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Abstract

Background

Hemorrhagic fever with renal syndrome (HFRS) is a zoonosis caused by hantavirus

(belongs to Hantaviridae family). A large amount of HFRS cases occur in China, especially

in the Heilongjiang Province, raising great concerns regarding public health. The distribution

of these cases across space-time often exhibits highly heterogeneous characteristics.

Hence, it is widely recognized that the improved mapping of heterogeneous HFRS distribu-

tions and the quantitative assessment of the space-time disease transition patterns can

advance considerably the detection, prevention and control of epidemic outbreaks.

Methods

A synthesis of space-time mapping and probabilistic logic is proposed to study the distribu-

tion of monthly HFRS population-standardized incidences in Heilongjiang province during

the period 2005–2013. We introduce a class-dependent Bayesian maximum entropy (cd-

BME) mapping method dividing the original dataset into discrete incidence classes that

overcome data heterogeneity and skewness effects and can produce space-time HFRS

incidence estimates together with their estimation accuracy. A ten-fold cross validation anal-

ysis is conducted to evaluate the performance of the proposed cd-BME implementation

compared to the standard class-independent BME implementation. Incidence maps gener-

ated by cd-BME are used to study the spatiotemporal HFRS spread patterns. Further, the

spatiotemporal dependence of HFRS incidences are measured in terms of probability logic

indicators that link class-dependent HFRS incidences at different space-time points. These

indicators convey useful complementary information regarding intraclass and interclass

relationships, such as the change in HFRS transition probabilities between different inci-

dence classes with increasing geographical distance and time separation.

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007091 January 31, 2019 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: He J, Christakos G, Wu J, Jankowski P,

Langousis A, Wang Y, et al. (2019) Probabilistic

logic analysis of the highly heterogeneous

spatiotemporal HFRS incidence distribution in

Heilongjiang province (China) during 2005-2013.

PLoS Negl Trop Dis 13(1): e0007091. https://doi.

org/10.1371/journal.pntd.0007091

Editor: Justin V. Remais, University of California

Berkeley, UNITED STATES

Received: July 26, 2018

Accepted: December 18, 2018

Published: January 31, 2019

Copyright: © 2019 He et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Patient data are

protected by the China CDC and are unsuitable for

public sharing. The HFRS data is not allowed to be

publicly shared due to local infection disease law.

Interested parties can apply for the data by

contacting the Data-center of China Public Health

Science (http://www.phsciencedata.cn/Share/ky_

sjml.jsp?id=59761d3e-ca3c-4c65-a6a5-

67be1d2fb692) or email data@chinacdc.cn.

http://orcid.org/0000-0003-1873-3125
http://orcid.org/0000-0002-1865-5764
http://orcid.org/0000-0002-1785-4403
https://doi.org/10.1371/journal.pntd.0007091
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007091&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007091&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007091&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007091&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007091&domain=pdf&date_stamp=2019-02-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0007091&domain=pdf&date_stamp=2019-02-19
https://doi.org/10.1371/journal.pntd.0007091
https://doi.org/10.1371/journal.pntd.0007091
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=59761d3e-ca3c-4c65-a6a5-67be1d2fb692
http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=59761d3e-ca3c-4c65-a6a5-67be1d2fb692
http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=59761d3e-ca3c-4c65-a6a5-67be1d2fb692
mailto:data@chinacdc.cn


Results

Each HFRS class exhibited a distinct space-time variation structure in terms of its varying

covariance parameters (shape, sill and correlation ranges). Given the heterogeneous fea-

tures of the HFRS dataset, the cd-BME implementation demonstrated an improved ability to

capture these features compared to the standard implementation (e.g., mean absolute

error: 0.19 vs. 0.43 cases/105 capita) demonstrating a point outbreak character at high inci-

dence levels and a non-point spread character at low levels. Intraclass HFRS variations

were found to be considerably different than interclass HFRS variations. Certain incidence

classes occurred frequently near one class but were rarely found adjacent to other classes.

Different classes may share common boundaries or they may be surrounded completely by

another class. The HFRS class 0–68.5% was the most dominant in the Heilongjiang prov-

ince (covering more than 2/3 of the total area). The probabilities that certain incidence clas-

ses occur next to other classes were used to estimate the transitions between HFRS

classes. Moreover, such probabilities described the dependency pattern of the space-time

arrangement of HFRS patches occupied by the incidence classes. The HFRS transition

probabilities also suggested the presence of both positive and negative relations among the

main classes. The HFRS indicator plots offer complementary visualizations of the varying

probabilities of transition between incidence classes, and so they describe the dependency

pattern of the space-time arrangement of the HFRS patches occupied by the different

classes.

Conclusions

The cd-BME method combined with probabilistic logic indicators offer an accurate and infor-

mative quantitative representation of the heterogeneous HFRS incidences in the space-

time domain, and the results thus obtained can be interpreted readily. The same methodo-

logical combination could also be used in the spatiotemporal modeling and prediction of

other epidemics under similar circumstances.

Author summary

Heilongjiang Province reported the largest number of HFRS cases in China. Previous

studies focused on identifying the severe HFRS outbreak regions, exploring the relative

impact of environmental factors, forecasting HFRS cases etc. However, the study of the

spatiotemporal spread dynamics and patterns of HFRS is still lacking, which is the focus

of the present study. This study proposed a novel mapping technique (i.e., class-depen-

dent Bayesian Maximum Entropy, cd-BME) for studying the distribution of HFRS, over-

coming the highly heterogeneous features of HFRS data; and, probabilistic logic notions

(stochastic indicators) were employed to study the spatiotemporal dependency of HFRS

incidence and draw conclusions regarding the HFRS spread under conditions of uncer-

tainty. By dividing the original HFRS data into four classes in terms of percentiles, the cd-

BME exhibited better performance in mapping HFRS distribution than the standard

(class-independent) BME technique and the mainstream inverse distance technique.

Regarding the maps of HFRS distribution, the point outbreak character dominated the

HFRS spread at high incidence levels, whereas the lowest incidence level covered more
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than 2/3 of Heilongjiang Province. Certain HFRS incidence generally occurred between

intraclass or neighbor classes. The probabilities of HFRS transition between incidence

classes with various spatial distances and temporal instants can be found in the HFRS

indicator plots. The above comprehensive information can allow a better understanding

of the spatiotemporal HFRS spread mechanisms and further improve HFRS decision-

making, management and control.

Introduction

The first cases of hemorrhagic fever with renal syndrome (HFRS) were reported in northeast-

ern China in the early 1930s [1]. During the past seven decades, this rodent-borne zoonosis,

caused by Hantavirus, has been spreading southwards to other parts of China. Currently, 31

provinces, autonomous regions, and metropolitan areas of mainland China, are exposed to sig-

nificant health risks due to this infectious disease. In particular, the reported HFRS cases corre-

spond to approximately 90% of all global number of cases [2, 3]. Specifically, the Hantaan
virus (HTNV) and the Seoul virus (SEOV), hosted by Apodemus agrarius and Rattus norvegi-
cus, respectively, are the two predominant sources of HFRS in China (see, e.g., [1, 4, 5]). The

hantavirus is transmitted from rodents to humans through inhalation of aerosolized excreta

(such as urine and saliva) or direct contact [6]. Infected human specimens suffer from fever,

headache, abdominal pain, insufficient renal function, and hemorrhagic episodes [7, 8]. For

the period 2004–2008, most HFRS cases reported in China concerned young and middle-age

farmers [9] with case fatality rate (CFR) 1.17%, and females experiencing higher CFRs than

males in the age groups of 20–39 and>50 years [10]. Also HFRS cases in males were more

than three times higher than those reported in females. Evidently, HFRS poses a serious threat

to public health in China.

Previous HFRS studies have focused on different aspects of the epidemic, such as the fol-

lowing cases:

1. Identification of regions with severe HFRS outbreaks. Zhang et al. [2], e.g., used spatial

autocorrelation, local indicators of spatial association, and Kulldorff’s space-time scan sta-

tistic, to identify distinct cluster areas of outbreak episodes in northeastern, central and

eastern China. Similarly, Wu et al. [11] applied cluster analysis, temporal cluster analysis,

and space-time cluster analysis, to identify various epidemic clusters in Liaoning Province

of China (including a primary cluster in the western part of the province and two secondary

clusters in its eastern part).

2. Quantitative analysis of the impact of physiographic characteristics and environmental var-

iables on HFRS population-standardized incidences. Yan et al. [12], e.g., employed a multi-

variate logistic regression model to study the relationship between HFRS incidence and

various landscape and environmental elements. The study concluded that elevation, Nor-

malized Difference Vegetation Index (NDVI), precipitation, annual cumulative air temper-

ature, semihydromorhic soils, timber forests and orchards, were closely related to HFRS

incidence. In a more recent study, Li et al. [13] applied a geographically weighted regression

model to Chinese data during the period 2005–2009, and concluded that temperature, pre-

cipitation, humidity, NDVI, land use and elevation significantly impacted the spatiotempo-

ral heterogeneity of HFRS incidences. Also, Tian et al. [14] and He et al. [15, 16] used

wavelet analysis to study how the dynamics of HFRS are linked to rainfall, temperature,

rodents’ density and the multivariate El Niño-Southern Oscillation (ENSO) index.

Probabilistic logic analysis of the highly heterogeneous HFRS incidence distribution
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3. HFRS incidence forecasting. Liu et al. [17] and Li et al. [18] successfully applied autoregres-

sive integrated moving average (ARIMA) and seasonal ARIMA models to produce forecasts

of HFRS in China and Heilongjiang Province, respectively. Moreover, seasonal ARIMA

models with exogenous variables (SARIMAX) were also developed for forecasting HFRS in

four counties with severe HFRS outbreaks [19].

4. Clinical manifestation case studies. For example, Zhang et al. [20] compared various clinical

indices involving 152 patients in Heilongjiang Province, and showed that SEOV infections

are milder and less typical than those caused by HTNV.

While, as described above, a significant level of understanding has been reached regarding

the specific characteristics of HFRS and its linkage to physiographic variables, its dynamics

and associated spatiotemporal spread patterns remain mostly unexplored. The present work

aims at bridging this gap, by using the spatiotemporal Bayesian Maximum Entropy theory

(BME) to develop a fully probabilistic approach that allows a rigorous quantitative representa-

tion of HFRS population-standardized incidences in the space-time domain (BME belongs to

the field of modern spatiotemporal geostatistics, [21, 22]). At this point we notice that BME

has been successfully applied in the study of several infectious diseases, such as syphilis, hand

food and mouth disease, influenza, dengue fever, and Black death [23–28]. Our study area is

the Heilongjiang Province, which experiences the highest HFRS population-standardized inci-

dences in China [2, 12, 18], caused by both HTNV and SEOV [20]. In the Heilongjiang case

study, the main advantage of the proposed BME-based approach is that it can account for cer-

tain crucial aspects of space-time HFRS spread, as follows:

i) Spatiotemporal evolution: The proposed approach not only accounts for the fact that, as

is the case with all infectious diseases, the spatiotemporal HFRS evolution can be influ-

enced by several environmental factors, but also for the fact that, as a natural phenome-

non, the HFRS spread follows a propagation law with the number of human infections

being closely related to human-rodents interactions. In this twofold phenomenological

context, when a core area is formed during the disease outbreak, and as time advances,

the disease spreads radially from the core center in all directions. The accurate characteri-

zation of the spatiotemporal HFRS spread pattern is of essence, and the thus acquired

knowledge can be integrated with other information sources (about the disease and its

environment) to improve public health management through prevention and control.

ii) Incidence heterogeneity: A crucial observation to be accounted by the proposed approach

is that the HFRS infection level varies in a heterogeneous manner across space-time,

which means that the adequate distinction between incidence classes can play a signifi-

cant role in the accurate mapping and risk assessment of regional disease spread during

the time period of interest. Furthermore, since infectious disease outbreaks can occur in

very short time periods and infect a large number of individuals, and given the highly var-

iable character of disease attributes, it is difficult (both theoretically and practically) and

often unrealistic to model simultaneously both the extreme values and the regular values

of population-standardized incidences. In other words, a model that considers the distri-

bution of all incidence levels as a single (super) class can neither adequately represent nor

fully explain the spread pattern of a specific incidence class, because of smoothing effects

and the existence of extreme (high/low) incidence levels in the same setting.

iii) Class transmission and propagation: The probabilistic assessment of the HFRS transmis-

sion and propagation patterns among various incidence classes is currently lacking (e.g.,

the probability of HFRS transmitting from one incidence class to another class at various

Probabilistic logic analysis of the highly heterogeneous HFRS incidence distribution
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spatial distances and time separations apart). Yet such an assessment could provide valu-

able scientific support for HFRS monitoring and control purposes. Accordingly, the ade-

quate representation of the spatiotemporal distributions and operations (transmissions,

propagations) between of distinct incidence classes is an important task of any quantita-

tive HFRS study.

In view of the above considerations i-iii, the three main objectives of the present work are

as follows:

1. To overcome data-related methodological and practical difficulties (such as highly hetero-

geneous data distributions across space-time) by using a cd-BME method that divides the

infectious disease dataset into discrete classes (the incidence classes were selected based on

variability reduction and mapping coverage criteria).

2. To generate HFRS distribution maps that account for the real fact that the intraclass and

interclass incidence data is subject to uncertainty, and to show that the cd-BME method

can produce more accurate incidence estimates at locations and times where no HFRS rec-

ords are available than standard (class-independent) mapping techniques.

3. To introduce practical and easily interpretable indicators of spatiotemporal dependency

based on probability logic [29]. These indicators exhibit different yet complementary kinds

of HFRS dependence (e.g., each indicator captures a different feature of HFRS transition

from one class to another so that the combined study of the indicators can result to an

improved assessment of HFRS distribution).

Materials and methods

Ethics statement

The present study was approved by (a) the Chinese Center for Disease Control and Preven-

tion, and (b) the Institute of Disease Control and Prevention. All HFRS data were anony-

mously analyzed.

The HFRS data set and its categorization

During the period January 2005–December 2013, China’s Information System for Disease

Control and Prevention (CISDCP) recorded HFRS cases at 130 counties of the Heilongjiang

province, with an approximate area of 473 thousand km2, and population of 38.35 million.

During this period, the monthly rainfall, temperature and relative humidity ranged from 0.23

to 221.4 mm, -23.12 to 23.12 ˚C and 38.77 to 83.74%, respectively. The Heilongjiang Province

has 38.98, 26.29 and 16.92% croplands, mixed forests and cropland/natural vegetation mosaic,

respectively [15]. In addition, the GDP of Heilongjiang Province increased from 551.4 to

1445.5 billion yuan. The monthly HFRS case data were population-standardized using the cor-

responding demographic data obtained from the National Bureau of Statistics of China. Fig 1

shows the spatial distribution of HFRS population-standardized incidences during the entire

study period (i.e., January 2005–December 2013) in the 130 counties of the Heilongjiang Prov-

ince. The maps in the current study were all made by using the ArcGIS 10.2 software.

The space-time distribution of population-standardized HFRS incidences in Heilongjiang

province during the period 2005–2013 are quantitatively represented using a spatiotemporal

random field model[22], X(p), where p = (s, t) denotes the spatial coordinate s = (s1, s2) and

time instant t (S1 Text). Also, Im ¼ ½z
m
l ; z

m
u � and In ¼ ½z

n
l ; z

n
u� denote the selected HFRS inci-

dence interval classes at the space-time points p = (s, t) and p0 = (s0, t0), respectively, where the

Probabilistic logic analysis of the highly heterogeneous HFRS incidence distribution
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subscripts m, n = 1, 2, 3, 4 are the class identification numbers, and the subscripts l and u
denote the lower and upper limit, respectively, of each class interval. Then, these class-based

(categorical) HFRS incidences can be denoted as X(p) 2 Im, which means that the HFRS inci-

dence at point p belongs to the interval class Im, or X(p0) 2 In, which means that the incidence

at point p0 belongs to the class In (S2 Text). Given the high spatiotemporal variability of HFRS

incidence values during the period 2005–2013 (the skewness is 6.265 and the kurtosis is

64.007), a twofold methodological choice was made seeking both variability reduction, space-

time points coverage and mapping accuracy (S3 Text). In particular:

1. The data was log-transformed by means of Y(p) = log10(X(p) + 1). The additional advantage

of this equation being that it can also account for zero values (such zero values are

Fig 1. Population-standardized HFRS incidences for the period 2005–2013 (i.e. total incidences/105 capita), in the 130 counties

of the Heilongjiang Province in China (dots correspond to country centroids).

https://doi.org/10.1371/journal.pntd.0007091.g001

Table 1. The four HFRS incidence classes and their descriptive statistics.

Class (Im) no. Percentile Original dataset X(p) Log-Transformed data set Y(p)

Lower limit (z
m
l ) Upper limit (z

m
u ) Lower limit Upper limit

1 (I1) 0–68.5 0 (z
1

l ) 0.3576 (z
1

u) 0 0.1328

2 (I2) 68.5–79 0.3577 (z
2

l ) 0.6830 (z
2

u) 0.1329 0.2261

3 (I3) 79–89.5 0.6831 (z
3

l ) 1.5277 (z
3

u) 0.2262 0.4027

4 (I4) 89.5–100 1.5278 (z
4

l ) 26.4884 (z
4

u) 0.4032 1.4439

Note: Units of min and max of original data are cases/105 capita.

https://doi.org/10.1371/journal.pntd.0007091.t001
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noteworthy since they may offer important clues to physical characteristics linked to the

absence of disease or individual immunity).

2. The HFRS data set was categorized into four classes in terms of percentiles, as shown in

Table 1, i.e., considering that 58% of the original data consist of 0 values, we divided the

remaining 42% of the data into four classes by percentile (so that each of them has 10.5%

of the data), and, subsequently all 0s (58%) were added to the first class, i.e., 0–68.5%,

68.5–79%, 79–89.5% and 89.5–100%. The selection of four classes was based on the satis-

faction of the following quantitative criteria: (i) the variability criterion (i.e., after dividing

the original data into a certain number of categories, the incidence variability should be

reduced); (ii) the coverage criterion (i.e., the data coverage across the entire study area

should decrease with increasing number of categories, and it is suggested to have data that

covers more than 60% of the study area); and (iii) the mapping criterion (i.e., based on

empirical considerations, to assure mapping accuracy a rigorous technique requires that a

certain number of space-time data points around the estimation point should exist in its

category).

More specifically, as regards criterion i, due to the high HFRS data variability exhibiting a

heavy-tailed distribution, it was found that by classifying the data in terms of incidence per-

centiles, the intraclass data variability was reduced significantly. In response to criterion ii,
the particular incidence classes were selected because they allowed a sufficient number of

space-time points in each class for further processing (HFRS mapping and indicator analy-

sis). Within these interval classes I1, I2, I3 and I4 (Table 1) there existed, respectively, 9617

space-time points with 130 overlapping locations, 1470 points with 90 locations, 1478 points

with 101 locations, and 1475 points with 96 locations. Hence, in the present study there were

at least 90 locations in each incidence class (which can be regarded as a spatial data coverage

criterion for improved mapping purposes). As regards criterion iii, based on empirical

considerations a rigorous mapping technique requires that a certain number of space-time

data points around the estimation point should exist in its category for mapping accuracy

purposes.

In relation to the above, two notions can be used to describe quantitatively the HFRS pat-

tern across space-time: the global size of each incidence class, and the spatiotemporal arrange-

ment of the different incidence classes relative to each other. Individual HFRS incidence

classes may visually appear to occupy mutually exclusive “patches” of various sizes within the

space-time domain of interest (e.g., any pair of classes Im and In may have or may have not

common boundaries). These patches may be spread uniformly throughout the domain of

interest, or they may appear to be elongated along a particular direction, in which case the

HFRS pattern will be characterized as anisotropic. The distribution pattern of incidence classes

is determined by their spatiotemporal dependence, which makes the latter a key notion of a

quantitative HFRS study.

Space-time mapping of HFRS incidence distribution using the variant BME

method

The spatiotemporal mapping of HFRS incidence distribution was performed using the BME

method [21] by simultaneously assimilating the core or general knowledge base (G-KB) and

the site-specific or specificatory knowledge base (S-KB) of HFRS in Heilongjiang Province.

Specifically, the mean and covariance functions were treated as G-KB and the log-transformed

HFRS data Y(p) was regarded as S-KB. The implementation of the BME method (S4 Text) to

Probabilistic logic analysis of the highly heterogeneous HFRS incidence distribution
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separately analyze data classes defined in terms of percentiles (Table 1) will be termed class-

dependent BME (cd-BME). The cd-BME mapping results will be subsequently superimposed

and back-transformed to obtain the final HFRS incidence space-time maps, which provide

information about the actual form of the spatiotemporal HFRS spread. For comparison pur-

poses, the standard BME implementation and the mainstream inverse distance weighting

(IDW) method were also employed to analyze the original data set without class-decomposi-

tion. To evaluate the performance of the different approaches, a ten-fold cross validation anal-

ysis was conducted that involved three distinct accuracy indicators: the root mean square error

(RMSE), the mean absolute error (MAE), the determination coefficient of the corresponding

linear regression (R2). Space-time computational data analysis (BME) used the software library

Spatiotemporal Epistemic Knowledge Synthesis-Graphical User Interface (SEKS-GUI, [30]),

while the IDW was implemented using R software [31]. An outline of the proposed methodo-

logical framework is presented in Fig 2.

Stochastic indicators of space-time HFRS dependency

The spatiotemporal arrangement of the HFRS patches occupied by the different incidence clas-

ses can be described by the relative frequencies with which the different kinds of incidence

classes occur next to one another, i.e., by the corresponding incidence probabilities across

space and time. That is to say, the spatiotemporal dependence of HFRS incidences can be

assessed quantitatively in terms of stochastic (probabilistic) indicators linking categorical

HFRS incidences at points p and p0 in various yet complementary ways. Similar stochastic

indicators have been used to characterize the space-time variation of population health status,

environmental pollution and ocean health (e.g., [32–38]). The stochastic HFRS indicators con-

sidered in this work are based on the probability logic theory of medical reasoning developed

Fig 2. Outline of the cd-BME framework.

https://doi.org/10.1371/journal.pntd.0007091.g002
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in [29] and provide intuitive measures of relatedness or logical correlations between two cate-

gorical HFRS incidences at points p and p0, and they may be estimated along multiple direc-

tions (anisotropic relatedness) or omnidirectionally (isotropic relatedness). Specifically:

The joint incidence probability. The joint incidence probability (JIP) is an extension in

the stochastic (probabilistic) domain of the joint categorical incidence occurrence X(p) 2 Im ^
X(p0) 2 In at the space-time points p and p0 (the symbol “^” means “and”), with truth table

shown in the first three columns of Table 2, where the T and F denote true (i.e., X(p) 2 Im or

In) and false (i.e., X(p) =2 Im or In), respectively. The JIP measures the probability that at the

points p and p0 the HFRS incidences belong to the specified class intervals Im and In, respec-

tively, i.e., the probability that the incidences X(p) 2 Im and X(p0) 2 In occur simultaneously,

so that

JIPm;n
X ðp; p

0Þ ¼ P½XðpÞ 2 Im ^ Xðp
0Þ 2 In�: ð1Þ

Otherwise said, the JIP calculates the connectivity (strength of dependency) between the

HFRS incidences X(p) 2 Im and X(p0) 2 In in the space-time domain of interest. The higher

the JIP is, the stronger the connectivity between incidences belonging to the interval classes Im
and In (or, equivalently, the higher the probability of HFRS spreading from class m to class n).

The incidence implication probability. The incidence implication probability (IIP) is an

extension in the probabilistic domain of the standard logical implication X(p) 2 Im! X(p0) 2
In (also known as material conditional) with truth table also shown in Table 2. In this case, the

IIP probability can be written as [39],

IIPm;n
X ðp; p

0Þ ¼ P½XðpÞ 2 Im ! Xðp0Þ 2 In�; ð2Þ

which expresses the strength of the logical implication X(p) 2 Im! X(p0) 2 In, i.e., that the cat-

egorical incidence X(p) 2 Im implies logically the categorical incidence X(p0) 2 In. Sometimes

the class Im is called the antecedent class, and In the consequent class. The Im and In in IIP are

not interchangeable, due to IIP’s asymmetry. From Table 2 we observe that the logical implica-

tion holds when (X(p) 2 Im ^ X(p0) 2 In), i.e., when it is not the case that both incidences

X(p) 2 Im and X(p0) 2 In occur. As such, IIP measures the probability that X(p) 2 Im and

X(p0) =2 In do not occur simultaneously across the Heilongjiang province during 2005–2013.

Equivalently, the IIP measures the probability that either the categorical incidence X(p) 2 Im
or the incidence X(p0) 2 In occurs. Obviously, the larger the IIP is, the stronger the spatiotem-

poral dependence of the HFRS incidence distribution.

The equivalency incidence probability. The equivalency incidence probability (EIP) is

an extension in the probabilistic domain of the standard logical equivalence X(p) 2 Im$ X(p0)
2 In (also known as logical biconditional), with truth table as shown in Table 2. In this case,

the IIP probability can be written as,

EIPm;n
X ðp; p

0Þ ¼ P½XðpÞ 2 Im $ Xðp0Þ 2 In�; ð3Þ

Table 2. Truth table of the joint incidence, the incidence implication and the incidence equivalence.

X(p) 2 Im X(p0) 2 In X(p) 2 Im ^ X(p0) 2 In X(p) 2 Im! X(p0) 2 In X(p) 2 Im$ X(p0) 2 In
T T T T T
T F F F F
F T F T F
F F F T T

https://doi.org/10.1371/journal.pntd.0007091.t002
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which expresses the strength of the logical equivalence X(p) 2 Im$ X(p0) 2 In, i.e., it calculates

the probability that the categorical incidence X(p) 2 Im is logically equivalent to the incidence

X(p0) 2 In. From Table 2 we observe that the logical equivalence holds when both or neither of

X(p) 2 Im and X(p0) 2 In occur simultaneously, i.e.,

ðXðpÞ 2 Im ^ Xðp
0Þ 2 InÞ _ ðXðpÞ=2Im ^ Xðp

0Þ=2InÞ

(the symbol “_” means “either, or”). As such, the EIP measures the degree to which the cate-

gorical incidences X(p) 2 Im and X(p0) 2 In either occur simultaneously or they do not occur

simultaneously. The EIP indicates a closer spatiotemporal dependence of the HFRS incidence

distribution across the Heilongjiang province during 2005–2013.

Links with statistical incidence conditional. The statistical incidence conditional (SIC)

represents the ratio of the number of HFRS distributions in which the categorical incidences X
(p) 2 Im and X(p0) 2 In occur simultaneously over the number of HFRS distributions in which

the incidence X(p) 2 Im occur, i.e.,

SICm;n
X ðp; p

0Þ ¼ P½Xðp0Þ 2 InjXðpÞ 2 Im�; ð4Þ

which is a conditional categorical incidence probability.

Indicator assumptions and features. If space-time homostationarity is assumed (i.e., the

HFRS incidence distribution is space homogeneous and time stationary), the indicators are

functions of Δp = p − p0 = (s − s0, t − t0) = (h, τ). For example, the JIP can be written as

JIPm;n
X ðp; p

0Þ ¼ JIPm;n
X ðDpÞ ¼ JIPm;n

X ðh; tÞ ð5Þ

for all p and p0 such that Δp = (h, τ). Isotropy further implies that the JIP is only a function of

the length |h| and time separation τ, i.e., the JIP is a function of |Δp| = (|h|, τ). Similar expres-

sions can be derived for the other three indicators in the case of space-time homostationarity

and/or isotropy.

In addition, the four stochastic (probabilistic) HFRS indicators above convey complemen-

tary information regarding the intraclass relationship between the same incidence class (i.e.,

m = n), and the interclass relationship between different incidence classes (i.e., m 6¼ n) in Hei-

longjiang province during January 2005–December 2013 (in fact, intraclass incidence varia-

tions can be considerably different than interclass HFRS variations). These stochastic HFRS

indicators and their interpretations are summarized in Table 3. Interestingly, the JIP, IIP and

EIP indicators can be expressed in terms of the SIC (these relationships are displayed in the

third column of Table 3). Further discussion of the characteristics and interpretations of the

four stochastic indicators can be found in S5 Text. In practice, these interpretations can be

used in a complementary manner to obtain a holistic assessment of the disease situation. Next,

Table 3. Stochastic HFRS indicators and their links to the statistical conditional.

HFRS
indicator

Probability that the categorical HFRS
incidences

Relationship with statistical incidence conditional

JIPm;n
X ðp; p0Þ X(p) 2 Im and X(p0) 2 In occur

simultaneously

SICm;n
X ðp; p0ÞP½XðpÞ 2 Im�

IIPm;n
X ðp; p0Þ X(p) 2 Im and X(p0) 2 In do not occur

simultaneously

SICm;n
X ðp; p0ÞP½XðpÞ 2 Im� þ P½XðpÞ=2Im�

EIPm;n
X ðp; p0Þ X(p) 2 Im and X(p0) 2 In either occur

simultaneously or do not occur

simultaneously

2SICm;n
X ðp; p0ÞP½XðpÞ 2 Im� þ P½XðpÞ=2Im� � P½Xðp0Þ 2 In�

SICm;n
X ðp; p0Þ X(p0) 2 In occurs given that X(p) 2 Im

occurred

https://doi.org/10.1371/journal.pntd.0007091.t003
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the above stochastic HFRS indicators are calculated using space-time maps of HFRS incidence

generated by categorized (cd) BME and compared in the case of the Heilongjiang province

that is the focus of this work.

Results

In what follows, the categorical HFRS incidence representation will be considered in terms of

the four selected incidence interval classes, Im, m = 1, 2, 3, 4. In the context of the categorical

HFRS representation used in this work, two kinds of HFRS spread patterns were assumed for

comparison purposes: outward HFRS spread that links a specific incidence class to the entire

set of incidence classes, and inward HFRS spread that is concerned with incidence transition

from the entire set of classes to a specific class.

Space-time mapping of HFRS incidences using class-based BME

Spatiotemporal correlation (covariance model) of HFRS incidences. Monthly spatial

correlations of the original HFRS incidence X(p) were first calculated (108 covariances, in

total). The temporal variation of the HSRF mean is smooth and periodic, fluctuating con-

stantly around the 0.25 incidence value (Fig 3a). The covariance sill values explain the variance

of HFRS incidence in the Heilongjiang Province during the same month, exhibiting certain

noticeable peaks at twelve months period, the size of which reduce with time (Fig 3b). The

interpretation of these high peaks is that they imply the presence of high uncertainty (or the

presence of outbreaks at specific locations) in the HFRS variation during the peak times. The

correlation ranges determine the HFRS domain of influence, showing a rough variation with

time, which, like the HFRS mean variation, it also exhibits a periodic character (Fig 3c). The

minimum and maximum values of the correlation range during the period 2005–2013 are

21,700 meters and 897,650 meters, respectively. The functional shapes of the HFRS mean,

covariance sill and range are remarkably similar (e.g., in Fig 4 large (small) HSRF mean values

are directly linked to long (short) correlation ranges). Interpretationally, the two distinct peaks

of the HSRF mean plot during June and November, which coincide with the corresponding

peaks of the mean sill plot, detect the HFRS outbreaks that occurred during these months.

Subsequently, the empirical space-time covariance values and the fitted theoretical models

of the log-transform HFRS incidences Y(p) (shown in Fig 5) were derived separately for each

interval class of Table 1. It is noteworthy that the space-time dependence ranges of HFRS inci-

dences vary with the incidence level (S2 Table). Moreover, all theoretical covariance models,

cX(Δp) = cX(|h|, τ), are space-time separable. However, the spatial part of the covariance model

in class I4 (corresponding to the highest incidence level) is more complicated than the other

three, further indicating the different space-time variation pattern of class I4.

Some key space-time variation features of the empirical covariance values (red circles) and

the corresponding theoretical models (lines) can be observed in Fig 5:

1. For all HFRS incidence classes considered, the non-zero slopes of the spatial covariance

components at the origin indicate that the log-transformed HFRS incidence fields exhibit

intense localized variations across space. Regarding the temporal HFRS covariance compo-

nents, except for the incidence class 1, the slopes of these covariances at the origin are zero,

implying (based on the underlying spatiotemporal random field theory) that the temporal

incidence variation is apparently much smoother than the spatial incidence variation.

2. Visual inspection of the temporal and spatial covariance plots of the HFRS incidence in the

Heilongjiang province, obtained for different incidence classes, reveals that the spatiotem-

poral structure of incidence distributions embodied in the shape of the space-time
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covariance functions depends on the HFRS incidence level, with dependencies in time

being stronger than those in space.

3. The spatial and temporal covariance lags beyond which HFRS incidence dependencies are

negligible (usually referred to as spatial and temporal correlation ranges, respectively) vary

among the different incidence classes selected.

4. Beyond the corresponding spatial and temporal ranges, the spatial and temporal compo-

nents of the covariance functions of the four HFRS incidence classes are approximately

Fig 3. Monthly variation of (a) the HFRS mean, as well as (b) covariance sill and (c) range during 2005–2013.

https://doi.org/10.1371/journal.pntd.0007091.g003

Fig 4. Plots of (a) the HFRS mean and covariance parameters, i.e., (b) sill and (c) range for the same month (January-

December) averaged over the corresponding months of the period 2005–2013.

https://doi.org/10.1371/journal.pntd.0007091.g004
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zero-valued, indicating that the log-transformed incidence is spatially homogeneous in

space and stationary in time. Also, the selected theoretical models (see S2 Table of the SI

section) provide good fits to the empirical covariance values, thus validating the adequate

theoretical representation of the actual HFRS variation in Heilongjiang province.

Accuracy performance of cd-BME mapping. The ten-fold cross validation analysis

shows that the cd-BME outperforms the standard (class-independent) BME and IDW tech-

niques in terms of the corresponding RMSE, MAE and R2 values calculated using the entire

HFRS incidence dataset (S3 Table). Moreover, in order to test the robustness of the cd-BME,

the original data set was also divided into 3 classes (with percentile ranges 0–72%, 72–86% and

Fig 5. Plots of the empirical covariance values (red circles) and fitted theoretical models (multi-color surface or blue line in 3D,

and 2D plots, respectively) of the log-transformed HFRS incidences (county level) for each incidence class, i.e., (a) for class 1,

(b) for class 2, (c) for class 3 and (d) for class 4.

https://doi.org/10.1371/journal.pntd.0007091.g005
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86–100%), in which case the 10 fold-cross validation results showed that the cd-BME with 3

classes also outperforms the standard BME and IDW, although it is inferior to the cd-BME

with 4 classes selected in this work (see, optimal selection of number of classes discussed in S3

Text). By looking into each individual HFRS interval class, the performance of both ways of

BME implementation (cd and standard) decreases with increasing incidence level (i.e., from

incidence class 1 to class 4) but, in all cases, the performance of the cd-BME implementation

remains superior (S4 Table). In terms of the MAE indicator, the accuracy improvement when

using the cd-BME implementation instead of the standard BME implementation is 65.16%,

82.13%, 72.32% and 42.18% for the four incidence classes considered, respectively.

Space-time mapping of HFRS incidences. The 108 spatiotemporal HFRS distribution

maps with resolution 5 km × 5 km × 1 month were obtained for each interval class (i.e.,

108 × 4 = 432 maps were generated, in total), and subsequently superimposed to produce the

final HFRS distribution maps (S2–S10 Figs). For illustration purposes, S5 Fig shows the

selected HFRS incidence map for the year 2008. One observes the following: (a) The HFRS

incidences in Heilongjiang province exhibited two noticeable peaks during the months of June

and November. (b) The first peak triggers the rapid spread of HFRS cases during the August-

November period toward the western part of Heilongjiang province and also toward some

counties in the eastern part of the province. (c) After November, the HFRS incidences decrease

at some counties, and the number of counties suffering high levels of HFRS infections also

decreases. (d) The western part of the Heilongjiang province exhibits a lower number of HFRS

incidences than the eastern part.

Alternatively, an informative visualization of HFRS spread over the Heilongjiang province

during 2008 is provided by the categorical space-time maps in terms of the four different inci-

dence interval classes defined earlier, and shown in Fig 6. Specifically, the maps of Fig 6 present

to scale the monthly distribution of “patches” with incidence classes I2, I3 and I4 amidst class

I1. An apparent feature of Fig 6 is that some parts of the Heilongjiang region are dominated by

small patches of HFRS incidence, whereas in some other parts the HFRS patches seem to be

large. These incidence patches are mutually exclusive, bounded and they have varying sizes.

Certain HFRS patches seem to be distinctly elongated toward some preferred direction, indi-

cating the presence of anisotropy. Sometimes the HFRS patches are clearly separated from one

another, some other times they share common boundaries, and yet some other times they are

completely surrounded by another class (e.g., in various monthly maps the classes I2, I3 and I4
occur as patches within the class I1). The proportions of regional cover by each incidence class

shows the dominance of class I1 within which all the other classes are embedded, so that class

I1 acts like a background class.

In this work we also calculated the mean distances across patches during each month of the

period 2005–2013 using the centers of each incidence patch. Given that the area of class I1 in

Fig 6 is the background domain that is not consisting of patches, a relevant center of class I1
cannot be recognized in Fig 6, and, hence, mean distances could not be calculated for class I1.

The plots of mean distances across patches during each month of the period 2005–2013 are

shown in S11 Fig (e.g., the mean distance between the incidence class I2 and the class I3 during

March 2008 is 258.3 Km). These mean distances across patches may be interpreted as effective

ranges beyond which the transition probabilities remain essentially constant. As we observe in

S11 Fig, the temporal variations of the mean distances across patches are stationary, i.e., they

fluctuate around certain constant values, as follow: 272 Km (mean distance across I2 patches),

304 Km (across I2 − I3 patches), 340 Km (across I2 − I4 patches), 255 Km (across I3 patches),

273 Km (across I3 − I4 patches), and 273 Km (across I4 patches). I.e., the longest mean distance

during 2005–2013 occurred across patches of class I2 to I4, and the shortest mean distance

across patches of class I2. The reciprocals of the mean distances between incidence patches can
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also serve as the intensity parameters of the four classes. As the numerical results above dem-

onstrate, nevertheless, there are small differences among the intensity parameters of the four

HFRS classes, with the relatively most intense being the I3 patches (4 × 10−4 Km-1), followed by

the I2, I4 and I3 − I4 patches (3.6 × 10−4 Km-1), and with the least intense being the I2 − I3
(3.3 × 10−4 Km-1) and I2 − I4 (2.9 × 10−4 Km-1) patches. The mean coefficients of variation of

the HFRS incidence during the period 2005–2013 were equal to 57.6532, 0.0232, 0.0824 and

0.2997 for the I1, I2, I3 and I4 class, respectively.

It would be interesting to calculate the varying frequencies and dynamics of adjacent and

non-adjacent HFRS classes in the Heilongjiang province during 2005–2013, as well as the

Fig 6. HFRS incidence maps of Heilongjiang province during 2008 in terms of the incidence classes considered.

https://doi.org/10.1371/journal.pntd.0007091.g006
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probabilities of incidence transition from one class to another. This is the concern of the sto-

chastic (probabilistic) HFRS indicators to be discussed next.

Spatiotemporal dependence pattern of HFRS incidence spread in

Heilongjiang province during 2005–2013

The global size of each incidence class during Jan 2005-Dec 2013 was first calculated (S6 Text).

At time t let �XðtÞ denote the spatial mean of the HFRS incidence X(s, t) averaged over the Hei-

longjiang region. For each time t (month), the probability P½�XðtÞ 2 Im� represents the geo-

graphical fraction of the Heilongjiang region with �XðtÞ 2 Im (m = 1, 2, 3, 4).S12a–S12d Fig

present the temporal variation of P½�XðtÞ 2 Im� for each of the four HFRS classes. The JIPm
X ðtÞ

values for m = 1, 2, 3 and 4 fluctuate around the constant probability values, }1 = 0.6767, }2 =

0.2314, }3 = 0.0736, }4 = 0.0184, respectively. Clearly, the HFRS class I1 is the most dominant

in the Heilongjiang province (covering about 68% of the total area), followed by the classes I2,

I3 and I4.

The spatiotemporal arrangement of the different HFRS incidence classes relative to each

other and their relationships were assessed based on the different perspectives offered by the

four stochastic indicators considered in this work (their detailed calculation can be found in

S7 Text). The obtained results are presented next.

The JIP perspective. Assuming that the space-time points p and p0 were randomly

selected in the study domain, the JIPm;n
X ðp; p0Þ surfaces of Fig 7 express the joint probability of

occurrence of both HFRS incidences X(p) 2 Im and X(p0) 2 In as a function of the spatial dis-

tance h between these two points and their time separation τ. Otherwise said, given that τ = t0

− t> 0, the JIP value is equal to the probability that the HFRS incidence moves from an inci-

dence patch of class Im at p to a patch of class In at p0.
We observe that the JIPm;m

X ðh; tÞ surfaces in Fig 7 representing the distribution of intraclass

HFRS dependence (i.e., m = n) start from their highest value at h = 0, τ = 0, and gradually

decrease to a stable, for all practical purposes value. At large space-time lags, this value should

be equal to }2
m. The lag h and separation τ corresponding to this stable value defines the spatial

and temporal ranges representing the distance and time of self-dependence of the Im class. The

height of the JIP surfaces also drops gradually from class I1 to class I4, i.e., the space-time

dependence is higher among smaller incidences than among larger ones, and the incidence

class I1 has the most significant contribution to the strength of the space-time HFRS depen-

dence measured by JIP compared to the other three classes. In fact, the probability between

categorical incidences of class I1 is higher than between incidences in any other class, even at

long h and τ (compare the cyan surfaces in Fig 7a with the purple, orange and green surfaces

in Fig 7b, 7c and 7d, respectively). Similarly, for classes I1 and I2, there is a higher probability

of decreasing intraclass HFRS dependence with increasing h and τ (Fig 7a and 7b), whereas for

classes I3 and I4 the intraclass HFRS dependence is the strongest at small temporal lags τ (Fig

7c and 7d).

As regards interclass variation (i.e., m 6¼ n), the JIP measures the probability of moving

from an incidence patch of class Im to one of class In. The interclass JIP plots represent the

change in transition probabilities between two different classes from one point to another

point with increasing h and τ. The JIP probability surfaces representing the space-time distri-

bution of interclass HFRS dependence are higher between neighboring classes, i.e., the JIP sur-

face of any incidence classes m and n drops with increasing difference |n −m| (e.g., the JIP

surface of class pair I1 and I2 is higher than that of the pair I1 and I3, which, in turn is higher

than that of the pair I1 and I4). The probability of HFRS dependence between class I1 and the

other four classes decreases with increasing HFRS incidence in class I1. Also, when either
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X(p) 2 I4 or X(p0) 2 I4 occur, the corresponding joint incidence probabilities JIP4;n
X ðp; p0Þ or

JIPm;4
X ðp; p0Þ are the smallest among the JIPm;n

X ðp; p0Þ values with m, n = 1, 2, 3 or 4 (see the

green surface in Fig 7a–7c and the four other colors surfaces in Fig 7d). Visually, class I1 exhib-

its the simplest space-time patterns of HFRS dependency among all four incidence classes con-

sidered, since the JIP surfaces in Fig 7a do not overlap. Lastly, the HFRS incidences of class I4
exhibit the lowest connectivity with the other incidence classes, as indicated by the lower JIP

values in Fig 10d relative to the other classes in Fig 7a–7c), followed by class I3. (More charac-

teristics of JIP values can be found in S8 Text).

The IIP perspective. Fig 8 shows the IIP probability of X(p) 2 Im! X(p0) 2 In as a func-

tion of the distance lag h and the time separation τ.

The intraclass incidence surfaces IIPm;m
X ðh; tÞ represent the change in probabilities of an

incidence class Im from one space-time point to another point with increasing lag h and sepa-

ration τ. At large space-time lags, the IIPm;m
X ðh; tÞ should be equal to 1 + }m(}m − 1). More spe-

cifically, Fig 8a shows that, overall, among the four classes considered the highest IIP

probability of intraclass HFRS incidence dependence at distance and time lags h and τ occurs

between incidences of the same class I1, i.e., IIP1;1
X ðh; tÞ; whereas the lowest IIP probability

occurs between incidences of classes I1 and I4, i.e., IIP1;4
X ðh; tÞ. These results confirm that for all

h and τ, the influence of the categorical HFRS incidence at location s and time t on the inci-

dence at location s + h and time t + τ is much stronger for class I1 than for class I4. Fig 8b

shows that at small h and τ the incidence of class I2 at location s and time t has a higher proba-

bility of influencing incidence of the same class I2 at location s + h and time t + τ than of the

Fig 7. The JIPX(mp, np0) plots in Heilongjiang province when (a) m = 1, (b) m = 2, (c) m = 3 and (d) m = 4.

https://doi.org/10.1371/journal.pntd.0007091.g007
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other three classes. But, at larger h and τ the HFRS incidence of class I2 at location s and time t
has higher probability of influencing the incidence of class I1 at location s + h and time t + τ
than the incidence of the other three classes. Similar conclusions can be drawn from Fig 8c

and 8d.

The EIP perspective. Fig 9 shows the probability surfaces representing the event that the

categorical incidence X(p) 2 Im is logically equivalent to the incidence X(p0) 2 In, i.e., X(p) 2

Im$ X(p0) 2 In. In general, it holds that EIPm;n
X ðp; p0Þ ¼ EIPn;m

X ðp0; pÞ. The EIP plots are the

only one among the four indicators in which the surfaces associated with the different classes

clearly overlap (see, e.g., Fig 9a). Further, by comparing the four Fig 9a–9d, we found that X
(p0) 2 I4 exhibits a high EIP probability of logical equivalence with X(p) 2 Im for m = 2, 3, 4,

which also confirms the low connectivity between X(p) 2 I1 and X(p0) 2 I4 detected by JIP and

IIP.

The SIC perspective. The SIC perspective focuses on the conditional probability that a

patch of HFRS incidence class In lies next to one of species Im. Accordingly, Fig 10 shows the

probability surfaces SICm;n
X ðp; p0Þ, i.e., the probability of X(p0) 2 In occurrence given that X(p)

2 Im occurred. Hence, SIC is the ratio of the number of HFRS distributions in which the cate-

gorical incidences X(p) 2 Im and X(p0) 2 In occur simultaneously over the number of HFRS

distributions in which the incidence X(p) 2 Im occur. The intraclass SICm;m
X ðp; p0Þ plots start

from their highest value at h = 0, τ = 0, and gradually decrease to a stable, for all practical pur-

poses, value, which, at large space-time lags is approximately equal to }m. On the other hand,

the interclass SICm;n
X ðp; p0Þ plots start from their lowest value at h = 0, τ = 0, and then increase

Fig 8. The IIPX(mp, np0) plots in Heilongjiang province when (a) m = 1, (b) m = 2, (c) m = 3 and (d) m = 4.

https://doi.org/10.1371/journal.pntd.0007091.g008
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to a stable value, which, at large space-time lags is approximately equal to }n. The SICm;n
X ðp; p0Þ

generally differs from SICm;n
X ðp0; pÞ, the probability of X(p) 2 In occurrence given that X(p0) 2

Im occurred, because }m 6¼ }n (i.e., the classes Im and In are not necessarily equiprobable).

Specifically, we observe that the SIC probability surfaces representing the space-time distri-

bution of intraclass HFRS incidence dependence (i.e., m = n) drop gradually from class I1 to

class I4. Moreover, the SIC values of intraclasses decrease with increasing h and τ (see the cyan,

purple, brown and green surface in Fig 10a, 10b, 10c and 10d, respectively). Also, at large h
and τ the SIC probability related to class I1 is always higher than that of the other three classes

(see the cyan surfaces in Fig 10a–10d); whereas at small h and τ with m = n, the SICm;n
X ðp; p0Þ

surface shows higher values than the SICm;n
X ðp; p0Þ surfaces with m 6¼ n. Lastly, the SIC proba-

bility surfaces representing the space-time distribution of inter-class HFRS dependence (i.e., m
6¼ n) are higher between neighboring classes, i.e., the SIC surface of any incidence classes m
and n drops with increasing difference n −m� 0 (e.g., the SIC surface of classes 1 and 2 is

higher than that of classes 1 and 3, which, in turn is higher than that of classes 1 and 4, shown

in Fig 10a). On the other hand, the SIC surface increases with increasing difference (n −
m� 0) at large h and τ (e.g., the SIC3;2

X ðp; p0Þ is higher than SIC3;3
X ðp; p0Þ, whereas the

SIC3;1
X ðp; p0Þ is higher than SIC3;2

X ðp; p0Þ). The shapes of the SIC plots differ, depending on the

spatiotemporal distribution of the Im and In classes. For example, in Fig 10d the SIC4;1
X ðp; p0Þ

plot first exhibits certain peaks and then reaches its stable (asymptotic) value, which means

that the incidence class I1 frequently occurs adjacent to classes I4. On the other hand, in

Fig 10b the SIC2;3
X ðp; p0Þ plot initially exhibits a low-value section and subsequently reaches its

Fig 9. The EIPX(mp, np0) plots in Heilongjiang province when (a) m = 1, (b) m = 2, (c) m = 3 and (d) m = 4.

https://doi.org/10.1371/journal.pntd.0007091.g009
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stable value, which means that the incidence class I3 seldom occurs close to the incidence class

I2.

In theory it should hold that, JIPX< EIPX< IIPX, and JIPX< SICX, which are also con-

firmed in practice by the numerical results obtained in this study (S9 Text). Moreover, the

space-time averaged values of the four stochastic HFRS indicators (i.e., JIPX, IIPX, EIPX, SICX)

lead to the following probability assessments (see, also, S10 Text):

• the probability of “both the interclass HFRS incidences occur at p and p0” is very low (with

probability 0.132),

• the probability of “either the HFRS incidence occurs at p0 or it does not occur at p” is very

high (0.878),

• the probability of “either both HFRS incidences occur or both do not” is moderate (0.368);

and

• the probability of “the HFRS incidence occurs at p0 given that it occurs at p” is relatively high

(0.517).

The four different probabilities calculated above offer complementary quantitative assess-

ments of the HFRS incidence dependency between any pair of points in the space-time

domain of interest, with relative significance depending on the HFRS perspective adapted.

Fig 10. The SICX(mp, np0) plots in Heilongjiang province when (a) m = 1, (b) m = 2, (c) m = 3 and (d) m = 4.

https://doi.org/10.1371/journal.pntd.0007091.g010
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Discussion

In this work, the spatiotemporal distribution of HFRS incidences in Heilongjiang province

during the period 2005–2013 was studied quantitatively using spatiotemporal random field

modeling that accounts for both the structural and uncertain aspects of HFRS spread. In this

modeling context, key attributes of the HFRS incidence distribution were quantified by means

of covariance functions, shedding light on the predominant HFRS spread patterns in space

and time. A methodological advancement of the present study is that a cd-BME technique was

introduced to reduce skewness effects in the spatiotemporal distribution of HFRS incidence

data. This technique demonstrated a significant ability in modeling the pronounced variability

in HFRS data caused by infection outbreaks that result in skewed distributions. Further, a

moving windows configuration (Akita et al. [40]2012) was used that focuses mainly on local

information (this configuration provides an HFRS variability representation that is closer to

the real-world infectious disease spread pattern and less variable than the global pattern). The

original dataset was optimally divided into four classes based on percentiles, which while

maintained all advantages of BME modeling of spatiotemporal dependencies and correlations,

it made HFRS predictions more accurate and robust.

In this work we considered several models, before concluding that BME is the best one for

the Heilongjiang study. For example, due to the presence of disease data with a considerable

number of 0 values, the zero-inflated model with spatial random effect was considered,

because it has been designed to handle over-dispersed data [41]. We first noticed that after

applying this model, the distribution of the original data will change and the data values will

be also modified as a result. Second, this model usually either requires certain impact factors

(e.g., environmental or gender population features) for regression purposes or the neighbor

disease data should be assumed to be the independent variable (regressor). The former possi-

bility is not applicable in the present study because of the lack of such data. As regards the

latter possibility, taking the neighbor data as input could account to a limited extent for

purely spatial dependency. Yet, these ad hoc approximations are not necessary here, since

the BME method not only can handle data with any kind of distribution but it also rigorously

accounts for the spatial, temporal and composite space-time dependency of the data. Other

drawbacks of the zero-inflated model with spatial random effect is that it is a “naïve” interpo-

lator (i.e., it does not account for the varying distances between data locations, and it is

impossible to obtain informative space-time maps with finer resolution compared to the

original dataset), and it cannot incorporate the disease spread indicators based on probability

logic. BME has none of the above drawbacks (it is an adequate interpolator, i.e. it generates

accurate estimates at unsampled locations that account for the varying distances between

data locations and between the data and the interpolated locations, it generates informative

space-time maps with fine resolution, and it incorporates the probabilistic disease

indicators).

We concluded that the living conditions of rodents can dominate HFRS epidemics, as they

influence the rodents-human interaction rate. As regards the space-time mapping of HFRS

incidences in Heilongjiang Province during 2005–2013, the western part exhibits lower HFRS

incidences than the eastern part. This is mainly due to environmental factors, as water

resources expedite growth of plants, which serve as food and facilitate reproduction of rodents

[42]. The aforementioned findings are in agreement with the broader picture of the river net-

work in the region. More precisely, in Heilongjiang Province, only Neng River is located in the

western part of Heilongjiang Province (i.e. lower HFRS incidences), whereas Wusuli River,

Songhua River and Mudan River locate in the eastern part of the province (i.e. higher HFRS

incidences) [15]. Moreover, the eastern and southeastern parts of Heilongjiang Province
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exhibit mixed land types with forests, favoring rodents’ reproduction. As a result, the eastern

part of Heilongjiang Province demonstrates a consistently high level of HFRS infections

throughout the year, whereas, the HFRS incidences in the western part of the province are

dominated by monthly outbreaks. This is due to the fact that large proportions of the western

part of the province are croplands, which remain flooded for crop growth purposes during the

entire farming period, preventing rodents’ reproduction. A general overview of HFRS spread

patterns in Heilongjiang Province can be obtained from Fig 5, as well as by the space-time

maps in the supporting information (i.e. S2–S10 Figs).

Another contribution of this work is in filling the gap in the quantitative modeling of the

spatiotemporal HFRS transition mechanisms based on probability logic. In other words, the

present study provides a solution to the problem of calculating HFRS spread across space-

time. In this context, the proposed stochastic HFRS indicators were applied to estimate the

probability of HFSR transmission between space-time domains exhibiting different infection

levels as a function their spatial distance and time separation. The results of the Heilongjiang

study suggested that the proposed stochastic HFRS indicators summarize well the space-time

incidence patterns, and their physical meanings and interpretations of the proposed HFRS

indicators provide useful information about the HFRS spread mechanisms in the Heilongjiang

province during Jan 2005-Dec 2013. Some HFRS classes were found to be cross-correlated

with apparent correlation ranges, but some classes were not cross-correlated in the usual sense

(i.e., if classes occur at two distant parts of the Heilongjiang province, it may be appropriate to

characterize their interclass relationship as non-adjacent). Each HFRS class has a relationship

with any other class in the Heilongjiang province during Jan 2005-Dec 2013, and quantifying

the spatiotemporal relationships between HFRS classes and incorporating them into disease

analysis and mapping are help us realistic assessment of the real HFRS situation in the space-

time domain of interest. The transition probabilities provided by the HFRS indicators describe

the spatiotemporal arrangements between incidence classes and suggest interactions that can

be explored further in detail.

The plots of the four indicators offer complementary visualizations of the variation of the

different probabilities of transition between incidence classes, i.e., the probabilities with which

the different levels of HFRS incidences occur next to each other and so they describe the

dependency pattern of the space-time arrangement of the HFRS patches occupied by the dif-

ferent incidence classes. Specifically, key features of interclass HFRS incidence relationships

observed in this work are the space-time dependency, level of juxtaposition, and directional

asymmetry of class patterns. The categorical HFRS incidences in the Heilongjiang province

during Jan 2005-Dec 2013 exhibit rather smooth intraclass but complex interclass relation-

ships. The complementary character of HFRS indicators of intraclass and interclass incidence

transition and the estimated proportions of regional cover by each incidence class showed the

dominance of the incidence class I1 with which all the other classes are associated. Indeed, the

HFRS incidence class I1 covered about 68% of the total area, wheres the fact that the transition

probabilities from the classes I2, I3 and I4 individually to class I1 are high suggests that the inci-

dence class I1 dominated the Heilongjiang region. This phenomenon indicated that, indepen-

dently of the particular infection level, the HFRS spread is dominated by point outbreaks with

relatively small spatial ranges of influence. In other words, if an HFRS outbreak occurs at one

location, it is necessary for the public health management to focus on in-situ HFRS prevention

and control, as a measure to prevent further spread. This also reflects that the main pathway of

HFRS infection is from rodents to humans, rather from person-to-person interaction [6]. In

the latter case, an HFRS outbreak would spread in much larger areas. Using the findings of

spatiotemporal HFRS spread patterns, public health management can also determine the criti-

cal temporal and spatial scales for HFRS prevention and control. For example, if HFRS

Probabilistic logic analysis of the highly heterogeneous HFRS incidence distribution

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007091 January 31, 2019 22 / 28

https://doi.org/10.1371/journal.pntd.0007091


incidences at some location are identified to belong to class 2, effective measures should be

taken for a period of approximately three months and within a radial distance of approxi-

mately 50 km (see Fig 7b).

Certain quantitative findings of this work are in line with previous qualitative assessments.

For example, based on the finding of the previous studies HFRS incidences are closely associ-

ated with environmental factors, a finding that confirms, in part, the suggestions made by [4,

19, 43, 44]. Given BME’s methodological features to assimilate secondary information and

auxiliary variables (e.g., [45]), future work should focus on integrating environmental factors

into BME analysis, to better understand HFRS spread patterns and provide more accurate pre-

dictions. The approach introduced in this work is likely to be valuable in comparisons of spa-

tiotemporal incidence patterns at other regions of China or worldwide. Also, the same

methodology could be used in the spatiotemporal modeling and mapping of other epidemics

under similar in situ conditions, in which case the choice of the disease incidence classes could

be linked to the specific public health purposes.

Future work should also focus on the current shortcomings of the proposed approach. One

of them is the need for developing HFRS transition probabilities tests that could lead to stron-

ger inferences regarding the interclass interactions suggested by these probabilities. Another is

the relaxation of the space-time homostationarity assumption concerning HFRS spread, which

may allow a more detailed assessment of the spatial anisotropy of transition probabilities as

described by the HFRS indicators. Lastly, it must be kept in mind that real-world computa-

tions usually process datasets of potentially widely varying levels of uncertainty. As a result, in

most cases the computational results may not satisfy exactly the theoretical assumptions.

Instead, they are expected to strike a balance between theoretical rigor and computational cost

is acceptable for practical purposes, which leaves room for potential improvement of the

computational component of the proposed analysis.
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