aspergillus 
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Figure 1. Representation of the localization pattern of proteins participating in hyphal morphogenesis in Neurospora crassa.  
(A) Spatial distribution of the polarisome components (SPA-2, BUD-6, and BNI-1), Rho GTPases (RAC, CDC-42, and CDC-24), and septins 
(CDC-3, CDC-10, CDC-11, CDC-12, and ASP-1) during early developmental stages. (B) Spatial distribution of the polarisome, Rho GTPases, 
GEFs (CDC-24 and RGF-1), Rab GTPases (YPT-1, YPT-31, and SEC-4), septins (CDC-3, CDC10, CDC11, CDC12, and ASP-1), actin-binding 
proteins (TPM-1, LIFE ACT, FIM-1, CRN-1, ARP3, MYO-1, and MYO-5), exocyst components (EXO-70, EXO-84, SEC-3, SEC-5, SEC-6,  
SEC-8, and SEC-15), and cell wall biosynthetic enzymes (FKS-1, GS-1, and CHS-1 to CHS-7) participating in apical extension of mature 
hyphae. Each protein displays one or two color tags corresponding to a specific distribution pattern.

nidulans, 12 μm in N. crassa, and 22 μm in Ustilago maydis32–34), a 
signal is able to travel in the opposite direction from growing tips 
to the nuclei33.

Building the cell wall
Fungal hyphae are surrounded by a wall made of polysaccharides 
and glycoproteins, which helps the cell withstand internal pressure 
and serves as an external barrier against environmental stresses. 
It is therefore essential for the optimal development and survival 
of fungi. In N. crassa, the cell wall comprises an inner layer of 
chitin (9%) and β-1,3-glucans (87%) microfibrils, embedded in a 
matrix-like material composed of galactomannans, mixed traces of 

β-1,4-glucans, glucuronic acid, and glycoproteins35–39. These elements 
are enzymatically cross-linked to form a three-dimensional network.

The cell wall is synthesized at the apex and its assembly is respon-
sible for hyphal shape40. Chitin is synthesized by a family of chitin 
synthases (CHSs), CHS-1 to CHS-7, in N. crassa41. These trans-
membrane proteins take N-acetylglucosamine subunits (Glc-NAc) 
from a UDP-Glc-NAc donor and polymerize them into a linear 
chain of chitin (β-1,4-Glc-NAc)36. β-1,3-glucans are manufac-
tured by a glucan synthase complex (GSC) composed of FKS-1 
(catalytic subunit), RHO-1 (regulatory subunit), and a third protein, 
GS-1 (orthologous to Knr4p/Smi1p in Saccharomyces cerevisiae), 
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required for β-1,3-glucan synthase activity42,43. The GSC takes 
glucose (Glc) subunits from the cytoplasmic donor UDP-Glc  
and extends them into a growing chain of β-1,3-glucans.  
Chitin and β-1,3-glucans are extruded as linear polysaccharides 
into the cell wall space, where they are modified by cross-linking 
enzymes36,44.

α-1,3-glucans have been described as an important component 
of the fungal cell wall45,46, but in N. crassa these polysaccha-
rides have been detected in macroconidia only47. Additional pro-
teomic analysis indicated compositional differences between cell 
walls of conidia and hyphae, suggesting differential regulation of  
polysaccharide biosynthesis through development48. Mannan and 
galactomannan are found as glycoconjugates on cell walls. The  
α-1,6-mannosyltransferase OCH-1 and the α-1,6-mannanases 
DFG-5 and DCW-1 are required for the efficient covalent incor-
poration of glycosylated proteins into the cell wall37,44. Many of 
these proteins are found attached to the PM by a glycosylphos-
phatidylinositol (GPI) anchor, an indispensable post-translational  
modification for optimal cell wall function in N. crassa49.

A few decades ago, the unitary model of cell wall growth pro-
posed that cell wall construction during apical extension requires 
a delicate balance of exocytic vesicles carrying lytic enzymes for 
cell wall softening as well as simultaneous secretion of vesicles  
transporting synthesizing enzymes50. Subsequently, the steady-state 

model introduced the concept of plastic cell wall material extruded 
to the apex as individual chains, which gradually become cross-
linked at the subapex by glycosyltransferases, resulting in the  
hardening of the cell wall51. The role of remodeling enzymes such 
as chitinases, glucanases, or glycosyltransferases has recently been 
addressed in N. crassa. To elucidate the role of glycosyl hydro-
lase (GH) family 18 in N. crassa growth, deletion strains for the  
corresponding genes were phenotypically characterized. The lack of 
GPI-anchored chitinase CHIT-1 led to a decrease in growth rate, sug-
gesting a potential role of chitinases in hyphal extension52. Subcel-
lular distribution analysis of chitinases has not been carried out in N. 
crassa. However, recently, two GPI-anchored β-1,3-endoglucanases,  
BGT-1 and BGT-2, with predicted glycosyltransferase activity 
(GH-17) were reported at cell wall remodeling sites (that is, hyphal 
apices and septa) during N. crassa vegetative development53. These 
observations and previous attempts to reconcile the above-men-
tioned models54 led to a new, integrated model of cell wall assem-
bly. Remodeling enzymes, such as β-1,3-endoglucanases with glyc-
osyltransferase activity that are anchored to the PM, hydrolyze long 
chains of β-1,3-glucans (at the tip) and transfer the cleaved resi-
dues to other chains. The new amenable free ends generated can be  
further cross-linked with chitin or glycoproteins, thus contributing 
to the construction of new cell wall53 (Figure 2). Nonetheless, further 
analysis of the cellular distribution of different cell wall remodeling 
enzymes is needed to attain a more comprehensive understanding 
of the process.

Figure 2. Apical distribution of the cell wall biosynthetic nanomachinery. FKS-1 and CHS are transmembrane proteins that take precursors 
from the cytoplasm to incorporate them into a growing chain of β-1,3-glucan or chitin, respectively. The polysaccharide chains are extruded 
to the cell wall and remodeled by glycosylphosphatidylinositol (GPI) glycosyltransferases that hydrolyze the chains and transfer the cleaved 
residues to another chain of β-1,3-glucan or chitin. Polysaccharide chains are cross-linked to cell wall glycoproteins.
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Figure 3. Depiction of a Neurospora crassa hyphal apex and subapex with some of the components participating in polarized growth. 
Vesicles move along microtubules or actin microfilaments, helped by motor proteins, to reach the Spitzenkörper (Spk). There, vesicles 
accumulate prior to fusing to the plasma membrane via exocytosis. At the subapex, an actin collar mediates endocytosis and recycling of 
important polarity factors. Some representative organelles are shown.

The apical machinery
Decades after the discovery of the Spk in Coprinus fixed cells 
using iron-hematoxylin staining and in living hyphae of Polystictus 
versicolor by phase-contrast microscopy55,56, the pivotal role of the 
Spk in maintaining apical growth and determining hyphal growth 
direction and morphology was confirmed19. Hence, it was predicted 
that the vesicles that comprise the Spk carry cell wall biosynthetic 
enzymes50,57. This hypothesis has been proven correct in the past 
few years. In N. crassa, all CHSs (CHS-1 to CHS-7) accumulate at 
the core of the Spk58–60, whereas FKS-1, GS-1, and RGF-1 (RHO-1  
GEF) accumulate at the periphery of the Spk61–63. The localization 
pattern of CHS and the GSC in the inner and outer regions of the 
Spk corresponds to the microvesicular (chitosomes) and macrove-
sicular regions of the Spk (Figure 1B and Figure 3), revealed by 
transmission electron microscopy in N. crassa and by electron 
tomography in A. nidulans64,65. Small RAB GTPases mediate the 
traffic of vesicles. In N. crassa, YPT-1Rab1 was detected in the Spk 
microvesicular core, whereas SEC-4Rab8 and YPT-31Rab11 occupied 
the Spk macrovesicular peripheral layer, implying different regula-
tory pathways for each type of vesicle66 (Figure 1B). In A. nidu-
lans, RabCRab6 and RabORab1 were also found at the Spk, although 
their localization could not be correlated to a specific population of  
vesicles67,68. Recent evidence demonstrated that the A. nidulans GS-
1 homologue GsaA also accumulates at the outer region of the Spk69. 
Remarkably, the flippases DnfA and DnfB, which regulate phos-
pholipid asymmetry and presumably membrane bending, occupy 
the outer and inner regions of the Spk in A. nidulans, respectively, a 
finding that supports differences in the nature of the Spk secretory 
vesicles69. In contrast, Chs6, a class VII CHS in the maize pathogen 
basidiomycete U. maydis, is transported in vesicles carrying Mcs1, 

a class V CHS with an N-terminal myosin motor domain similar to 
that of myosin-570. Also, Gsc1, the U. maydis homologue of Fks1, 
is delivered in Mcs1-containing vesicles. U. maydis, however, does 
not display an Spk in any of its yeast or hyphal forms and has growth 
rates several orders of magnitude lower than those of N. crassa.

The short-distance delivery of vesicles from the Spk to the cell  
surface requires the orchestrated action of the exocyst complex, 
which tethers vesicles to the PM before their soluble N-ethylmale-
imide sensitive factor attachment protein receptor-dependent fusion 
at specific PM sites. In N. crassa, the exocyst consists of eight pro-
teins that seem to be essential for viability, except for SEC-5, whose 
loss resulted in impaired secretion and aberrant morphology71. SEC-
3 accumulates between the Spk outer layer and the PM; SEC-5,  
SEC-6, SEC-8, SEC-10, and SEC-15 accumulate as a surface cres-
cent in the apical PM; and EXO-70 and EXO-84 accumulate pri-
marily in the Spk outer layer71 (Figure 1B). Thus, in N. crassa, all 
exocyst components were excluded from the microvesicular region, 
leaving an open question about the secretion mechanism followed 
by chitosomes from the Spk to the cell surface. In the rice patho-
gen Magnaporthe oryzae, the exocyst proteins Sec5 and Exo70  
participate in an alternate exocytic pathway for cytoplasmic 
effector proteins destined to be delivered to the host cells during  
biotrophic invasion of rice72.

Of filaments and nanomotors: connecting exocytosis 
and endocytosis
A complex network of proteins organized in a variety of forms 
such as tubules, patches, filaments, rings, and scaffolds composes 
the cytoskeleton in fungal cells. Collectively, cytoskeletal elements 
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participate in shaping the hyphae, in the positioning and shuttling 
of vesicles and organelles, and in cellular division. The large cells 
of N. crassa constitute an excellent experimental system to study 
in great detail the distribution, dynamics, and function of the main 
cytoskeletal components: MTs, actin, associated proteins, molecular  
motors, and septins.

Immunolocalization studies of cryo-fixed N. crassa cells revealed 
long prominent cytoplasmic MTs distributed longitudinally along 
the axis of growth of hyphae64. Subsequently, live imaging by  
confocal laser scanning microscopy of N. crassa cells express-
ing green fluorescent protein (GFP)-tagged β-tubulin revealed with 
unprecedented detail the dynamics and three-dimensional organiza-
tion of MTs73. Often an intertwined network of helical cytoplas-
mic MTs and individual MTs grouped at times into bundles was 
observed73. Although there is no direct evidence of vesicles moving 
along MTs, cumulative observations suggest tip-directed vesicle 
traffic via an MT-based mechanism until vesicles reach the Spk, 
where a switch to the actin cytoskeleton occurs65. MTs extend to 
the hyphal apex, either terminating at the vicinity of the Spk or 
traversing it and reaching the apical PM (Figure 3). When the Spk 
is displaced from its most forward position and growth temporar-
ily ceases, a rearrangement of the long MTs into short segments 
and bundles of MTs surrounding the retracted Spk is observed and 
this supports the association suggested between the Spk (or its  
constituents) and MTs73.

In N. crassa, both plus-ends and minus-ends are present at hyphal 
tips74, indicative of MT mixed polarity. The dynamic plus-ends of 
MTs undergo rapid polymerization and depolymerization, a phe-
nomenon known as dynamic instability74. Analysis of MT dynamic 
instability in mature leading hyphae of N. crassa by total internal 
reflection fluorescence microscopy revealed very fast MT polym-
erization rates that depend on the role of molecular motors74. Lis1, 
an MT plus-end-binding protein, is involved in the regulation of the 
dynein/dynactin complex in humans75. In N. crassa, two paralogues 
of Lis1—LIS1-1 and LIS1-2—were identified in the hyphal api-
cal dome as short filaments or comet-like structures decorating the  
terminal plus-ends of the MTs76, similar to the distribution of the MT 
plus-end-binding protein MTB-3, a homologue of EB177. LIS1-1  
localization was found to be dependent on the minus-end-directed 
MT-associated motor dynein and dynactin (p150Glued)76,78. 
Importantly, the dynein-dynactin complex has a role not only in 
minus-end-directed cargo traffic but also in the organization of the  
MTs in N. crassa76.

Within the superfamily of kinesins, 10 different kinesins have been 
reported for filamentous fungi79. In N. crassa, conventional kinesin-1  
KIN-1 (NKIN) is believed to be responsible for vesicular transport 
and also nuclear, mitochondrial, and vacuolar migration80. How-
ever, an N. crassa strain expressing KIN-1-GFP displayed dispersed 
cytoplasmic fluorescence81. Microscopy approaches with a better 
temporal and spatial resolution may be needed to resolve the traffic  
of these motors. Alternatively, another unexplored kinesin could 
be responsible for vesicular traffic. Kinesin-3 NKIN2 co-localized 
with YPT-52Rab5, indicating its involvement in the transport of early 
endosomes, as has been previously observed, for kinesin-3 motors 
in U. maydis and A. nidulans81–83. The role of NKIN2 in early 

endosome transport was confirmed in Nkin2 deletion mutants, 
where endosomal movement was strongly reduced81. The  
shuttling of early endosomes in the opposite direction also depends 
on dynein81,84–86. The role of early endosomes in apical growth is 
just starting to be disclosed. Early endosomes are much more than 
mere organelles originated from endocytosis. They are intercon-
nected with other organelles of the secretory pathway and behave 
as another hub for sorting cargos (Golgi compartments have been 
traditionally considered the main sorting hub of the cell). For exam-
ple, U. maydis and A. nidulans endosomes transport peroxisomes,  
endoplasmic reticulum, lipid droplets, and mRNAs85,87,88. N. crassa 
has a peroxisome-derived organelle, the Woronin body (WB), which 
reseals membrane lesions by occluding septa89. WBs are associ-
ated with the cell cortex and the cell apex via a Leashin tether that  
promotes WB inheritance and holds it in position until signals  
from cellular damage induce release, translocation to the septal 
pore, and membrane resealing90 (Figure 3).

Motor protein rigor mutants, with a point mutation in the ATP-bind-
ing site, bind to the cytoskeletal element but cannot hydrolyze ATP, 
and this ATP-bound form is irreversibly locked to its cytoskeleton 
partner91. In N. crassa, NKIN2rigor-GFP was found to associate 
preferentially with a subpopulation of straight detyrosinated MTs, 
as reported earlier for the corresponding A. nidulans orthologue 
UncA83. Although the role of post-translational modifications in 
MTs is not totally understood, it is possible that they serve as a 
traffic signal for specific organelles. Thus, the existence of different 
populations of MTs could ensure that the tip-directed transport of 
cargo along a subpopulation of MTs remains stable during mitosis, 
when most cytoplasmic MTs are disassembled92.

Though not absolutely indispensable for polarized growth, MTs 
and MT-associated molecular motors are important for Spk stability 
and hyphal morphogenesis93. Mutations or inhibitors leading to 
MT disorganization in N. crassa cause growth defects, distorted 
hyphal morphology, and erratic Spk movement while maintaining  
polarized growth64,78. In contrast, actin is essential for hyphal polar-
ity. Direct tagging of G-actin with fluorescent proteins has not been 
possible in N. crassa. To circumvent this, several F-actin-binding 
proteins, including fimbrin (FIM), tropomyosin (TPM-1), coronin 
(CRN-1), ARP-3, and Lifeact, a 17-amino-acid peptide derived 
from S. cerevisiae Abd120p, were fluorescently tagged and imaged 
by live microscopy94–97. The Lifeact reporter uncovered different 
subpopulations of actin macromolecular structures, including rings, 
actin patches, and actin microfilaments. FIM, ARP-3, and CRN-1 
were found to be associated with patches arranged in a cortical 
ring at the hyphal subapical region (1 to 4 μm behind the growing 
tip). Although now it is widely accepted that this subapical collar 
of actin patches delimits the region of endocytosis, at the begin-
ning of the 21st century it was doubted that endocytosis occurred 
in filamentous fungi98. Endocytosis and exocytosis are spatially  
coupled. Endocytosis at the subapical collar is thought to contribute 
to the recycling of apical receptors and cortical markers98 since it 
has been proven necessary to establish polarity and to maintain api-
cal growth96,98–101. TPM-1 was identified at the core of the Spk and 
at actin cables departing from the Spk toward the subapex. Lifeact 
elucidated all forms of actin. Whereas F-actin is thought to mediate 
short-range movements, the long cables observed might serve as 
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tracks along which myosin motors transport secretory vesicles to 
and within the apex94 (Figure 3). Although we focus on the hyphal 
apex in this review, it is noteworthy to point out that prior to the 
formation of the contractile actomyosin ring (CAR) at septation  
sites, a septal actomyosin tangle (SAT) was observed102.

Myosins are another superfamily of molecular motors that move 
along actin microfilaments. In N. crassa, MYO-1 is a compo-
nent of the actin subapical collar and is thought to have a role in  
endocytosis103. MYO-2 is involved mainly in the formation of the 
SAT and CAR during cytokinesis102,104. MYO-5, found occupying 
all the Spk61 (Figure 1B), is thought to be involved in exocytosis 
and hyphal morphogenesis. The MYO-5 homologue in A. nidu-
lans, MyoE, is needed for the accumulation of RabERab11 post-Golgi 
carriers at the tip105.

Finally, septins are cytoskeletal components with GTP and phosph-
oinositide-binding domains106. N. crassa septins CDC-3, CDC-10, 
CDC-11, CDC-12, and ASP-1 accumulate at or close to the PM in 
germinating conidia at sites of symmetry breakage (Figure 1A)107. 
They are suggested to constrain and corral the polarity machinery 
to the apical PM, acting as a molecular boundary between the apex 
and the region behind107.

Future directions
There are several unresolved questions that need to be addressed to 
further develop a holistic view of N. crassa hyphal morphogenesis. 
We need to do the following: (a) identify the real triggers of polar-
ity; (b) generate mathematical models to test whether the spatial 
segregation of the vesicles at the Spk provides any morphogenetic  
advantage; (c) elucidate the interaction, if any, between the MT 
and actin cytoskeletons; (d) investigate the role of the predicted 
hypothetical proteins encoded in the N. crassa genome in polar-
ity establishment and hyphal morphogenesis; (e) discern whether 
endocytosis occurs at sites other than the subapical collar, where 
actin patches have also been found; (f) determine which enzymes 

are secreted by a non-conventional pathway depending on mRNA 
transport; and (g) investigate, within the hyphal apical compart-
ment, which nuclei are responding to external signals sensed at the 
growing tip.

Something to take into consideration is that some of the findings 
obtained from research in N. crassa, while conserved among sev-
eral fungal taxa, should not be extrapolated to all members of the 
fungal kingdom. There are innate differences at the subcellular level 
among fungal species that may reflect their evolutionary distance.
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