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Simple Summary: The correct diagnosis of different salivary gland carcinomas is important for
a prognosis. This diagnosis is imprecise if it is based only on clinical symptoms and histological
methods. Mass spectrometry imaging can provide information about the molecular composition of
sample tissues. Using a deep-learning method, we analyzed the mass spectrometry imaging data of
25 patients. Using this workflow we could accurately predict the tumor type in each patient sample.

Abstract: Salivary gland carcinomas (SGC) are a heterogeneous group of tumors. The prognosis
varies strongly according to its type, and even the distinction between benign and malign tumor
is challenging. Adenoid cystic carcinoma (AdCy) is one subgroup of SGCs that is prone to late
metastasis. This makes accurate tumor subtyping an important task. Matrix-assisted laser desorp-
tion/ionization (MALDI) imaging is a label-free technique capable of providing spatially resolved
information about the abundance of biomolecules according to their mass-to-charge ratio. We ana-
lyzed tissue micro arrays (TMAs) of 25 patients (including six different SGC subtypes and a healthy
control group of six patients) with high mass resolution MALDI imaging using a 12-Tesla magnetic
resonance mass spectrometer. The high mass resolution allowed us to accurately detect single masses,
with strong contributions to each class prediction. To address the added complexity created by the
high mass resolution and multiple classes, we propose a deep-learning model. We showed that
our deep-learning model provides a per-class classification accuracy of greater than 80% with little
preprocessing. Based on this classification, we employed methods of explainable artificial intelligence
(AI) to gain further insights into the spectrometric features of AdCys.

Keywords: MALDI imaging; deep learning; salivary gland carcinomas; explainable artificial intelligence

1. Introduction

Adenoid cystic carcinomas (AdCys) are a rare and heterogenous subgroup of head
and neck carcinomas. The combination of rare occurrence and heterogeneity even between
two samples of the same tumor subtype makes histological differentiation from other types
of head and neck cancers challenging [1].

Previous studies have shown different levels of protein expressions in different types
of salivary gland carcinomas (SGC) and MALDI imaging has successfully been used to
confirm those results [2,3].

As a label-free imaging technique, MALDI imaging allows for the spatially resolved
measurement of biomolecules in thin tissue sections. It has been demonstrated to be a useful
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tool for cancer research for the classification of different tumor species and the discovery of
potential tumor marker proteins [4,5]

In combination with modern data analysis pipelines, MALDI imaging can be used
for binary tumor classification as shown in [6–8]. Recent results attained with more ad-
vanced machine learning show the applicability of MALDI imaging for the histologically
challenging subtyping of different epithelial ovarian cancers [9].

One of the most successful modern machine learning approaches is deep learning [10].
Deep learning describes a class of artificial neural networks with multiple hidden layers that
are used to solve a multitude of problems ranging from scene recognition for self-driving
cars to medical applications such as tumor classification and segmentation in magnetic
resonance imaging [11–13]. A detailed overview of deep learning in medical imaging is given
in [14]. The type of artificial neural networks most commonly used in medical image and
signal processing tasks is convolutional neural networks (CNNs) [15]. With the increasing
amount of labelled data available, this type of network has been used to achieve state-of-the-
art performance in numerous tasks, such as image classification, speech recognition, and
scene labeling [16]. In some medical tasks, such as the detection of breast cancer metastasis,
CNN-based machine learning approaches already outperform human experts [17], [18] and
show promising results in the classification of skin diseases [19].

With deep neural networks being used for critical decision-making in fields such as
the aforementioned self-driving vehicles and tumor detection, there is a new need for
understanding and interpreting the results of such algorithms. In recent years this goal has
been worked toward by research in the field of explainable artificial intelligence (XAI) [20].

With this study, we aim to show that high mass resolution MALDI imaging supple-
mented with deep learning can be used to address the need to differentiate AdCys, which
arise in the salivary gland from other types of SGCs. Additionally, we employ methods
of explainable AI to identify masses which are significant for the detection of AdCys and
match them to possible proteins. The spatially resolved nature of MALDI imaging allows
us to compare the mass distributions with other histological methods.

To our knowledge, this approach has for the first time succeeded in performing
an automated deep-learning-based classification of AdCys in comparison to other SGC
subtypes. Since our analysis is based on MALDI-imaging and therefore includes a spatial
component, we were able to analyze our results using methods of XAI and match them
with histopathological insights.

2. Materials and Methods
2.1. TMA Preparation

Nineteen SGC samples (for clinicopathological data see Table S1) from previously
created tissue microarrays (TMAs) were included in the study. Samples were selected and
reviewed by two pathologists with special expertise in the field as previously described
(PMID: 34378164). Briefly, primary SGC FFPE blocks were retrieved from the archives
of the Institute of Pathology at the University Hospital of Cologne. All diagnoses were
critically reviewed using a panel of IHC and FISH tests (PMID: 34378164) before inclusion
in the study. Four tissue cylinders with a diameter of 1.2 mm per case were included in the
TMA. Additionally, we included tonsil and appendix samples from six healthy patients,
which served as a technical control (Table 1). Handling of patient material and data were
in accordance with the ethical standards of the University of Cologne and the Helsinki
Declaration of 1975 and its later amendments. Patients gave their written informed consent
to participation.
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Table 1. Patient and sample overview.

Type No. Patients No. Cores

Secretory carcinomas (Sec) 1 3

Salivary duct carcinoma (SaDu) 1 4

Mucoepidermoid carcinoma (MuEp) 4 16

Adenocarcinoma not otherwise specified (Anos) 2 8

Adenoid cystic carcinoma (AdCy) 6 24

Acinic cell carcinomas (Acin) 5 20

Control (human tonsil and appendix) 6 6

2.2. Sample Preparation

TMA sections (6 µm) were mounted on indium tin oxide (ITO)-coated glass slides.
Sample preparation was performed using SunTissuePrep (SunChrom, Friedrichsdorf, Ger-
many). The protocol was consistent with previously published protocols [21]. In brief, the
subsequent steps were performed: deparaffinization, washing with xylene and ethanol,
pH conditioning, and antigen retrieval. For on-tissue enzyme digestion, a trypsin solution
of 2 µg/µL trypsin (Promega Gold) in 50 mM AMBIC buffer and 10% ACN was used.
As the spraying device, the SunCollect System (SunChrom, Friedrichsdorf, Germany) was
used. Digestion was performed with the SunDigest chamber (SunChrom, Friedrichsdorf,
Germany) in basic mode. The matrix used for the experiments consisted of 10 mg/mL
CHCA in 60% ACN and 0.2% TFA and was applied with the SunCollect.

2.3. MALDI Measurement

A dual source ESI/MALDI-FT-ICR mass spectrometer equipped with a dynamically
harmonized analyzer cell (solariX XR, Bruker Daltonics Inc., Billerica, MA, USA) and a
12 T refrigerated actively shielded superconducting magnet (Bruker Biospin, Wissembourg,
France) instrument was used for MALDI imaging. The instrument was operated in positive
ionization, broadband mode (mass range 590–4000 m/z) with a 1 MW time domain (FID
length: 1.677 s; mass resolution at m/z 1047: ~175,000). The measurement method was
linearly calibrated with the Peptide Mix II (Bruker Daltonics) between 700 and 3200 Da
(rms: 0.188 ppm, n = 8). The laser settings were optimized for spectral quality and peak
magnitude (minimum focus, 9% laser power, 50 shots @ 2 kHz). MALDI imaging data were
acquired using FlexImaging version 5.0 and ftmsControl version 2.3.0 (Bruker Daltonics)
with a raster size of 50 µm.

2.4. Data Preprocessing

Using the SCiLS Lab Software (Bruker Daltonik, Bremen, Germany) we re-binned the
individual spectra into equidistant 0.3 mDa bins and a mass range of 590 m/z–2000 m/z,
which led to 217,984 data points per pixel. We performed no baseline removal or global
normalization but normalized the intensities for each pixel to a range between 0 and 1.

With the co-registered microscopy images, we excluded all pixels that were part of a
core but contained no tissue.

We also used the SCiLS Lab Software to find the 500 peaks best correlated with the
highest pure matrix peak and created a dataset where all values in the range of 0.02 Da of
these peaks were set to zero.

2.5. Deep-Learning-Based Classification

For the deep-learning task of tumor subtyping we treated each individual spectrum
which corresponded to one measured spot as independent measurements with a single
label. As described by [22], these individual spectra possess similarities to images and can
be processed using many of the same techniques proposed for image classification tasks.
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Spectra are also similar to time-series data. Convolutional neural networks excel at
solving practical problems on both types of datasets [10].

We evaluated multiple different neural network architectures, including multiple
combinations of fully connected and convolutional layers paired with pooling layers and
leaky rectified linear units [23] as activation function. All networks were implemented in
Pytorch [24] and the training was performed using the Adam optimizer at a learning rate
of 0.001. All calculations were performed on a single Nvidia GeForce RTX 2080 Ti.

We evaluated all network architectures using 5-fold -cross-validation with random
splits that aimed to preserve the ratio between the eight classes.

2.6. Deep Lift

DeepLift is one method of interpreting the results of a deep neural network, which
allow for scoring the negative and positive contributions of each input feature to the predic-
tions of a specific label. For a more detailed explanation we refer to the original work [25].
We applied this method to our classification model to identify potential discriminative
masses for each tumor subtype. We calculated the 10 input features with the highest positive
contribution for each class.

2.7. Clustering with densMAP

To visualize the results of the DeepLift analysis, we performed a nonlinear supervised
dimensionality reduction using densMAP [26]. This method allowed us to visualize the
high dimensional data points in our dataset. It is based on uniform manifold approximation
and projection (UMAP) [27] but learns to preserve and takes into account local density
in the input space. As features we used the masses calculated in 2.6, and reduced the
dimensionality to 2.

2.8. Comparison with Microscopy Images and Histological Assessment

Finally, we visualized the distribution of the most significant predicted masses for
the class AdCy. Using the SCiLS Lab Software, we overlaid this distribution onto a mi-
croscopy image of a core that contained AdCy tissue as well as healthy connective tissue.
This allowed us to understand if the algorithm picked tumor-specific features or based its
assessment on other characteristics of the sample.

3. Results
3.1. Network Architecture

On a small subset of the data, we observed the best performance using a convolutional
neural net with six convolutional layers, each followed by a max pooling layer, and a final
fully connected layer. We used this network architecture for all following experiments.

3.2. Classification Results

The final per-class classification accuracy, averaged over all test sets, is presented in
Table 2. The highest per-class accuracy was achieved on the control spot, which contained
no tissue and was therefore the most homogenous class. The per-class accuracy of all SGC
subtypes ranged from 83% to 87%. The lowest accuracy was achieved on the class Anos,
which consists of multiple different not-further- specified adenocarcinomas of the salivary
gland and shows a high level of heterogeneity.
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Table 2. Per-class accuracy of our deep-learning approach averaged on all test sets.

Class Per Class Accuracy in Percent

Acin 85.288
AdCy 83.96
Anos 83.262

Control 78.782
Matrix 95.476
MuEp 87.032
SaDu 84.35
Sec 87.288

In Figure 1, we visualize the classification results in the original pixel layout. We show
correctly classified spectra represented as pixels in green and mark misclassifications in
red. This visually demonstrates that the classification accuracy did not differ between
different tumor subtypes or patients but that there were individual cores with higher
percentages of misclassified spectra. We did not observe any correlation of the level of
correctly classified spectra with histopathological features. We also evaluated the per-core
accuracy by choosing the majority label for all pixels in one core. This resulted in 100%
correct core-wise classification.
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Figure 1. Combined visualization of 5-fold cross-validation showing the results on each test set.
Green pixels show correctly classified spectra, red pixels show misclassifications. AdCy: adenoid
cystic carcinoma; MuEp: mucoepidermoid carcinoma; SaDu: salivary duct carcinoma; Acin: acinic
cell carcinoma; Sec: secretory carcinoma; ANOS: adenocarcinoma not-otherwise-specified.

3.3. Predicted Masses

We analyzed the contribution of each mass to the prediction of each class using
DeepLift. We then focused on the top ten contributions per class and further analyzed our
dataset in regard to this list of masses. We filtered the resulting list of 80 masses (10 masses
per class with 8 classes, see Table S2) for duplicates and found that only 64 out of 80 masses
appeared only in one tumor entity. The subset that contained duplicates can be matched to
a measurement artifact. Therefore, we excluded this set from further analysis.

3.4. Clustering with densMAP

In Figure 2 we plot the results of the dimensionality reduction using densMAP. The
three SGC entities with the highest number of samples and therefore spectra (Acin, AdCy
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and MuEp) each show one large cluster containing the majority of samples. All three form
additional smaller clusters. Further evaluation shows that these additional clusters all
predominantly contain samples from one core. In the Supplementary Materials we provide
an interactive version of the above plot in which each point is mapped to its core. For
the other SGC subtypes there is less of a clear clustering. This is expected for Anos, since
these are a heterogenous group of SGCs. For the Sec, the class with the lowest number
of samples, we observed strong inter-core differences. As a result, we get three distinct
clusters, one for each Sec core.
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Figure 2. Results of supervised densMAP clustering performed on the dataset. For each pixel
the top ten significant peaks per class according to the DeepLift results were used as features.
An interactive version of this graph, where each pixel is shown with the core it belongs to, can be
found in the supplementary section. AdCy: adenoid cystic carcinoma; MuEp: mucoepidermoid
carcinoma; SaDu: salivary duct carcinoma; Acin: acinic cell carcinoma; Sec: secretory carcinoma;
ANOS: adenocarcinoma not-otherwise-specified.

3.5. Spatial Distribution and Comparison with Microscopic Imaging

We compared the distribution of the mass peak with the strongest positive contribution
for the class AdCy to a microscopic view of a core that contained tumor tissue as well as
healthy connective tissue (Figure 3). This shows a high relative intensity in the tumor area
and allows a differentiation between the two tissue types. With this result we show that the
algorithm is picking up tumor-specific features.
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Figure 3. The distribution of a representative mass peak for AdCy in one TMA core and histolog-
ical annotations. (A) Original H&E scan; (B) H&E scan overlayed with histopathological annota-
tions (Green: Healthy connective tissue. Red: AdCy tumor tissue); (C) Relative intensity of mass
845.47321 m/z ± 3 mDa.

4. Discussion

In this study we used high-resolution MALDI imaging data from a 12-Tesla instrument
for a deep-learning approach. The aim was to provide a high classification accuracy on a
challenging dataset consisting of six different SGC tumor subtypes, including AdCy, and
healthy control samples.

Until now, high mass resolution MALDI imaging has been used to discriminate be-
tween different pathological regions in SGCs [28] but not to differentiate between different
subtypes of SGCs. In a similar way, deep-learning approaches to high-resolution MALDI
imaging are, to the best of our knowledge, limited to binary classification tasks on mouse
models [29], and had not been applied before to tumor subtyping of SGCs.

With the aid of deep learning, we achieved above 80 percent per pixel classification
accuracy on all tumor subtypes and a perfect whole-TMA core classification.

To get the most benefit out of the high mass resolution, we further applied techniques
of explainable AI. This allowed us to interpret the results and predict masses that are most
significant in predicting AdCy and other SGC entities. In this study, we applied DeepLift
to get a list of ten masses per class with the strongest positive influence on the correct
classification. This provided a better understanding of the results from a black-box-like
deep-learning algorithm. Even before using these results for further experiments, this led
us to discover a measurement artifact which allowed us to exclude 16 masses from further
data analysis.

Using the predicted masses as features for a nonlinear dimensionality reduction
method (NLDR) provides an extra layer of interpretability to the otherwise opaque clas-
sification approach. NLDR methods such as UMAP are a useful tool to visualize high-
dimensional data [30]. We applied densMAP, an augmented version of UMAP which has
shown to provide better clustering with regard to the local density of the samples in the
original space. The resulting plot shows that the majority of the data points originate
from the three most prevalent SGC subtypes in our dataset, forming one large cluster each.
A closer inspection reveals that there are single data points of each class appearing in
clusters predominantly belonging to another class. This is in line with the high but not
perfect classification accuracy of our deep-learning model. By investigating the origin of
data points forming the smaller clusters we found that they almost exclusively represented
single cores (interactive Figure S1).

In the final step of our analysis, we mapped the mass with the most significant positive
contribution to the class AdCy to microscopic images and histopathological annotations.
Specifically, we validated our results by analyzing the distribution of this mass on a core
that contained AdCy and healthy connective tissue. Since our dataset was composed almost
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exclusively of tumor tissue, this core presents an edge case. The fact that we observed a distinct
distribution only in the tumor tissue of the core validates our approach. Additionally, this
allows us to confirm the applicability of our deep-learning algorithm in the presence of
small amounts of label noise (we incorrectly labelled the healthy tissue in this core as
AdCy). This is consistent with the literature on this topic [31] and supports our core-wise
labelling strategy.

While we were able to interpret our classification results and get significant masses for
the prediction of different SGC subtypes, we could not reliably match those experimental
finds to specific proteins. Further work needs to be done in this protein identification task.
Currently available technical and algorithmical solutions and absent dedicated databases
do not provide satisfactory and verifiable results in this regard.

In contrast to our approach in which we searched for the presence of masses, an-
other option for further study lies in the identification of masses with significant negative
predictive power for certain SGC subtypes.

Regarding the applicability to a clinical setting, a recently published work shows
that machine learning algorithms trained on MALDI imaging measurement of TMAs can
successfully be transferred to classification tasks on whole sections [32]. While these results
were obtained with lung cancer patients, it seems likely that these results hold true for the
tissue types and classification tasks presented in our study, since the experimental setup
shows strong similarities and in both studies the task is cancer subtyping.

5. Conclusions

We were able to show that high mass resolution MALDI imaging in combination with
deep learning can be used for tumor subtyping in SGCs. With methods of explainable AI
and data visualization strategies based on nonlinear dimensionality reduction, we gained
additional insights, for example into the homogeneity of the AdCy proteome among
different patients. Additionally we were able to provide an intuitive understanding of deep-
learning results by visualization of tumor-specific features combined with histopathological
images. These allow us to verify the plausibility of our results and propose specific masses
as a basis for further research into marker identification. Given the likely transferability
of our TMA-based results, we see the potential for MALDI imaging as an additional
diagnostic tool for the demanding task of SGC subtyping on the one hand and a general
approach for other cancer entities on the other. To reach this goal, the following points
have to be addressed: First, results should be evaluated in a larger independent tumor
cohort. Secondly, the “black box” of deep learning can be further opened by methods of
explainable AI for a better understanding of carcinogenesis, and in the long run enable
better diagnostic and treatment regimes for cancers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14174342/s1, Table S1: Clinicopathological data; Table S2:
Most significant masses for each tumor subclass; Interactive Figure S1: Interactive dense map
clustering viewable in web browser, created using [33].
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