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Abstract

Objective: To explore the endocrine mechanisms of aldosterone-producing adenoma (APA) by using the microarray
expression profiles of normal and APA samples.
Methods: The gene expression profile GSE8514 was downloaded from Gene Expression Omnibus database,
including samples from normal adrenals (n = 5) and APAs (n = 10). The differentially expressed genes (DEGs) were
identified by samr package and endocrine DEGs were obtained according to Clinical Genome Database. Then,
functional enrichment analysis of screened DEGs was performed by DAVID (Database for Annotation, Visualization
and Integrated Discovery). Finally, a regulatory network was constructed to screen endocrine genes related with
adrenal dysfunction and pathway enrichment analysis for the constructed network was performed.
Results: A total of 2149 DEGs were identified including 379 up- and 1770 down-regulated genes. And 26 endocrine
genes were filtered from the DEGs. Furthermore, the down-regulated DEGs are mainly related to protein kinase
cascade, response to molecule of bacterial origin, response to lipopolysaccharide, cellular macromolecule catabolic
process and macromolecule catabolic process, while the up-regulated DEGs are related with regulation of ion
transport. The target genes of VDR (vitamin D receptor), one of the three endocrine genes differentially expressed in
the regulatory network, were endocrine genes including CYP24A1 (25-hydroxyvitamin D-24-hydroxylase) and PTH
(parathyroid hormone). Three pathways may be associated with APA pathogenesis including cytokine-cytokine
receptor interaction, pathways in cancer and autoimmune thyroid disease.
Conclusion: The VDR is the most significant transcription factor and related endocrine genes might play important
roles in the endocrine mechanisms of APA.
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Introduction

Primary Aldosterone disease is a major cause of secondary
hypertension and characterized by overproduction of the
mineralocorticoid hormone aldosterone [1,2]. The
inappropriately high production of aldosterone can lead to
suppression of plasma renin, sodium retention, hypertension,
cardiovascular damage, and potassium excretion [3]. There are
two main subtypes of primary aldosterone: unilateral
aldosterone-producing adenoma (APA) and bilateral idiopathic
hyperaldosteronism (IHA) [4,5]. APA, which typically diagnosed

between ages 30 and 70, are accounts for about 30% of
hyperaldosteronism and the degree of hyperaldosteronism is
greater than that in IHA [6].

Recent recommendations have suggested that the
aldosterone to renin ratio and adrenal computed tomography
can be used to screen for the prevalence of APA [7]. APA
virtually always remains benign, without local invasion or
distant metastasis [8]. In the large majority of patients, surgical
removal may also ameliorate hypertension caused by APA.
Several studies have suggested that the overproduction of
steroid hormones in adrenocortical tumors might be resulted

PLOS ONE | www.plosone.org 1 December 2013 | Volume 8 | Issue 12 | e82309

http://creativecommons.org/licenses/by/4.0/


from the disordered expression of steroidogenic enzymes, such
as aldosterone synthase (CYP11B2) [9]. The expression level
of CYP11B2 is significantly higher in APA [10]. The somatic
mutation in two members of the ATPase gene family can result
in autonomous aldosterone secretion [11]. Somatic mutations
of cardiac ATP-sensitive potassium channel gene (KCNJ5),
coding for the G protein-coupled inward rectifier K+ channel 4,
have been implicated in the formation of APA while are recently
proved not correlated with adrenal cortex remodeling [12].
Some evidence has showed that the calcium-binding
calmodulin kinase (CAMK) signaling pathway is involved in
human APA [13]. CAMKs can regulate the production of
angiotensin II- and potassium-stimulated aldosterone.
CYP11B2 transcription could be mediated by CAMK-I via cyclic
adenosine monophosphate response element binding protein
and the activation of transcription factor 1 and Nur-related
factor 1 [14]. To date, although the genetic basis of
hyperaldosteronism has been more clearly, the exact
endocrine pathogenesis of the disease still remains unknown.

In the present study, we downloaded the gene expression
profiles of APA specimens and normal samples. The
differentially expressed genes (DEGs) and endocrine DEGs
were identified. Then the function enrichment analysis of DEGs
was applied to gain more insight into the molecule mechanisms
of APA. In addition, we built transcription factor (TF)-target
regulatory network and the pathway enrichment analysis of the
network was performed to find the dysfunction endocrine genes
and pathways in APA.

Materials and Methods

Derivation of genetic data and data preprocessing
The gene expression profile of GSE8514 [15] containing 15

specimens was downloaded from a public functional genomics
data repository Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) database. The 15 specimens,
including 5 normal samples from normal human adult adrenal
glands and 10 APA specimens from Conn’s syndrome patients
were available based on the Affymetrix Human Genome U133
Plus 2.0 Array. The original files were converted into
expression measures matrix by the robust multiarray average
(RMA) algorithm with defaulted parameters in Affy package in
the R software [16]. Then the R/Bioconductor annotation
package was used to convert probe number to gene ID. For
each sample, the expression values of all probes for a given
gene were reduced to a single value by taking the average
expression value.

Identification of differentially expressed genes and
endocrine genes

The samr package in R software [17] was used to identify
differentially expressed genes between normal and APA
samples. The false discovery rate (FDR) <0.05 and fold change
≥1.5 were used as the cut-off criteria [18]. For hierarchical
clustering of samples and screened DEGs, clustering algorithm
based upon Pearson and Spearman correlations were used to
create a clustering graph of samples and genes in which
samples and genes with similar expression pattern are grouped

together [19]. In order to make sure that DEGs were correctly
screened, the APA samples clustered with normal samples
were removed and DEGs were further identified between the
normal samples and the rest APA samples. What’s more, the
differentially expressed endocrine genes associated with APA
were filtered from Clinical Genome Database (CGD, http://
research.nhgri.nih.gov/CGD/) [20].

Functional enrichment analysis of DEGs
Gene Ontology (GO) analysis has become a common

approach for functional annotation of large-scale genomic data
[21]. DAVID (Database for Annotation, Visualization and
Integrated Discovery) provides an integrated biological
knowledgebase and analytic tools for researchers to
systematically extract biological meaning from large list of
genes/proteins [22]. The functional GO enrichment analysis for
the screened up-regulated and down-regulated DEGs was
performed by DAVID online, respectively. The FDR<0.05 was
chosen as the cut-off criterion.

TF-target regulatory network construction and pathway
enrichment analysis

TRANSFA (Transcription Factor Database) is a database
about the eukaryotic transcriptional regulation which contains
data on eukaryotic transcription factors, their regulatory binding
sites, binding sequences and target genes [23-25]. The DEGs
were mapped to known regulatory data between transcription
factors and target genes, then a TF-target regulatory network
was constructed by Cytoscape [26]. And the regulatory impact
factors of each transcription factor were calculated to screen
out endocrine genes related with adrenal dysfunction. Then
DAVID online was applied for KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathway enrichment of the nodes of TF-
target regulatory network and adrenal abnormal pathways were
selected for further analysis. The FDR<0.05 was chosen as the
cut-off criterion. KEGG is a databases consisted of genomic
information, chemical information and biological systems
information [27].

Results

Identification of DEGs and endocrine genes
From the hierarchical clustering of samples and genes, we

found that total 4 APA samples in red boxes (Figure S1) were
clustered with normal samples according to the clustering
graph. After removing the 4 APA samples which clustered with
normal adrenal samples, we applied the samr package to
further identify genes differentially expressed between 5 normal
samples and the rest 6 APA samples. For dataset GSE8514, a
total of 2149 DEGs were identified, including 379 up-regulated
genes and 1770 down-regulated genes (Figure 1). The top 10
up- and down-regulated DEGs were listed in Table 1.

There are 154 abnormally expressed genes in endocrine
diseases are associated with clinical features in CGD. A total of
26 endocrine genes were filtered from the DEGs, such as
CYP11B2 (aldosterone synthase), VDR (vitamin D receptor),
POR (P450 oxidoreductase), KCNJ5 (cardiac ATP-sensitive

VDR is an Important Transcription Factor in APA
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potassium channel gene), RET (protein receptor tyrosine
kinase) andCYP11B1 (11β-hydroxylase gene).

Functional enrichment analysis of DEGs
The functional enrichment analysis of DEGs was performed

by DAVID with FDR<0.05. As shown in the Table 2, a total 6
GO terms of up- and down- regulated DEGs were obtained.
The down-regulated genes mainly related with 5 GO terms,
such as protein kinase cascade (FDR=2.67E-04), response to
molecule of bacterial origin (FDR=7.35E-04), response to
lipopolysaccharide (FDR=0.0014288), cellular macromolecule
catabolic process (FDR=0.0137273) and macromolecule
catabolic process (FDR=0.0149602). On the other hand, the
up-regulated genes were significantly related to the regulation
of ion transport (FDR=0.0200308).

TF-target regulatory network construction and pathway
enrichment analysis

A total of 29 transcription factors were obtained by mapping
the DEGs to known 6,001 pairs of transcription factors-target
genes. Then we constructed APA differentially expressed
transcription factor-target gene networks based on the 29
transcription factors (Figure S2). The network was consisted of
429 nodes and 522 pairs of transcription factors-target genes.

We found 19 endocrine genes in this network, such as VDR,
CYP24A1 (25-hydroxyvitamin D-24-hydroxylase), POR, PTH
(parathyroid hormone), RET and TPO (thyroid peroxidase).
While only three endocrine genes (VDR, POR, RET) were
differentially expressed in APA samples, other 16 genes were
target genes of differentially expressed transcription factors.
Since the downstream genes of VDR were endocrine genes
(CYP24A1, PTH), VDR was a very significant transcription
factors. ETS1 (E26 transformation-specific 1), EGR1 (early
growth response 1) and CEBPB (CCAAT/enhancer-binding
protein beta) were considered as the hub genes in this network
which indicated that these three genes had a highly correlation
with the APA. Furthermore, the non-DEGs (blue circles) in the
Figure S2 were removed so that the other nodes (green or red
diamonds; green or red circles) can stand out and more legible
(Figure 2). It is worth noting that some nodes only related with
non-DEGs could not be reflected in the figure since the blue
circles were removed.

To gain further insights into the signaling pathways in the
process of APA, pathway enrichment analysis for the
constructed TF-target regulatory network was performed by the
online biological classification tool DAVID. A total of 19 KEGG
pathways were enriched with the criterion of FDR<0.05 (Table
3). There are three pathways may be associated with APA
including hsa04060: Cytokine-cytokine receptor interaction

Figure 1.  Clustering graph of the differentially expressed genes identified from 5 normal samples and 6 aldosterone
producing adenoma samples.  The horizontal axis is the sample names and the right vertical axis represents the genes. The left
vertical axis represents the genes cluster; the top horizontal axis represents the sample cluster. The green color stands for up-
regulated genes, while the red color stands for down-regulated genes.
doi: 10.1371/journal.pone.0082309.g001
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(FDR=7.22E-16), hsa05200: Pathways in cancer
(FDR=3.03E-14) and hsa05320: Autoimmune thyroid disease
(FDR=0.0044084).

Table 1. The top 10 up-regulated (red) and down-regulated
(green) DEGs in aldosterone producing adenoma samples.

Gene symbol Fold change Expression change
CYP11B2 69.75006657 up
VPREB3 10.60896188 up
PCP4 8.876766496 up
MT3 6.7543199 up
HHATL 5.017961155 up
SLC24A3 4.86500277 up
FAM19A4 4.770089027 up
IL17D 3.048374974 up
SUSD2 2.976578974 up
NMRK2 2.939796564 up
FAM172A 0.666634 down
PSMG2 0.666602 down
LOC285812 0.666395 down
MST4 0.666187 down
PEX19 0.66606 down
ABHD14B 0.665784 down
C5orf4 0.665743 down
SLC35B3 0.665573 down
FSTL5 0.665486 down
NAALAD2 0.665475 down

doi: 10.1371/journal.pone.0082309.t001

Table 2. Gene ontlogy (GO) enrichment items of the up-
and down-regulated DEGs.

Type GO Term
Gene
Count

Fold
Enrichment FDR

Down-
regulated
genes

GO:0007243~protein kinase
cascade

66 1.961872116 2.67E-04

 
GO:0002237~response to
molecule of bacterial origin

25 3.197201739 7.35E-04

 
GO:0032496~response to
lipopolysaccharide

23 3.285228593 0.0014288

 
GO:0044265~cellular
macromolecule catabolic
process

102 1.547357443 0.0137273

 
GO:0009057~macromolecule
catabolic process

108 1.520901908 0.0149602

Up-
regulated
genes

GO:0043269~regulation of ion
transport

10 7.007511008 0.0200308

doi: 10.1371/journal.pone.0082309.t002

Discussion

Aldosterone producing adenomas is one of the most
common forms of surgically curable hypertension [28]. To
further understand endocrine mechanisms involved in APA
formation, we investigated the biological processes and
signaling pathways related with APA. In this work, 2149 DEGs
were identified including 379 up-regulated genes and 1770
down-regulated genes. The down-regulated DEGs are mainly
related to protein kinase cascade, response to molecule of
bacterial origin, response to lipopolysaccharide, cellular
macromolecule catabolic process and macromolecule catabolic
process, while the up-regulated DEGs are related with
regulation of ion transport. Studies have shown that sodium/
potassium-transporting ATPase subunit alpha-1 is an enzyme
encoded by the ATP1A1 gene [29], and mutations in this gene
have been associated with APAs and secondary hypertension.
Three major pathogenetic pathways including
lipopolysaccharide/Toll like receptor 4 pathway are novel
pathological mechanisms of adrenocortical tumors and
associated genes may be markers and therapeutic targets of
malignancy [30].

Through filtering the DEGs from Clinical Genome Database,
we obtained 26 differentially expressed endocrine genes, such
as CYP11B1, CYP11B2 and KCNJ5. The cortisol and
aldosterone in human adrenal cortex are synthesized by the
isozymes 11β-hydroxylase and aldosterone synthase, encoded
by the 93% identical CYP11B1 and CYP11B2 genes,
respectively [31]. A CYP11B2 haplotype including 344T and
K173 polymorphism is associated with higher gene expression,
higher aldosterone production and blood pressure in the APA
patients [32]. Mutations in the KCNJ5 gene can produce
increased Na+ conductance in a mendelian form of severe
aldosteronism and massive bilateral adrenal hyperplasia [8].
KCNJ5 mutations are prevalent in APA, and KCNJ5 mutations
can increase expression of CYP11B2 and NR4A2 (nuclear
receptor subfamily 4, group A, member 2), thus increasing
aldosterone production [33].

In our study, a TF-target regulatory network was constructed
and there were 19 endocrine genes in the network. Only VDR,
POR and RET are differentially expressed in APA specimens.
POR serves as electron donor to steroidogenic cytochrome
P450 (CYP) type II enzymes. Inactivating mutations in POR
gene is responsible for the congenital adrenal hyperplasia
(CAH) manifesting with apparent combined CYP17A1-
CYP21A2 deficiency [34]. The RET gene is the oncogene that
causes papillary thyroid carcinoma and medullary thyroid
carcinoma which encodes a single-pass transmembrane
receptor tyrosine kinase[35]. VDR is a very significant
transcription factor associated with APAs and its target genes
(CYP24A1 and PTH) are endocrine genes. These results
suggested that, the correlation between differentially expressed
endocrine genes and transcription factors is not significant in
APA patients, and the abnormal expression of endocrine
transcription factor in APA samples does not necessarily lead
to the abnormal expression of endocrine gene [36]. The
regulated genes, such as VDR, modulated by angiotensin II
increased expression for both 11β-hydroxylase and
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aldosterone synthase, which indicated that the modulated
transcription regulatory genes may be related with adrenal
steroidogenesis pathologies [37]. Vitamin D deficiency is
traditionally recognized as a key factor in the bone and mineral
disturbances of chronic kidney disease (CKD) [38]. Vitamin D
response element (VDRE2) variant can result in the decrease
of CYP24A1 (a gene that is highly inducible by 1α,25(OH)2D3)
expression in cultured primary human lymphocytes [39].
Parathyroid hormone acts to increase the concentration of
calcium in the blood. Kong et al. found that suppression of
renin expression by 1α,25(OH)2D3 in vivo is independent of
PTH and calcium[40].

ETS1, EGR1 and CEBPB are considered as the hub genes
in the constructed TF-target regulatory network. Observations
suggest that locally produced ETS may closely involve in the
regulation of corticosteroid secretion and mitogenesis in normal
and tumoral adrenocortical cells [41]. Ca2+ transporter (Atp2a3),
one of the target genes of ETS, showed an enrichment in the
zona glomerulosa (zG) [42]. The ability of APA and zG to
produce aldosterone would suggest some similarities in
transcript expression patterns including a trend of up-regulation
in Atp2a3 in both rat zG and human APA [43].

Furthermore, the KEGG pathway enrichment of the TF-target
regulatory network was performed. And we selected three

pathways which might be related with APA: (i) cytokine-
cytokine receptor interaction; (ii) pathways in cancer; (iii)
autoimmune thyroid disease. Cytokines (http://
www.ncbi.nlm.nih.gov/biosystems/460) are soluble proteins,
peptides or glycoproteins which are crucial signaling molecules
or intercellular regulators of cells engaged in innate and
adaptive inflammatory host defenses aimed at maintaining
homeostasis. TGF-β signaling pathway is important for the
proliferation of intrarenal fibroblasts and the epithelial–
mesenchymal transition through which tubular cells become
fibroblasts [44]. Asmah et al. have showed that regulation of
renin was mainly influenced by free triiodothyronine (T3), and
that aldosterone response to frusemide was blunted in
thyrotoxicosis despite normal electrolytes [45].

In summary, the VDR is the most significant transcription
factor screened from the TF-target regulatory network and its
target genes including CYP11B2 and KCNJ5 might play
important roles in the endocrine mechanisms of APA.
Meanwhile, several pathways maybe involve in the progression
of APA, such as cytokine-cytokine receptor interaction,
pathways in cancer and autoimmune thyroid disease. However,
further studies still needed to confirm our results.

Figure 2.  The constructed differentially expressed transcription factor-target gene network without non-differentially
expressed target genes.  
doi: 10.1371/journal.pone.0082309.g002
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Supporting Information

Figure S1.  The hierarchical clustering of samples and
screened DEGs. Total 4 APA samples including Ald.10, Ald.3,

Table 3. The enriched KEGG pathways of aldosteronoma
Transcription Factor (TF)-target network (the pathways
marked in red may be associated with the process of
aldosteronoma).

KEGG pathway
Gene
Count

Adjusted p-
value   FDR

hsa04640:Hematopoietic cell lineage 33 6.11E-19 4.92E-18
hsa04060:Cytokine-cytokine receptor
interaction

52 8.96E-17 7.22E-16

hsa05200:Pathways in cancer 56 3.77E-15 3.03E-14
hsa04630:Jak-STAT signaling pathway 35 3.55E-12 2.86E-11
hsa05215:Prostate cancer 23 1.49E-08 1.20E-07
hsa05219:Bladder cancer 15 6.19E-07 4.99E-06
hsa04510:Focal adhesion 31 2.85E-06 2.29E-05
hsa04115:p53 signaling pathway 17 1.26E-05 1.01E-04
hsa05220:Chronic myeloid leukemia 17 5.39E-05 4.34E-04
hsa05330:Allograft rejection 12 8.24E-05 6.64E-04
hsa05210:Colorectal cancer 17 2.72E-04 0.0021882
hsa04940:Type I diabetes mellitus 12 4.53E-04 0.0036484
hsa05320:Autoimmune thyroid disease 13 5.47E-04 0.0044084
hsa04620:Toll-like receptor signaling
pathway

18 7.67E-04 0.0061796

hsa05310:Asthma 10 7.93E-04 0.0063887
hsa05218:Melanoma 15 7.97E-04 0.0064204
hsa05332:Graft-versus-host disease 11 0.0015872 0.0127864
hsa05212:Pancreatic cancer 14 0.0047022 0.0379345
hsa05222:Small cell lung cancer 15 0.0059574 0.0480882

doi: 10.1371/journal.pone.0082309.t003

Ald.6 and Ald.4 (red boxes) were clustered with normal
samples.
(TIF)

Figure S2.  The constructed differentially expressed
transcription factor-target gene network. The network
consists of 429 nodes and 522 pairs of transcription factor-
target gene. The diamond nodes stand for the known
transcription factors that differentially expressed in
aldosteronoma samples (29). Circular nodes are the target
genes of transcription factors (400). The green circle nodes are
differentially expressed target genes in aldosteronoma samples
(46), the red nodes are the known endocrine genes (19). The
light blue circle nodes stand for non-differentially expressed
target genes (336).
(TIF)
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