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The repair of demyelinated lesions is a key objective in multiple sclerosis research.
Remyelination fundamentally depends on oligodendrocyte progenitor cells (OPC)
reaching the lesion; this is influenced by numerous factors including age, disease
progression time, inflammatory activity, and the pool of OPCs available, whether they be
NG2 cells or cells derived from neural stem cells. Administering OPCs has been proposed
as a potential cell therapy; however, these cells can only be administered directly. This
article discusses the potential administration of OPCs encapsulated within hydrogel
particles composed of biocompatible biomaterials, via the nose-to-brain pathway. We
also discuss conditions for the indication of this therapy, and such related issues as the
influence on endogenous remyelination, migration of OPCs to demyelinated areas, and
the immune response, given the autoimmune nature of multiple sclerosis. Chitosan and
derivatives constitute the most promising biomaterial for this purpose, although these
issues must be addressed. In conclusion, this line of research may yield an alternative to
the remyelinating drugs currently being studied.

Keywords: multiple sclerosis, biomaterials, oligodendrocyte progenitor cells, oligodendrocytes, demyelination,
remyelination

INTRODUCTION

Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune disease in which an
environment inhibiting the development of myelin-producing cells hinders repair of the
myelin sheaths around demyelinated axons. Demyelination alters the conduction of neural
impulses; impairment of the capacity for remyelination results in axonal degeneration, eventually
leading to neuronal degeneration (1). Despite the development in recent years of numerous
drugs targeting the immune mechanisms that cause inflammation, which has reduced the
risk of sequelae, no drug has been found that promotes myelin repair; therefore, a central
objective in current research is to design novel therapeutic strategies for remyelination (2, 3).
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Despite widely held opinion, the central nervous system (CNS)
does have the capacity for remyelination, which has been
observed in histopathological analysis of MS plaques and through
neuroimaging (4-6); however, the sheaths produced can be
thinner than normal, and sequelae and symptoms arising from
conduction alterations are not prevented (7). This remyelination
capacity is reduced or lost with age; while it is observed in
early stages of relapsing-remitting MS, it is much diminished
in the progressive stage of the disease. It therefore shows
an inverse relationship with MS progression, and has been
associated with immune activity (8) and with alterations to
innate and adaptive immunity, which are reported to reduce
the effectiveness of remyelination in animal models of focal
demyelination; myelin repair depends on the state of activation
of macrophages and microglia (9). Remyelination capacity is lost
without a reduction in the number of oligodendrocyte progenitor
cells (OPC), although there is a reduction in the efficiency
of OPC differentiation into myelin-producing oligodendrocytes
(OL) (10). In theory, effective remyelination requires: [1] the
presence of OPCs in demyelinated plaques, through migration
to the area of the active lesion; [2] an environment favoring
OPC differentiation into OLs; [3] axons in suitable conditions
for remyelination (i.e., not undergoing or having undergone
a process of neurodegeneration); and [4] action of a series of
signaling pathways enabling differentiation by altering OPCs,
OLs, and axons in order to enable myelin production by OLs
(11-14). However, several studies suggest that remyelination is
not always necessary to the survival of demyelinated axons (15).
The combination of both benefits may therefore be necessary to
maximize the therapeutic potential of OPCs for application in
clinical practice.

Work of the lasts decades past century, have explored
implant tissue and oligodendrocytes, pioneering cell therapy, as
a resource to promote remyelination and the search for the best
cell type for this purpose (16, 17). Several types of cells can act
as OPCs, but we should fundamentally consider 2 cell subtypes:
NG2 cells, originating in embryonic development and usually
located in the cortex; and those differentiated from adult neural
stem cells (NSC) (18), which are found in the subventricular
zone and adjacent to the corpus callosum, for example. The
OPC population is heterogeneous and specific to particular
brain regions, with remyelination efficiency depending on the
origin of the OPCs (19). In the search for therapeutic strategies
for remyelination, increasing attention has been paid to the
potential role of OPCs. Transplantation offers several potential
benefits: remyelination by the transplanted cells, stabilization of
the demyelinated area, promotion of endogenous remyelination,
and a potential neuroprotective mechanism involving growth
factors secreted by the transplanted OPCs.

USE OF UNDIFFERENTIATED NEURAL
STEM CELLS TO REPAIR MULTIPLE
SCLEROSIS LESIONS

NSCs can differentiate into neurons, astrocytes, and OLs. It has
been suggested that they may be used to repair CNS lesions.
Implantation of these cells has been shown to have beneficial

effects on spinal cord lesions in rodent and primate models,
supporting the use of the technique to treat MS (20). Nonetheless,
the fact that MS is an autoimmune disease means that these cells’
capacity to trigger immunogenicity is a significant consideration,
which has led to a search for alternatives including the use
of induced pluripotent stem cells (iPSC) (21). However, these
cells frequently present genetic modifications, including aberrant
DNA methylation and gene mutations, and it has been suggested
that their use may lead to tissue aberrations or malignant
transformation after transplantation (22, 23). The use of iPSCs
bypasses ethical issues associated with embryonic or fetal stem
cells, as they are generated from non-pluripotent cells. Another
means of obtaining undifferentiated cells is the use of directly
reprogrammed NSCs, which are generated from somatic cells
and seem to be a safer alternative (24, 25). However, these cells
appear inefficient in promoting remyelination in patients with
MS, as only a small percentage of the NSCs grafted differentiate
into OLs. One proposal to avoid this problem is the use of
partially differentiated cells, such as bipotent glial cells capable
of differentiating either into astrocyte or OL lineage cells, or
OPCs, which are unipotent and can only differentiate into
OLs. OPCs can be derived both from iPSCs (21, 26, 27) and
from directly reprogrammed NSCs (28). Some researchers have
even attempted to develop modified OPCs with an improved
myelinogenic capacity.

Most evidence on the transplantation of OL lineage cells
is from models of traumatic spinal cord lesions. These
cells have been shown to be capable of promoting tissue
repair and functional recovery (29, 30), with one study
reporting that the implantation increased the number of
OLs, resulting in improved motor function (31). While the
mechanism behind this functional improvement is not known,
it has been suggested that it may involve neurotrophic
factors secreted by OPCs (32). OLs are highly susceptible
to reduced survival due to the local cytotoxic conditions
in and near immune and traumatic lesions. It has been
reported that laboratory pre-differentiation of OL lineage cells
and grafting of OPCs is more efficient for remyelination-
mediated repair than the grafting of undifferentiated cells
(33), particularly if the OPCs are enriched (34); this is a
long process, however (35). The generation of OPCs from
iPSCs is a recent development (36-38); other researchers
have developed cell lines overexpressing such receptors as
GPR17, promoting migration (39), or secreting platelet-derived
growth factor-AA and fibroblast growth factor-2, favoring
proliferation (40).

Human OPCs are known to promote remyelination (41),
which has led to the use of various protocols in patients with
spinal cord lesions (27, 31, 40-43), achieving an efficiency of
differentiation into OLs of 40% of grafted cells. Administration
of OPCs is also effective in rats with congenital hypomyelination
(44) and stroke with white matter lesions (45). Research
has shown that delayed cell transplantation is effective for
older spinal cord lesions (46). The works of Prof Goldman’s
group highlight the potential of cell therapy in demyelinating
pathologies, including those of genetic substrate (16, 47).

Most studies into cell therapies for MS do not use NSCs,
as they aim to control the autoimmune mechanism rather
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than to promote remyelination. One proposed treatment
is the transplantation of different cell types, including
human embryonic cells, mesenchymal stem cells derived
from human bone marrow (48), human placental stem
cells (49), hematopoietic stem cells, human dental pulp
stem cells (50), Wharton’s jelly-derived stem cells (51), and
undifferentiated adipose-derived stem cells (52); these cells
have anti-inflammatory and immunomodulatory properties
and can reduce degeneration in experimental autoimmune
encephalomyelitis (53). However, the issue becomes more
complex when we consider the efficiency of implantation in
vivo (54) and whether the ability to promote myelin repair (55)
owes more to the stimulation of an endogenous repair response
or to the cells implanted and their neurotrophic function.
These cells also promote remyelination and significantly reduce
clinical signs of MS in an animal model of the disease. The
most suitable route of administration is subject to debate. NSCs
administered intravenously appear in the brain and spinal
cord, proliferate, and migrate to MS lesions, probably due to
chemotactic mechanisms (56). These findings were reported in
various clinical trials, which are addressed in a recent review
(57). OPCs, on the other hand, are able to migrate within the
CNS but not from the cerebrospinal fluid or the bloodstream;
therefore, the route of delivery is an important question if we
have to use these cells as a treatment. One possibility is the
nose-to-brain pathway, which has been used to administer drugs
(58) and nanoparticles (59).

BIOMATERIALS IN CELL THERAPY

Biomaterials (BM) are natural or synthetic biocompatible
materials used in the manufacture of devices that interact
with biological systems. BMs are widely used in medicine.
Applications include natural or synthetic polymers, used to
treat wounds; drug delivery systems; vascular grafts; and tissue
reconstruction (60). As well as being biocompatible, it is essential
that BMs do not provoke adverse reactions after implantation,
and that they continue functioning for the necessary period of
time; this need has given rise to efforts to develop products
with specific physical and chemical properties. For example,
a BM may promote cell development and differentiation by
creating a suitable local environment, improving the implanted
cells’ chances of survival (61). In the administration of OPCs
to patients with MS, BMs may serve several purposes, enabling
delivery of OPCs to the CNS and promoting migration to
demyelinated areas, if they favor differentiation into OLs;
nanofiber scaffolds resembling the natural structure of axons
enable modeling of the interaction between axons and OLs,
promoting neuron-glia interaction and myelination (62, 63). The
use of biomaterials as particles is one of the most promising
approaches. Particles constitute a transport system made up
of natural or artificial polymers, enabling controlled, sustained
delivery; specific targeting of lesions; and a high surface-area-
to-volume ratio. This enables drugs to be administered at lower
doses and frequency. Given these properties, particles may be the
most suitable means of transporting cells (64).

READY FOR
INTRANASAL
ADMINISTRATION

)
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FIGURE 1 | Characteristics of the biomaterials and cells in the intranasal
administration, as well as the characteristics that must preserve the hydrogels
that surround the cells. An Important fact is that the cells used should be safe
without any possibility of generating tumor formations.

The specific BM chosen for cell therapy is an important factor,
as the BM’s surface properties are directly related to its biological
behavior in vitro (e.g., adherence and the ability to permit
cell proliferation and differentiation). Various natural materials,
synthetic polymers, and ceramics have been proposed. Natural
materials including purified collagen, hyaluronic acid, alginate,
and chitosan have been used extensively in regenerative medicine
and tissue engineering. Synthetic polymers are reproducible and
can be modified to control their properties, such as degradation
speed, mechanical properties, and shape. Calcium phosphate
ceramics have been used in cell therapy for the skeletal system.
Hydrogels constitute a particularly attractive class of materials
(65). Hydrogels are networks of polymers, structured in a
chemical or physical form, that expand in water and can be
designed either with natural materials, such as alginate, or with
synthetic polymers including polyethylene glycol. The specific
advantages of these materials are the minimal adverse reactions
in the host (i.e., biocompatibility), their high water content,
the relatively mild reaction conditions, and the capacity for
minimally invasive delivery as injectable vehicles. In the Figure 1,
shows the characteristics that the cells, the biomaterials, as well
as the attributes of the cells wrapped by biomaterials should have
(Figure 1), acting as a fine wrap, to facilitate its release.

ISSUES RELATED TO THE
ADMINISTRATION OF

OPCs THROUGH PARTICLES TO
PROMOTE REMYELINATION

OPCs clearly merit consideration as a therapeutic option
targeting remyelination in MS, with the delivery of exogenous
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OPCs to demyelinated areas; however, there remain several
outstanding issues (66). Many of these are addressed in an
extensive review published recently by Unal et al. (67). Firstly,
the most eligible patients are those with reduced remyelinating
ability, specifically older patients or those with history of arterial
hypertension (68), longer progression times, predominantly
periventricular rather than subcortical lesions (periventricular
lesions show lower levels of spontaneous remyelination), greater
inflammatory activity (as measured with T2-weighted MRI
studies), greater numbers of demyelinated areas (black holes on
T1-weighted sequences) or larger areas of myelin loss (white
matter PET scan) (69, 70), or pseudotumoral lesions that
may hinder OPC migration (71). Additional relevant questions
are: are exogenous OPCs sensitive to mechanisms regulating
oligodendrogenesis, or do they behave in the same way as
endogenous OPCs? Should chemical products be added to
grafts as signals promoting remyelination? What effect does
the coexistence of both endogenous and exogenous OPCs
have on remyelination? Should the administration of OPCs
be different in each patient, in accordance with the degree
of demyelination/remyelination?

One important issue is the delivery of OPCs to the CNS and
their migration to the lesion area. OPCs can only enter the CNS
through direct delivery or through the nose-to-brain pathway,
which is only possible if they are loaded into particles capable
of crossing the nasal mucosa. Cells administered by this route
travel directly to the CNS, with minimal loss to other regions
(72). Particles should allow for migration to the lesion site and
differentiation into OLs.

INTRANASAL RUTE

The basis of the mechanism of intranasal delivery is not
understood, existent four main routes: [1] olfactory nerves,
[2] trigeminal nerve pathway, [3] Lymphatic pathway, and [4]
vascular pathways. Previously mentioned, the movement of
molecules from the nasal cavity to the parenchyma of the brain
occurs along both the nerve pathways (olfactory or trigeminal
nerves) mainly, followed by vascular and lymphoid pathways.
Dispersing throughout the brain, even reaching up to the
cerebrospinal fluid (73). Two mechanisms are involved in this
distribution: extracellular (used to transport large molecules
and cells) and intracellular (used to transport by retrograde
flow, small molecules, drugs, vectors, trophic factors, etc.). The
extracellular pathway begins with the drug or cells crossing the
nasal epithelium to the lamina propria, before being transported
externally along the length of the neuronal axon by bulk flow
processes. The axon leads into the CNS, where the drug or
cells is distributed further via fluid movement. The intracellular
mechanism starts with internalization of the molecule by an
olfactory neuron, with the endocytic vesicle within the cell to the
neuron’s projection site (soma), it can be released by exocytosis
or have its effect on the transport cell (74, 75).
Various materials have been used in the

administration of drugs, vaccines or exosomes.

intranasal
In the

Supplementary Material 1, a table is shown with the materials
used in the intranasal administration of substances.

NASAL ADMINISTRATION OF CHITOSAN

Chitosan and its derivatives seem to be the most suitable
natural polymers for administration to the CNS (76). Chitosan
is a mucopolysaccharide closely resembling cellulose, produced
during the deacetylation of chitin. It is derived from the shells of
crustaceans and from fungal cell walls (77). Chitosan particles are
biodegradable, biocompatible, and stable, with low toxicity, and
are soluble in aqueous acid solutions (78, 79). While many routes
of administration are available (80), nasal administration allows
passage to the brain (81), and has been used for such drugs as
anti-LINGO-1 (82), teriflunomide (83), and carbamazepine (84).
Nasal administration of chitosan hydrogel has been used as a
treatment for Alzheimer disease or biomedical applications in the
CNS (85, 86). While there is less evidence on the transportation
of cells than there is for drugs, chitosan is known to permit
differentiation of both NSCs (87) and OPCs (88). Chitosan
appears to be particularly appropriate for administration via the
nose-to-brain pathway (89, 90). This route of administration
is particularly attractive for the delivery of drugs to the CNS,
as it bypasses the blood-brain barrier (91-93). The nasal cavity
is connected to the brain via the olfactory and trigeminal
pathways (94), enabling administration of drugs through the
nasal mucosa (90). This is a painless, non-invasive means of
administration and can be used to deliver therapeutic agents in
patients with neurodegenerative diseases (95-99). Furthermore,
drugs delivered through the nasal mucosa are not subject to
hepatic first pass metabolism. Therefore, doses are usually 2-10
times lower if drugs are administered nasally rather than orally.

Up to one-third of patients with MS present olfactory
alterations, although these are generally detected through
physical examination rather than because of patients’ complaints.
Such alterations are attributed to changes in the connectivity
of various CNS pathways, and are more frequently observed
in patients with progressive forms of MS and with cognitive
alterations (100); therefore, they should not affect the passage of
particles to the brain.

If chitosan is to be used in treatments for MS, an autoimmune
disease, we must consider whether the material provokes an
immune response or triggers any kind of response favoring
autoimmunity. However, chitosan has been used as a component
of a vehicle for oral interferon beta in patients with MS (101),
and for the administration of vaccines (102). It is also difficult
to attribute immune responses exclusively to chitosan, as the
products transported in the particles may themselves provoke
such a reaction. Studies have shown that the treatment may
provoke an innate (103) and adaptive immune response (104-
106), although increased levels of anti-inflammatory cytokines
have also been reported (107). Several syntethic polymers or
natural biomaterials have been used for CNS applications,
chitosan is nowadays one of the leading substrates, employed
as it can be found in nature or as a modified derivative.
In biomolecules delivery, it stands out for its mucoadhesive
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FIGURE 2 | Experimental scheme proposed as a strategy to evaluate the viability of intranasal administration of cells in two models of multiple sclerosis, the
cupriazone model (administered in the diet for 5 weeks) which is a systematic demyelination and the lysolecithin model, the which by means of the amplification by
sterotactic injection in the corpus callosum of the animals induces foci of local demyelination. Where the main objective of our hypothesis is to achieve the activation of
endogenous remyelination mechanisms in the central nervous system, favored by the application of myelinating cells wrapped in biocompatible biomaterials that

Re;nyeii’r;ation

Lysolecithin Model
(Local demyelination)

and BBB penetration enhancement properties that make it a
great substrate for nose-to-brain approaches (76, 86, 97). For
tissue engineering and regenerative medicine, chitosan and its
derivatives have shown to promote axonal regeneration, anti-
inflammation, and to successful deliver neurotrophic factors and
cells with a consequently functional recovery (108). In this way,
chitosan-based biomaterials have become increasingly popular to
use, alone or in combination with other molecules (86).

In the Figure 2, shows in a schematic and simple way the
stages in the development of the project, starting from the
preclinical trial to the clinical trial (Figure 2).

CONCLUSIONS

While the potential use of OPCs for remyelination is a promising
therapeutic strategy, there is a need for basic research before
clinical trials can be performed. It is also necessary to establish
the best route of administration, although transporting cells
in particles through the nose-to-brain pathway seems the
most suitable. Researchers must also assess which BM is most
appropriate; while chitosan and derivatives seem to be the most
promising, we must assess the responses of patients with MS
and whether migration to demyelinated areas is maintained. In
conclusion, this line of research may yield an alternative to the
remyelinating drugs currently being studied.

Studies should take into account various additional problems,
including immune response to the treatment, given that
MS is an autoimmune disease, and the use of associated
immunomodulatory treatments. Treatment with repeated
intracerebral injections of increasing doses of OPCs to different

locations has been proposed as a treatment for patients with
secondary-progressive MS. However, this method is not
straightforward, given the need for administration protocols
guaranteeing reproducibility and reducing the considerable rate
of cell death associated with transplantation via injection; the
survival rate can reach 1% due to such factors as exposure of
cells to an inflammatory microenvironment, limited diffusion of
oxygen and nutrients, immune destruction, dispersion through
a deteriorated local vascular system, and activation of apoptosis
and autophagy.
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