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Management of gliomas following initial diagnosis requires thoughtful presurgical
planning followed by regular imaging to monitor treatment response and survey
for new tumor growth. Traditional MR imaging modalities such as T1 post-contrast
and T2-weighted sequences have long been a staple of tumor diagnosis, surgical
planning, and post-treatment surveillance. While these sequences remain integral in
the management of gliomas, advances in imaging techniques have allowed for a more
detailed characterization of tumor characteristics. Advanced MR sequences such as
perfusion, diffusion, and susceptibility weighted imaging, as well as PET scans have
emerged as valuable tools to inform clinical decision making and provide a non-
invasive way to help distinguish between tumor recurrence and pseudoprogression.
Furthermore, these advances in imaging have extended to the operating room and
assist in making surgical resections safer. Nevertheless, surgery, chemotherapy, and
radiation treatment continue to make the interpretation of MR changes difficult for
glioma patients. As analytics and machine learning techniques improve, radiomics
offers the potential to be more quantitative and personalized in the interpretation
of imaging data for gliomas. In this review, we describe the role of these newer
imaging modalities during the different stages of management for patients with
gliomas, focusing on the pre-operative, post-operative, and surveillance periods.
Finally, we discuss radiomics as a means of promoting personalized patient care
in the future.
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Abbreviations: EOR, extend of resection; HGG, high-grade glioma; LGG, low-grade glioma; GBM, glioblastoma; MRI,
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NCE, non-contrast enhancing; IDH, isocitrate dehydrogenase; MGMT, O6-methylguanine-DNA methyltransferase; DWI,
diffusion-weighted imaging; ADC, apparent diffusion coefficient; SWI, susceptibility-weighted imaging; DSC, dynamic
susceptibility contrast; DCE, dynamic contrast enhanced; ASL, arterial spin labeling; rCBV, relative cerebral blood volume;
MRS, MR spectroscopy; DTI, diffusion tensor imaging; FA, fractional anisotropy; RCT, randomized controlled trial;
GTR, gross total resection; iMRI, intraoperative MRI; fMRI, functional MRI; BOLD, blood oxygen level dependent; DES,
direct electrical stimulation; MEG, magnetoencephalography; HFC, high functional connectivity; LFC, low functional
connectivity; nTMS, navigated transcranial magnetic stimulation; nrTMS, navigated repetitive TMS; PFS, progression-
free survival; OS, overall survival; PET, positron emission tomography; 18F-FDG, 2-18F-fluoro-2-deoxy-D-glucose; 18F-
FET, O-(2-18F-fluoroethyl)-L-tyrosine; 11C-MET, (S-11C-methyl)-L-methionine; 18F-FDOPA, 3,4-dihydroxy-6-18F-fluoro-
L-phenylalanine; AA PET, amino acid PET; TBR, tumor-background ratio.
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INTRODUCTION

Gliomas are the most common primary brain tumor with varying
prognosis depending on their grade and genomic profile (Louis
et al., 2021). Patients often present with seizures and/or focal
neurological deficit and undergo an imaging study, often an MRI
scan, that reveals the neoplastic lesion. The standard of care
for these patients begins with maximal safe resection followed
by chemotherapy and radiation (Stupp et al., 2005; Molinaro
et al., 2020). In the case of high grade glioma (HGG), there is
substantial evidence to suggest that maximal extent of resection
(EOR) of the contrast-enhancing (CE) regions of tumor on post-
contrast T1 imaging, and in some cases resection of non-contrast
enhancing (NCE) disease that extends beyond the CE tumor
(i.e., a supratotal resection), improves survival (Li et al., 2016;
Esquenazi et al., 2017; Molinaro et al., 2020).

In order to achieve a maximal safe resection of these
infiltrative tumors, particularly when the goal is a supratotal
resection, advanced imaging modalities, such as perfusion
imaging, diffusion imaging, spectroscopy, and positron emission
topography (PET) imaging, have become increasingly useful
surgical adjuncts, especially when used in combination with
intraoperative brain mapping. Nevertheless, despite aggressive
treatments, these tumors almost always recur, and early
detection of tumor recurrence remains critical for optimal
patient management and evaluation of treatment options,
including feasibility of repeat surgical resection. In the
months following tumor resection and radiation therapy,
the appearance of treatment effect or pseudoprogression, which
is defined as the radiographic appearance of tumor growth
that spontaneously resolves without additional anti-tumor
therapy and is actually reflective of treatment response, can
closely resemble the appearance of recurrent, progressive tumor
on imaging. Therefore, it is critical to distinguish between
these phenomena to best manage patients (Stupp et al., 2005,
2009, 2014). Additionally, distinguishing true progression from
pseudoprogression is critical for proper patient enrollment
in clinical trials at the time of recurrence. This distinction
represents another key area where multimodal imaging studies
can improve clinical decision-making (Chaskis et al., 2009). In
this review, we describe the role for various imaging modalities
for patients with primary brain tumors during the pre-operative
and surveillance stages of treatment and highlight the emerging
field of radiomics for gliomas.

PREOPERATIVE IMAGING AND
SURGICAL PLANNING

After the initial diagnosis of lesion concerning for an intra-axial
brain tumor is made, most institutions employ a standardized
protocol for lesion characterization and pre-operative planning.
3-dimensional (3D) T1 pre- and post-contrast-enhanced, T2
contrast-enhanced, fluid-attenuated inversion recovery (FLAIR),
and diffusion-weighted imaging (DWI) at a magnetic field
strength of a minimum of 1.5 tesla (T) are commonly a part of
these protocols (Ellingson et al., 2015). In the following section,

we describe these common sequences and discuss how they
can be used to clarify the diagnosis, determine the extent of
tumor invasion, and maximize safety during tumor resection. For
an overview of the various imaging techniques covered in this
review, see Table 1.

T1 Pre- and Post-gadolinium and T2/T2
Fluid-Attenuated Inversion Recovery
Sequences
T1-weighted pre- and post-contrast images as well as the
T2 weighted images, particularly the fluid-attenuated inversion
recovery (T2 FLAIR) sequence, are often the most critical
for tumor visualization and are most frequently utilized intra-
operatively with neuronavigation to assist with tumor resection.
Aberrant vascular proliferation and tumor necrosis caused by
high grade gliomas results in disruption of the blood-brain
barrier (BBB) and vascular leakage of intravenously administered
gadolinium contrast agent (Upadhyay and Waldman, 2011;
Ellingson et al., 2017a; Hu et al., 2020). The contrast agent
extravasation leads to T1 shortening and hyperintensity (i.e.,
“contrast-enhancement”) on T1-weighted imaging (Figure 1;
Hervey-Jumper and Berger, 2016; Hu et al., 2020).

In the case of glioblastoma (GBM), it is well-known that
malignant cells invade past areas of contrast enhancement on
T1 imaging (Berman et al., 2007). As mentioned above, a
recent multicenter cohort study investigating maximal resection
of CE and NCE tumors demonstrated that in addition to the
survival benefit conferred by maximal resection of the CE
tumor, additional resection of NCE tumor leads to improved
overall survival (OS) regardless of isocitrate dehydrogenase
(IDH) and O6-methylguanine-DNA methyltransferase (MGMT)
methylation status in younger patients (Molinaro et al.,
2020). This underscores the need for imaging modalities
for HGG delineating tumor infiltration past areas of high
contrast enhancement.

T2/FLAIR sequences are better suited for visualizing low-
grade glioma (LGG) as well as areas of edema and tumor
growth extending past CE areas on T1 typical of HGG. Low-
grade tumors less frequently enhance on T1 post-contrast images
given their lower rates of proliferation and intact BBB, making
T2/FLAIR an important sequence in the evaluation of LGG
(Figure 1; Sage and Wilson, 1994; Scott et al., 2002; Harpold
et al., 2007; Gupta and Dwivedi, 2016). When LGGs do contrast
enhance, the pattern is often patchy or wispy, which can indicate
areas of malignant transformation (Whitfield et al., 2014; Zhang
et al., 2021). Unlike, T1 sequences, T2/FLAIR functions by
demonstrating hyperintensity in areas of prolonged transverse
relaxation time due to increased water content (Upadhyay and
Waldman, 2011; Ellingson et al., 2017a; Hu et al., 2020; Li J. et al.,
2020). This property is useful in the visualization of peritumoral
edema, an area containing infiltrating tumor cells and increased
extracellular water due to plasma fluid leakage from aberrant
tumor capillaries that surrounds the CE tumor core in HGG
(Saadoun et al., 2002; Warth et al., 2007; Barajas et al., 2012,
2013). T2/FLAIR thus plays a valuable role in the planning
of HGG resection given it reveals NCE areas of infiltrative
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TABLE 1 | Imaging techniques for glioma imaging, utility, and limitations.

MRI technique Clinical utility and findings

Preoperative Techniques for Tumor Characterization

T1 Anatomic MRI- evaluates tissue architecture

Pre-contrast Hyperintensity from fat, blood products, mineralization

Post-contrast Demonstrates non-specific BBB breakdown

T2/FLAIR Anatomic MRI- evaluates tissue architecture

Hyperintensity in peritumoral edema, non-enhancing tumor, gliosis, white matter injury

DWI Evaluates Brownian motion/diffusion of water molecules, can be presented as an ADC map

Reduced diffusion (high signal intensity) in areas of increased cellularity due to tumor and in cytotoxic edema or postoperative injury

SWI Sensitive to magnetic susceptibility of tissues

Hypointense appearance from blood products, hyperintense appearance from calcification

MRS Evaluate tumor biochemical/metabolic profile

HGGs show higher Cho/NAA and Cho/Cr ratios than LGGs

Perfusion imaging

DSC Main metric is cerebral blood volume

High blood volume suggestive of higher tumor grade or tumor recurrence

DCE Main metric is ktrans, a measure of permeability

High permeability suggests higher tumor grade

ASL Main metric is cerebral blood flow

High blood flow suggestive of higher-grade tumor. Does not require exogenous contrast.

PET Investigates tumor rates of proliferation and metabolism using molecular tracers

FDG PET Compares rates of tumor uptake of glucose metabolism relative to surrounding tissue; higher rates of glucose metabolism seen in higher tumor
grades

AA PET Compares rates of amino acid transport in tumors relative to surrounding brain tissue; higher rates of amino acid tracer metabolism indicative of
higher tumor grade.

Imaging techniques for preoperative and intraoperative

DTI Examines the direction of diffusivity of water molecules along white matter tracts.

Tractography demonstrates location of white matter tracts relative to infiltrative tumor to inform pre- and intra-operative planning

fMRI Evaluate brain activation based on specific tasks based on regional changes in blood oxygenation levels

Used for functional mapping of specific brain regions to help preserve areas critical to perform certain tasks by is limited by poor sensitivity and
specificity and overall poor correlation with intraoperative direct electrical stimulation mapping

MEG Detects magnetic fields generated by electrical currents from neuronal action potentials

Registered with 3D MRI sequence to visualize functional neuronal activity

nTMS Utilizes transcranial magnetic fields to non-invasively stimulate/inhibit brain cortex

Transcranial magnetic fields applied through non-invasive image-guided method to generate functional maps to differentiate eloquent from
non-eloquent cortex.

HGG, high-grade glioma; LGG, low-grade glioma; MRI, magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery; BBB, blood-brain barrier; DWI, diffusion-
weighted imaging; SWI, susceptibility-weighted imaging; DSC, dynamic susceptibility contrast; DCE, dynamic contrast enhanced; ASL, arterial spin labeling; MRS, MR
spectroscopy; DTI, diffusion tensor imaging; fMRI, functional MRI; MEG, magnetoencephalography; nTMS, navigated transcranial magnetic stimulation; PET, positron
emission tomography; FDG PET, 2-18F-fluoro-2-deoxy-D-glucose; AA PET, amino acid PET.

disease (Barajas et al., 2012; Henker et al., 2019; Hu et al., 2020;
Verburg and de Witt Hamer, 2021). T2 and FLAIR sequences can
also be used to predict clinically relevant molecular features of
glioma, as is the case with T2/FLAIR mismatch sign. T2/FLAIR
mismatch sign is characterized by a the presence of areas of
hyperintensity on T2-weighted image paired with a relatively
hypointense signal on FLAIR imaging with the exception of a
hyperintense peripheral rim (Figure 2; Deguchi et al., 2020).
This finding is strongly indicative of IDH-mutant, 1p/19q non-
codeleted astroyctomas with a positive predictive value (PPV)
ranging from 83 to 100% (Patel S. H. et al., 2017; Broen et al.,
2018; Deguchi et al., 2020).

While T2 FLAIR and T1 post-contrast images- provide crucial
information in the preoperative and intraoperative period, there
are limitations to the information provided by these modalities.

Despite the utility of T1-post contrast imaging for detecting
HGG based on contrast extravasation, tumors such as GBM
occasionally show no or minimal enhancement on T1 post-
contrast imaging (Figure 1). Similarly T2 and FLAIR sequences
are limited in their ability to distinguish between LGG and
HGG (Scott et al., 2002; Maia et al., 2004). These limitations are
addressed to a degree through the use of additional sequences
and imaging modalities that serve to complement anatomic MR
sequences in the assessment of gliomas to further characterize
tumor grade.

Diffusion-Weighted Imaging
Diffusion-weighted imaging (DWI) is an MR sequence that
measures random (Brownian) movement of water molecules and
calculates diffusion metrics such as apparent diffusion coefficient
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FIGURE 1 | Glioblastoma, IDH-wildtype. (A) Axial CT without contrast: Ill-defined hypodensity lesion centered in the left superior temporal gyrus; (B) axial DWI: No
associated reduced diffusion; (C) axial T1 pre-contrast: hypointense mass; (D) coronal T2: heterogeneous mass with hypointense rim with prominent central
necrosis (yellow arrow); (E) axial T2: heterogeneous mass with hypointense rim with prominent central necrosis (yellow arrow); (F) axial SWI: prominent blood
products within the mass (black arrow); (G) axial ASL perfusion: marked hyperperfusion (black arrows) within the rim enhancing component of the mass; (H) axial T1
post-contrast: heterogeneous mass with thick rim enhancement (yellow arrows) and prominent central necrosis; (I) coronal T1 post-contrast: heterogeneous mass
with thick rim enhancement and prominent central necrosis; (J) sagittal T1 post-contrast: heterogeneous mass with thick rim enhancement and prominent central
necrosis. CT, Computed tomography; DWI, Diffusion-weighted imaging; SWI, Susceptibility-weighted imaging; ASL, Arterial spin labeling; MRS, Magnetic resonance
spectroscopy.

FIGURE 2 | T2/FLAIR mismatch. (A) Axial T2: homogenously hyperintense
mass (yellow arrow). (B) Axial FLAIR: hypointense mass (yellow arrow) relative
to T2 image with exception of a hyperintense peripheral rim (white arrow).

(ADC). In the context of glioma imaging, restricted diffusion (i.e.,
low ADC signal) indicates hypercellularity due to high tumor
proliferation and restriction of water diffusion compared to
tissues with lower cellular density. These areas of hypercellularity
causing restricted water diffusion appear as bright signal on
DWI (Figure 3; Schmainda, 2012). Several studies demonstrate
an inverse relationship between ADC and cellular density with
this inverse relationship also existing for ADC in relation to

tumor proliferation (Ellingson et al., 2010; Schmainda, 2012).
Notably, intratumoral heterogeneity and areas of necrosis can
limit the utility of ADC values in certain regions of the tumor
(Lam et al., 2002). Still, this property of detecting hypercellularity
can detect early stages of malignant transformation that may not
yet show contrast enhancement on T1 (Baehring et al., 2007;
Schmainda, 2012).

A more recently developed technique of diffusion imaging
known as diffusion kurtosis imaging (DKI) functions by
quantifying the non-Gaussian nature of water molecules to
develop several metrics that allow for a significantly better
characterization of intratumoral heterogeneity relative to DWI.
Recent studies propose that DKI is capable of detailing
certain differences between tumor grades in gliomas, including
differences between WHO grades II and III, and differences
between grades III and IV (Raja et al., 2016). This emerging
technology is not commonly used in clinical practice, but may
play a role as a non-invasive means of evaluating a tumor’s
molecular characteristics (Raja et al., 2016).

Susceptibility-Weighted Imaging
Susceptibility-weighted imaging (SWI) is an MR sequence that
shows differences in the local magnetic field susceptibility among
neighboring tissues, allowing for visualization of substances such
as deoxyhemoglobin in venous blood, iron deposition in the
brain, or calcium, providing important diagnostic information
(Löbel et al., 2010). SWI images are generated by processing data
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FIGURE 3 | Diffuse astrocytoma, IDH-wildtype. (A) Axial T1 pre-contrast: expansile hypointense left insular mass; (B) Axial T1 post-contrast: No associated
enhancement; (C) axial FLAIR: heterogeneous mixed hyper- and hypointense signal intensity within the mass; (D) axial T2: homogeneous hyperintense mass; (E)
axial FLAIR: hyperintense region of the tumor (white arrow) in the posterior aspect; (F) axial DWI: associated reduced diffusion in the posterior tumor (white arrow);
(G) axial T2: localizer for single voxel MRS targeted to the posterior tumor; (H) proton MRS single voxel: pathologic increase in choline metabolite at 3.2 ppm (yellow
arrow) and absent NAA metabolite (arrowhead) at 2 ppm consistent with proliferating process. Biopsy targeted to this region showed cellular astrocytoma. FLAIR,
Fluid-attenuated inversion recovery.

that is acquired from methodology that includes a combination
of high-resolution (3.0 T), a long echo time (TE), full-flow
compensation, and a 3D gradient-echo. The acquired MR data is
processed to detect susceptibility differences in substances within
tissues such as those that are ferromagnetic (iron), paramagnetic
(deoxyhemoglobin, clots), and diamagnetic (calcium) (Haacke
et al., 2004). Magnetic fields applied to diamagnetic calcium
appear bright while paramagnetic blood products appear dark
on imaging (Figure 1). Based on these properties, SWI is the
preferred modality for visualizing microhemorrhages, which
becomes particularly valuable when trying to distinguish areas
of necrosis or hemorrhage after radiation treatment, which will
be discussed in more detail later in the review (Li et al., 2010;
Löbel et al., 2010; Mohammed et al., 2013). The ability of
SWI to identify calcium on imaging can also aid in predicting
tumor histology and/or grade prior to pathological confirmation,
particularly if a CT scan has not been obtained. Appearing
as areas of low signal intensity, intratumoral calcification is
most common in oligodendrogliomas, and can also be seen
in gangliogliomas, pilocytic astrocytomas, and ependymomas
(Emblem et al., 2008; Mohammed et al., 2013; Hsu et al., 2016).
Additionally, there are studies that demonstrate that SWI can
help differentiate brain abscess and necrotic GBM in cases where

it is difficult to make a distinction on T1 post-contrast imaging
(Toh et al., 2012).

In terms of limitations of this technique, multiple studies
report long acquisition time of SWI as a limitation of this
modality given that prolonged imaging can cause patient
discomfort and is susceptible to motion artifact and image
distortion (Sehgal et al., 2006; Tong et al., 2008; Fujima et al.,
2010). Furthermore, while SWI is adept at imaging blood
products and can depict blood vessels in both low-grade and
high-grade glioma, the presence of calcium or hemorrhage within
the tumor can serve as a susceptibility artifact that leads to
underestimation of tumor perfusion; therefore, SWI is not as
commonly used for visualizing microvessel density and tumor
perfusion as other MR techniques (Willats and Calamante, 2013).

MR Perfusion Imaging
Dynamic susceptibility contrast (DSC), dynamic contrast
enhanced (DCE), and arterial spin labeling (ASL) are the most
commonly used MR perfusion techniques in clinical practice.
DSC works by measuring transient decrease in brain signal
intensity on T2∗-weighted sequences after gadolinium contrast
agent administration to generate a signal intensity time curve
that is used to compute relative cerebral blood volume (rCBV)
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FIGURE 4 | MR perfusion sequences. (A) Axial DSC perfusion: Marked hyperperfusion within the lateral and posterior aspects of the mass (black arrows); (B) axial
DCE perfusion: Marked capillary leakiness within the central aspect of the mass (arrowheads); (C) axial ASL perfusion: Marked hyperperfusion of a neoplasm in the
frontal lobe. DSC, Dynamic susceptibility-weighted contrast-enhanced; DCE, Dynamic contrast enhanced; ASL, Arterial spin labeling.

for each voxel (Hu et al., 2012). rCBV signal correlates directly
with microvessel volume and is seen as a marker of angiogenesis
(Figure 4), serving to distinguish HGG from LGGs and non-
neoplastic etiologies such as post-treatment effect with greater
rCBV signal in higher grade gliomas (Danchaivijitr et al., 2008;
Xiao et al., 2015). There is evidence to suggest that this modality
is predictive of malignant transformation of LGGs (Maia et al.,
2004) and overall survival, and can be particularly helpful in
distinguishing tumor recurrence from post-treatment effect
such as radiation necrosis, and pseudoprogression- defined as
a transient increase in post-contrast enhancement within the
treated tumor lesion that presents during the first 6 months after
treatment, followed by spontaneous radiographic improvement
or resolution without any changes to the treatment regimen (Law
et al., 2006, 2008; Chaskis et al., 2009; Schmainda, 2012; van West
et al., 2017).

The absolute quantification of cerebral blood flow, cerebral
blood volume, and mean transit time using DSC is dependent
on what is known as the arterial input function (AIF). The
AIF describes contrast agent input to the brain through the
measurement of contrast agent concentration as it flows through
brain-feeding arteries. In clinical practice AIF is typically
obtained by manually selecting a region of interest around a
feeding artery (i.e., the internal carotid artery or middle cerebral
artery), a process that is subjective, user-dependent, and can lead
to variability between scans, affecting repeatability of DSC studies
(Bleeker et al., 2011; Jafari-Khouzani et al., 2015).

DCE works by measuring dynamic signal changes on T1
weighted imaging after administration of intravenous contrast.
In the context of glioma imaging, DCE is used to measure rates
of capillary permeability caused by disordered tumor vasculature
through the use of a volume transfer constant- ktrans. This
metric can be informative in the process of tumor grading
given that HGGs have greater vascular permeability relative to
LGGs (Roberts et al., 2000; Patankar et al., 2005). Given that
DCE is primarily used to provide insight into tumor vascular
permeability (Figures 4, 5), the utility of DCE is limited for the
imaging of gliomas that do not exhibit BBB disruption or vascular
leakage (Patankar et al., 2005; Essig et al., 2013).

FIGURE 5 | Molecular glioblastoma. (A) Axial FLAIR: homogeneously
hyperintense mass; (B) axial T1 post-contrast: mild enhancement within the
mass without distinct area of necrosis; (C) axial DSC perfusion: marked
hyperperfusion within the lateral and posterior aspects of the mass (black
arrows); (D) axial DCE perfusion: marked capillary leakiness within the central
aspect of the mass (arrowheads); (E) axial ASL perfusion: marked increase in
cerebral blood flow and hyperperfusion of tumor in the frontal lobe (different
tumor than the one depicted in panels A–D).

In contrast to DSC and DCE, ASL does not require
intravenous injection of exogenous contrast (Figures 1, 4, 6).
This technique quantitatively measures cerebral blood flow by
inverting the magnetization of water protons in blood with a
train of radiofrequency pulses in the carotid or vertebral arteries
before blood enters the brain. Images are then collected and
subsequently subtracted from a set of control static images,
allowing for the quantification of cerebral blood flow (Zhang
et al., 1995; Villanueva-Meyer et al., 2017; Hernandez-Garcia
et al., 2019; Williams et al., 2019). Based on these properties,
ASL can be used to differentiate HGG from LGG based
on elevated perfusion (Kim et al., 2008; Cebeci et al., 2014;
Villanueva-Meyer et al., 2017).
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FIGURE 6 | Diffuse glioma, IDH-mutant. (A) Axial FLAIR: Expansile hyperintense mass in the right medial temporal lobe; (B) axial T1 pre-contrast: hypointense mass;
(C) axial T1 post-contrast: no associated enhancement within the mass; (D) axial SWI: no blood products or calcium within the mass; (E) axial DWI: linear reduced
diffusion (white arrows) in the right hippocampus due to recent seizure activity; (F) axial ASL perfusion: Marked hyperperfusion within the right hippocampus and
medial temporal lobe due to recent seizure activity (yellow arrow).

On the other hand, ASL is limited by a low signal-to-
noise ratio that results from the fact that labeled molecules
in blood make up only 0.5–1.5% of the full static tissue
signal, which can be improved by increasing total scan time.
Additionally, absolute CBF quantification using ASL can be
highly variable between patients due to differences in physiologic
factors such as cardiovascular disease, age, sex, and hematocrit
(Henriksen et al., 2013). Furthermore, a lack of standardization
in postprocessing algorithms can result in variability in CBF
measurements (Delgado et al., 2018). In order to develop a
protocol for the widespread clinical use of ASL in the distinction
between LGGs and HGGs, further standardization of absolute
CBF quantification methods is warranted.

Of note, there are additional techniques that have emerged
in more recent years that also can provide valuable information
about glioma perfusion that are currently being explored as
methods of improving the diagnostic accuracy of imaging. One
such example is that of vessel architecture imaging (VAI) MRI, a
technique that serves to describe the structural heterogeneity of
microvasculature in the brain. VAI is used to examine differences
in tumoral vasculature based on glioma type that helps in the
distinction of LGG from HGG (Zhang et al., 2019).

Another technique that has been adopted in the imaging of
gliomas is intravoxel incoherent motion (IVIM)- a technique
that captures data on perfusion and diffusion of water molecules
in brain tissue and associated capillary networks (Le Bihan
et al., 1986; Shen et al., 2016; Togao et al., 2016; Zou et al.,
2018). This sequence does not require the injection of exogenous
contrast, and is utilized in certain studies to attempt to
characterize glioma grade and IDH1 mutational status (Wang
et al., 2019). Although these modalities are not used commonly
in clinical practice, they may prove useful as adjuncts to the
aforementioned MR perfusion techniques that are more widely
used (DSC, DCE, and ASL).

MR Spectroscopy
MR spectroscopy (MRS) helps characterize the biochemical
composition of regions of interest in the brain. This includes
steady state concentrations of certain metabolites, metabolic
reaction rates, and transport between cellular compartments.
MRS provides insight into differences in biochemical
composition between normal brain tissue and tumor. By
tracking the presence of certain metabolites, such as choline
(Cho), N-acetylaspartate (NAA), creatinine (Cr), lactate
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(Lac), and myo-inositol (MI), MRS provides insight into cell
membrane turnover (Cho), neuronal viability (NAA), normal
cellular metabolism (Cr), tissue hypoxia (Lac), and astrocytic
integrity (MI) (Herholz et al., 1992; Castillo et al., 2000; Gupta
et al., 2000; Barker, 2001; Villanueva-Meyer et al., 2017). In
the context of preoperative glioma assessment, Cho/NAA
and Cho/Cr metabolite peaks exhibit a positive correlation with
increasing tumor grade (Figure 3), and can be used to distinguish
vasogenic edema from infiltrative edema (Fountas et al., 2004;
Hourani et al., 2008; Villanueva-Meyer et al., 2017; Hu et al.,
2020). Furthermore, emerging MRS technology allows for the
detection of 2-hydroxyglutarate (2-HG), an oncometabolite
that is produced by IDH mutant tumor cells serving as a
non-invasive assessment of lesions where the diagnosis of
LGG is uncertain (Choi et al., 2012). Histologically validated
studies show that 2-HG detection through MRS can be used
to distinguish IDH mutant from IDH wildtype glioma, albeit
with variable sensitivity and specificity (Choi et al., 2016; Tietze
et al., 2018). Limitations to this modality include the need for
a relatively large lesion within a voxel, the lack of technical
standardization in terms of acquisition techniques, and volume
averaging (Burtscher et al., 2000; Villanueva-Meyer et al., 2017).
Furthermore, low concentration of certain metabolites relative to
water molecules makes detection of certain substances at clinical
fields <3 T difficult, and can also lead to long acquisition times
(Wu et al., 2016).

One novel MR technique that can also be used to investigate
tissue metabolites is that of chemical exchange saturation transfer
(CEST). CEST is capable of detecting a chemical compound of
interest based on the exchange of magnetization between liable
hydrogen protons of said compound and surrounding water
molecules. This property allows for the detection of certain
tissue metabolites with a higher spatial resolution than MRS
(Hoefemann et al., 2021). In the case of glioma imaging, amide
proton transfer (APT) CEST is the most common application
of CEST, although not as widely available or commonly used as
MRS. Elevated concentrations of proteins in glioma compared
to surrounding tissues and the high rates of intracellular proton
exchanges leads to an increased APT level. APT CEST can be
used to differentiate between LGGs and HGGs (Choi et al.,
2017), differentiation between regions of tumor and peritumoral
edema (Wen et al., 2010), and is gaining interest as a method of
investigating intratumoral heterogeneity (Warnert et al., 2021).
One notable advantage of MRS over CEST is that MRS is
able to simultaneously quantify multiple compounds, while
CEST is only able to acquire one or two compounds at a
time. Overlapping CEST effects from multiple metabolites also
causes low specificity in CEST imaging for the measurement of
specific tissue metabolites. The combination of CEST and MRS
is currently being investigated, and may play a role in glioma
imaging (Hoefemann et al., 2021).

Positron Emission Tomography as a Tool
for Preoperative Planning
Positron emission tomography (PET) uses a variety of
radio-labeled tracers to assess rates of cell proliferation,

glucose metabolism, amino acid uptake, and membrane
biosynthesis. This emerging clinical tool in the field of neuro-
oncology thus provides valuable molecular, functional, and
metabolic information about tumor biology. The most
common molecular tracers utilized for PET imaging of
gliomas include those that image glucose metabolism—2-
18F-fluoro-2-deoxy-D-glucose (18F-FDG)—and those that
image amino acid transport— O-(2-18F-fluoroethyl)-L-tyrosine
(18F-FET), (S-11C-methyl)-L-methionine (11C-MET), and
3,4-dihydroxy-6-18F-fluoro-L-phenylalanine (18F-FDOPA)
(Albert et al., 2016).

Positron emission tomography imaging with the glucose
analog 18F-FDG compares rates of cellular 18F-FDG uptake in
tumor cells relative to surrounding normal brain parenchyma.
A high degree of 18F-FDG PET uptake correlates with higher
tumor grade and decreased survival (Padma et al., 2003). In
the stage of primary tumor diagnosis, 18F-FDG PET can also
be used to distinguish between GBM and CNS lymphomas
given markedly distinct rates of 18F-FDG uptake between the
two malignancies (Kosaka et al., 2008; Yamashita et al., 2013;
Fink et al., 2015). However, there are significant limitations
to the use of 18F-FDG PET for glioma diagnosis. The high
rate of glucose metabolism and 18F-FDG uptake in normal
brain cortex limits the diagnostic accuracy of 18F-FDG PET
(Albert et al., 2016). Moreover, this modality has limited
specificity in distinguishing between gliomas, metastatic lesions,
and even other non-neoplastic lesions like brain abscesses,
neurosarcoidosis, and certain demyelinating CNS disorders
(Omuro et al., 2006; Albert et al., 2016). Therefore, 18F-
FDG is not typically used in the presurgical planning period,
instead amino acid PET tracers (AA PET) are preferred
molecular tracers.

Tumor cells take up AA PET tracers at a higher rate than
surrounding brain parenchyma; therefore, these tracers can
provide greater tumor-to-background contrast than 18F-FDG
(Albert et al., 2016). Histology-validated series show that 18F-
FET, 11C-MET, and 18F-FDOPA are superior tracers to 18F-
FDG PET in delineating extent of glioma infiltration in both
LGGs and HGGs. Of note, 18F-FET is commonly used in the
context of glioma characterization given that it has a high
sensitivity in detection of WHO grade III and IV gliomas with the
majority (>95%) of these tumors displaying high tracer uptake
(Hutterer et al., 2013; Rapp et al., 2013; Jansen et al., 2015;
Albert et al., 2016).

AA PET is also effective in visualizing tumor volumes that
extend past areas of contrast enhancement on T1, and can
also delineate tumor infiltration within non-specific areas of
abnormal T2/FLAIR enhancement (Chen et al., 2006; Galldiks
et al., 2006, 2011; Ledezma et al., 2009; Pafundi et al.,
2013; Dunet et al., 2016). Furthermore, studies focused on
examining intratumoral heterogeneity also show that AA PET
is capable of identifying areas of higher cell proliferation
within heterogenous glioma (Tanaka et al., 2009; Ewelt et al.,
2011). AA PET thus could be used in the clinical setting to
help optimize image-guided biopsy in the preoperative period
by identifying areas of high cellularity and proliferation, and
could also serve a role maximizing EOR by identifying areas
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FIGURE 7 | Recurrent glioblastoma in right posterior insula (FMISO PET-MR). (A) Axial FLAIR: Ill-defined hyperintense area in the right posterior insula (black arrow);
(B) axial T1 post-contrast: mild enhancement in the right posterior insula (white arrow); (C) axial 18F-FMISO PET: avid uptake of FMISO tracer in the right posterior
insular (yellow arrow). Biopsy targeted to this region showed recurrent glioblastoma. 18F-FMISO, Fluoromisonidazole; PET, Positron emission tomography.

of infiltrating glioma not seen on anatomic MRI sequences
(Ledezma et al., 2009).

PET can also be used as a tool for prognostication. Despite
previously stated limitations of 18F-FDG PET, this modality is
reported to correlate with increased survival in patients with
new GBM diagnosis (Albert et al., 2016; Sun et al., 2018). In the
case of AA PET scans, earlier decrease in time-activity curves
in dynamic (kinetic) 18F-FET PET correlates with malignant
transformation in the case of WHO grade II gliomas, and
decreased overall survival in astrocytic HGGs (Jansen et al.,
2015). Additionally, 18F-fluoromisonidazole (18F-FMISO), a PET
imaging agent that selectively binds to hypoxic tissues, that
is used to visualize degree of GBM tissue hypoxia also holds
potential for prognostication (Figure 7). Given that higher pre-
treatment 18F-FMISO standardized uptake value peak (SUVpeak)
is significantly associated with shorter OS (Gerstner et al., 2016).

Overall, PET is a powerful tool that has great clinical
potential that is currently not commonly used in the preoperative
planning period due to a lack of widespread utilization of
AA PET in imaging centers, cost of use, and differences in
methodology among studies investigating clinical use of PET
(Albert et al., 2016).

ADJUNCTS TO ASSIST WITH
INTRAOPERATIVE DECISION MAKING

Surgical planning through the use of the aforementioned
MR modalities is essential for tumor characterization and
localization. Gliomas can often involve brain structures that are
critical for normal sensorimotor, visual, and cognitive function.
Therefore, there must be a balance between resecting as much
tumor as possible and preserving regions that are critical to
optimize patient quality of life. In the following section, we
describe MR and non-MR techniques that can help identify
areas that are critical for neuronal function and thus guide

preoperative and intraoperative decision making to maximize the
safe resection of gliomas.

Diffusion Tensor Imaging
Diffusion tensor imaging (DTI) is a variant of DWI that also
measures Brownian motion of water molecules but does so
along a greater number of orthogonal planes. DTI can measure
the directionality in diffusion of water molecules, a property
that is particularly useful for the detection of large white
matter tracts. The corticospinal tract, arcuate fasciculus, optic
radiations, and fronto-occipital fasciculus are composed heavily
myelinated axons that travel in parallel bundles, an architectural
property that promotes the diffusion of water molecules along
the direction of these white matter tracts (Cho and Jang, 2020).
Furthermore, DTI calculates the metric of fractional anisotropy
(FA), a numerical value based on the anisotropy of water
molecules along axons that can provide insight into presence of
intact myelinated white matter tracts (Le Bihan et al., 2001; Oh
et al., 2005). For example, substantial decreases in FA are known
to correlate with disruptions in white matter due to the presence
of gliomas and peritumoral edema (Lu et al., 2004; Zolal et al.,
2012; Fudaba et al., 2014).

The ability of DTI to delineate differences between
subcortical white matter is useful during intra-operative
navigation for identifying white matter fiber tracts and for
defining the proximity to these anatomical tracts at the
tumor resection margins (Figures 8–12; Berman et al., 2007;
Zolal et al., 2012). One randomized controlled trial (RCT)
comparing outcomes with and without preoperative DTI in
214 diffuse glioma patients with pyramidal tract involvement
demonstrated that the use of DTI-based neuronavigation
intraoperatively can help maximize safe rates of gross total
resection (GTR) and improve outcomes for patients with low-
and high-grade gliomas involving the pyramidal tract with
significant post-operative functional benefits (Wu et al., 2007;
Verburg and de Witt Hamer, 2021).
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FIGURE 8 | Tractography corticospinal tract. Corticospinal tractography (yellow arrows) spanning from the superior motor cortex to pons overlaid on axial T1
post-contrast images showing enhancing necrotic glioblastoma (white arrows) in the left posterior parahippocampal gyrus.

FIGURE 9 | Tractography: arcuate fasciculus. Arcuate fasciculus tractography (yellow arrows) overlaid on sagittal T2 images.

There are several limitations to this imaging modality when
using it intra-operatively to assist with tumor resections. First,
there can be great variability of tracking algorithm settings
that can lead to white matter tract overestimation. Second, this
modality can be user-dependent depending on region-of-interest
placement (Verburg and de Witt Hamer, 2021).

One additional significant limitation of the use of DTI (and
of any imaging modality where a preoperatively generated
image is used for intraoperative neuronavigation) lies in
the phenomenon of “brain shift” where the brain shifts
intraoperatively away from the dural edge, and the spatial
relationship of the brain is altered compared to the pre-operative
images (Kuhnt et al., 2012). Glioma tumor volume has a
significant correlation with brain shift, with one study reporting
shift relative to preoperative imaging as high as 14.3 mm

(Reinges et al., 2004). There is further evidence to suggest
that length of surgery, craniotomy size, and supratentorial
location correlate with greater brain shift (Reinges et al., 2004;
Reinertsen et al., 2014). Intraoperative MRI (iMRI) has can
be employed as a supplement to DTI and functional imaging
as a method of compensating for brain shift and assessing
the degree of tumor resection. Multiple studies show that this
method increases EOR in glioma surgery with no significant
increase in new postoperative deficits (Senft et al., 2011;
Kuhnt et al., 2012).

Functional MRI
Functional MRI (fMRI) can be used to visualize neuronal activity
by measuring the ratio of deoxyhemoglobin to oxyhemoglobin
to generate a blood oxygen level dependent (BOLD) signal
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FIGURE 10 | Tractography: optic radiations. (A) Optic radiation tractography (yellow arrows) overlaid on axial T1 post-contrast images showing enhancing necrotic
glioblastoma (white arrows) centered in the left posterior parahippocampal gyrus; (B) optic radiation tractography (yellow arrows) overlaid on sagittal T2 images.

FIGURE 11 | Tractography: inferior fronto-occipital fasciculus. (A) Inferior fronto-occipital fasciculus tractography (yellow arrows) overlaid on sagittal T2 images. Left
temporal glioblastoma (white arrows) is adjacent to but does not invade the tract. (B) Inferior fronto-occipital fasciculus tractography (yellow arrows) overlaid on axial
T1 post-contrast images. Left temporal glioblastoma (white arrows) is adjacent to but does not invade the tract.

that allows for the spatiotemporal mapping of neuronal activity
during periods of rest or cognitive tasks (Buchbinder, 2016).
BOLD signal is determined by changes in the magnetic field
surrounding red blood cells that depends on the state of
oxygenation of hemoglobin. Oxyhemoglobin is diamagnetic
and has a similar magnetic field relative to surrounding brain
tissue. On the other hand, deoxyhemoglobin- which is at a
higher concentration in brain tissue of high neuronal activity-
is paramagnetic and forms local endogenous magnetic field
gradients with strength that is dependent on deoxyhemoglobin
concentration. These magnetic field gradients can be detected
on T2 and T2∗ sequences (Thulborn et al., 1982; Ogawa et al.,
1993). fMRI can be used in presurgical functional brain mapping,
particularly when localizing areas of motor function (Krings et al.,
2002; Bush et al., 2017).

Despite its utility in preoperative planning, a variety of
challenges arise with the use of fMRI for glioma resection.
First, vascular changes in HGGs can lead to neurovascular
decoupling and BOLD signal loss that may not actually be
reflective of absence of neuronal function, thus resulting in
false negative fMRI signal loss (Fujiwara et al., 2004). Given
this vulnerability of fMRI signal to microstructural alterations,
task-based fMRI is reported to be more reliable in LGGs
than HGGs (Castellano et al., 2017). Another limitation is
that, compared to direct electrical stimulation (DES), fMRI is
significantly limited in mapping the functional connectivity of
language areas with sensitivity and specificity of 91 and 64% for
identification of Broca’s area and 93 and 18% for identification
of Wernicke’s area (Hervey-Jumper and Berger, 2016). Moreover,
there is considerable variability between studies in the reported
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FIGURE 12 | Tractography: superior longitudinal fasciculus. Sagittal T2-weighted images show glioblastoma centered in the hippocampus and parahippocampal
gyrus (white arrows). Overlay of tractography of superior longitudinal fasciculus (yellow arrows) demonstrates sparing of the tract by the tumor.

sensitivity and specificity for language mapping, a factor that can
be attributed to differences in language paradigms investigated,
a lack of standardization of distance thresholds when utilizing
DES to confirm fMRI accuracy, and glioma grade heterogeneity
(Morrison et al., 2016; Ellis et al., 2020).

Another important factor to consider when utilizing fMRI for
clinical decision making is that sub-regions of functional areas are
activated depending on a specific task, and while fMRI mapping
suggests that certain areas are involved in particular tasks, it does
not indicate whether said areas are necessary for function (Haller
and Bartsch, 2009). Thus, surgical sparing of certain functional
areas based on fMRI can often times preclude what may be a
safe resection (Southwell et al., 2018). Therefore, while fMRI
can be an adjunct for assessing surgical risk of tumor resection
preoperatively, DES remains the gold standard for determining
the location of function intraoperatively (Haller and Bartsch,
2009; Borchers et al., 2011; De Witt Hamer et al., 2012; Desmurget
and Sirigu, 2015; Weiss Lucas et al., 2020).

Magnetoencephalography
Magnetoencephalography (MEG) detects magnetic fields that are
generated by electrical currents from neuronal action potentials.
MEG can be registered with a 3D MRI sequence to visualize
functional neuronal activity with high spatiotemporal resolution-
a spatial resolution of a few millimeters and a temporal resolution
in milliseconds (Naeije et al., 2016). In addition to providing
information regarding task-based neuronal activity, MEG is
able to identify regions of high functional connectivity (HFC)
and low functional connectivity (LFC) (Verburg and de Witt
Hamer, 2021). This serves as a useful method of preoperatively
evaluating function of tumoral and peritumoral brain tissue for
surgical planning, particularly for preoperative somatosensory
and motor mapping for which there are multiple validation
studies (Yang et al., 1993; Schiffbauer et al., 2003; Lin et al.,
2006; Nagarajan et al., 2008; Lee et al., 2020). Furthermore, MEG
connectivity maps can reliably identify areas lacking in eloquent

cortex, for LFC there is reportedly a negative predictive value of
100% for the presence of eloquent cortex during intraoperative
DES (Martino et al., 2011). Therefore, MEG can detect areas
near functional cortex that are amenable to resection while
minimizing neurological deficits (Guggisberg et al., 2008).

Additionally, there is evidence to suggest that MEG may serve
as an important supplement to DES during tumor resection
in areas involving language processing. One study using MEG
mapping to aid in LGG and HGG tumor resection found
that surgical resection of HFC sites with negative response to
intraoperative DES correlated with early transient postoperative
functional decline in language processing that resolved within
3 months in patients who did not experience additional
neurological insult such as stroke or early tumor progression.
Although limited by a small sample size, these findings suggest
that MEG can serve as a predictor of early transient decline
in language processing following glioma resection (Lee et al.,
2020). This modality is limited by cost, given that liquid
helium is required to maintain the superconducting equipment
of MEG machines, and availability is considerably limited
(Hervey-Jumper and Berger, 2016).

The reliability of MEG in relation to fMRI as a method of
functional mapping is an active area of research. One ongoing
clinical trial reports that MEG has a higher specificity for motor
and language mapping but a lower sensitivity for motor mapping
than fMRI. Furthermore, this study reports that using MEG
and fMRI in combination could potentially serve to increase the
accuracy of motor mapping relative to the use of MEG and fMRI
separately. While published data for this study has a low sample
size, ongoing data collection may provide further insights into the
clinical utility of combining MEG and fMRI (Ellis et al., 2020).

Navigated Transcranial Magnetic
Simulation
Navigated transcranial magnetic stimulation (nTMS) is a
technique that utilizes a wound copper coil to generate strong
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magnetic pulses targeting a specific area of the brain. This coil is
paired with a stereotactic image-guided system to generate highly
accurate functional maps capable of differentiating eloquent
from non-eloquent tissue through non-invasive stimulation and
inhibition of specific cortical areas (Bush et al., 2017). nTMS
is well-suited for preoperative identification of eloquent motor
cortex, with a reported accuracy of nTMS for generating a
functional motor map in relation to the gold standard, DES, of
99.7% (Picht, 2014). Importantly, the high accuracy of nTMS for
generating a functional motor map is reported to be consistent
between different examiners in the clinical setting (Picht et al.,
2009; Forster et al., 2011; Krieg et al., 2012; Paiva et al., 2012;
Tarapore et al., 2012; Picht, 2014; Haddad et al., 2020). In
practice, nTMS influences preoperative plans for tumor resection
by confirming or negating suspected involvement of primary
motor cortex by the tumor, often leading to improved surgical
outcomes for tumors involved with motor pathways (Frey et al.,
2014; Picht, 2014; Picht et al., 2016). Furthermore, nTMS can be
utilized to enhance accuracy of white matter tractography when
used in conjunction with DTI. This technique can help diminish
intraoperative injury in patients whose white matter tracts are
closely involved with tumor, especially there are significant
signal alterations in DTI due to peritumoral edema and vascular
changes (Weiss et al., 2015). There is an abundance of clinical
evidence to support favorable clinical outcome in patients
receiving preoperative nTMS for resection of lesions involving
motor cortex including greater improvement in postoperative
motor function, lower rates of postoperative motor decline, and
increased GTR (Krieg et al., 2014; Raffa et al., 2019). Therefore,
employing nTMS for surgical planning in cases where gliomas
involve motor cortex is an important consideration.

Language mapping is more challenging with this technology
and usually relies on navigated repetitive TMS (nrTMS), which
utilizes repetitive bursts of TMS and is better-suited for functional
language mapping than the single pulses utilized for nTMS
(Haddad et al., 2020). Similar to other functional mapping
techniques, nrTMS has great variability in reported sensitivity
and specificity for language mapping between studies (Picht et al.,
2013; Tarapore et al., 2013). There are studies to suggest that
combination of functional modalities such as fMRI or DTI with
nrTMS may lead to improved functional mapping and clinical
outcomes, but further investigation is needed to make these
practices commonplace in the clinical setting (Ille et al., 2015;
Könönen et al., 2015; Sollmann et al., 2018).

IMAGING FOR MONITORING
TREATMENT RESPONSE AND TUMOR
RECURRENCE

Despite the aggressive standard of care, nearly all diffuse gliomas
eventually recur and postoperative surveillance imaging is critical
to identify tumor recurrence as early as possible to provide
treatment that can help slow down the rate of disease progression
(Stupp et al., 2005, 2014; Le Rhun et al., 2016). There are
several studies that show high rates of recurrence among LGGs
within the 5 year postoperative period despite gross total tumor

resection (Soffietti et al., 1998; Shaw et al., 2008; Chaichana et al.,
2010). Early diagnosis of tumor recurrence in LGGs is critical
to diminish chances of malignant transformation of recurrent
LGGs (Duffau and Taillandier, 2015; Le Rhun et al., 2016). In the
case of GBM, tumor recurrence is inevitable and can be difficult
to manage. Common practice to attempt to manage recurrent
GBM is the use of antiangiogenic agents (i.e., bevacizumab),
nitrosourea alkylating agents, and/or repeat tumor resection
(Wick et al., 2010; Batchelor et al., 2013; Johnson et al., 2013).

Postoperative surveillance for tumor recurrence and
treatment-related changes is an ongoing challenge given that
imaging characteristics of glioma recurrence and gliosis or
treatment effect are similar in appearance on T1 and T2
sequences (Albert et al., 2016). Hyperintense signal on T1 post-
contrast imaging within the resection cavity in the postoperative
period is concerning for tumor recurrence, but can also be
representative of ischemic brain tissue as well as devitalized
tumor (Winter et al., 2020). Furthermore, inflammatory
processes following chemoradiation can lead to a transient
edematous process that can mimic signs of tumor recurrence in
both HGG and LGG patients for several months after therapy.
This process is often mistaken for tumor progression but
does not represent true tumor recurrence and is thus termed
pseudoprogression (Figure 13; Winter et al., 2020; Li et al., 2021).

Response Assessment in
Neuro-Oncology Criteria for
Differentiating Tumor Recurrence From
Pseudoprogression
In an effort to distinguish tumor progression and
pseudoprogression on imaging, the updated Response
Assessment in Neuro-Oncology (RANO) criteria were developed
in 2010. The RANO criteria state that tumor progression taking
place during the 12 week period following the completion of
radiotherapy can only be identified through imaging if new
tumor enhancement arises outside of the radiation field (Wen
et al., 2021). Clues to true progression cited in other articles
include increased T2/FLAIR signal extending past the radiation
field as well as involvement of the corpus callosum, signal that
crosses midline, and subependymal involvement (Mullins et al.,
2005; Abel et al., 2012; Strauss et al., 2019). Serial imaging
over time can attempt to distinguish pseudoprogression from
true tumor recurrence. Pseudoprogression on serial imaging
is characterized by loss of post-contrast enhancement signal
or volume over time (Li J. et al., 2020). However, this can be
flawed as post-treatment effects slowly enlarge, usually over
the span of the first 3–6 months after postoperative radiation
therapy, and require many serial scans before finally regressing
(Figure 13). The fact that the definitive distinction between
pseudoprogression and tumor progression usually takes months,
there is a risk that patients are under- or over-treated (Ellingson
et al., 2017b). Obtaining early post-operative MRI scans (i.e.,
within 48 h of surgery) is critical for differentiating between
pseudoprogression and true progression to avoid postsurgical
confounders, such as tissue ischemia, that may alter signal
intensity or enhancement on subsequent MRI scans. However, in
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FIGURE 13 | Pseudoprogression in glioblastoma. (A) Immediate pre-radiotherapy: axial T1 post-contrast images show rim enhancing and centrally necrotic left
frontoparietal glioblastoma. (B) Eight-week follow up: Immediate post-radiotherapy axial T1 post-contrast images show marked increase in enhancement and
necrosis. (C) Dynamic susceptibility-weighted contrast-enhanced perfusion MRI shows mild increase in blood volume along the posterior rim (black arrows). Single
voxel proton spectroscopy targeted to the posterior component shows markedly increased lipid peak suggesting tissue necrosis. (D) Three-months follow up: axial
T1 post-contrast images show marked decrease in enhancement and necrosis of the treated glioblastoma.

most studies the sensitivity and specificity of anatomic (T1 and
T2 weighted) MR sequences for detection of HGG progression
are only 68 and 77%, respectively. Therefore, additional imaging
modalities, like MR perfusion imaging, DWI and MRS, can be
employed to aid in the diagnosis (van Dijken et al., 2017).

Advanced MR Sequences for Monitoring
Tumor Recurrence
MR perfusion imaging is widely used to aid in distinguishing
between recurrence and treatment effect as recurrent HGG
exhibits higher rCBV values relative to post-treatment radiation

effects (Sadeghi et al., 2008; Schmainda, 2012; Choi et al., 2013;
Patel P. et al., 2017). DWI also plays a role in differentiating
recurrent glioma from radiation treatment effects given that cell
density is high in recurrent glioma tumors and low in areas
of treatment changes. This translates to smaller ADC values
in true glioma recurrence groups relative to pseudoprogression
and post-radiation changes groups (Li C. et al., 2020). MRS
can also be used to differentiate glioma from treatment effects.
Particularly for HGGs, MRS shows an elevated Cho/Cr ratio
in areas of tumor recurrence compared to areas of radiation-
induced necrosis or treatment effect. There are also reported
differences in Cho/NAA ratios between recurrent tumor and
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areas of radiation-induced necrosis (Chuang et al., 2016). Despite
these imaging modalities being more effective than anatomic MRI
in helping distinguish between pseudoprogression, treatment
effect, and true progression, their accuracy and efficacy is limited
and often surgical biopsy with histopathological analysis is
needed to confirm the diagnosis (Li et al., 2021).

Positron Emission Tomography Imaging
for Monitoring Tumor Recurrence
Positron emission tomography also plays a role in the
postoperative surveillance. Given that there is evidence to suggest
that reduction in amino acid uptake is indicative of treatment
response (Sun et al., 2018), there is interest in the use of
AA PET as a method of facilitating the distinction between
glioma recurrence and pseudoprogression (Galldiks et al., 2006;
Jansen et al., 2013). Furthermore, 18F-FET PET can be used to
identify pseudoprogression within the first 3 months following
chemoradiation therapy with an accuracy of 96% (Galldiks et al.,
2015). Regarding the distinction between glioma recurrence and
treatment-related changes there is evidence to suggest that the
diagnostic accuracy of 11C-MET PET and 18F-FET PET for
differentiating recurrence from treatment-related changes is high
with a sensitivity and specificity of 91 and 100% for both tracers
(Grosu et al., 2011; Cui et al., 2021). Furthermore, a lower
tumor-to-normal-uptake (T/N) ratio during AA PET analysis is
associated with lower recurrence and longer OS (Galldiks et al.,
2015; Patel P. et al., 2017; Deuschl et al., 2018). The use of 18F-
FDG for detection of tumor recurrence remains controversial,
similar to its use at the time of diagnosis, but its wide availability
warrants further investigation to attempt to optimize its clinical
use (Wang et al., 2015).

IMAGING TO ASSESS FOR
PSEUDORESPONSE FOLLOWING
IMMUNOTHERAPY

Pseudoresponse refers to a decrease in contrast extravasation
due to diminished leakiness of the BBB, resulting in markedly
diminished CE on T1 post-contrast imaging. This is a finding
that develops following treatment with antiangiogenic agents
such as bevacizumab. Patients with GBM recurrence receiving
bevacizumab immunotherapy. Anti-VEGF-A properties of
bevacizumab often lead to a substantial, rapid radiologic
response of contrast enhancement reduction and decreased
edema just days after treatment; however, current evidence
indicates that bevacizumab does not confer a benefit in OS
(Norden et al., 2008). This is likely due to tumor adaptation
to antiangiogenic therapy resulting in a hypoxic NCE invasive
tumor phenotype that is capable of surviving despite decreased
vascular proliferation. A return to CE from this period of
NCE is associated with particularly poor outcome (Iwamoto
et al., 2009; Galanis et al., 2012; Kim et al., 2015; Wick et al.,
2016); therefore, an active area of investigation is geared toward
developing a generalizable protocol for the identification of
pseudoresponse in GBM.

Response Assessment in
Neuro-Oncology Criteria for Assessing
Pseudoresponse
The updated RANO criteria recommend the use of T2/FLAIR
to assess for pseudoresponse, defined by the RANO criteria
as an area of >50% reduction in CE without a significant
decrease in the presence of NCE on T2/FLAIR. The RANO
criteria provide an essential framework for the standardization
of glioma surveillance following antiangiogenic therapy. Despite
the existence of studies suggesting that DWI, MRS, and
PET scans may play a valuable role in the identification of
pseudoprogression, general experience with the use of these
modalities for this purpose remains limited, and standardization
of postoperative surveillance through incorporation of these
modalities to the RANO criteria is an ongoing challenge
(Boxerman et al., 2018).

One area of active investigation that shows how findings
from the RANO group are being expanded upon is shown
through immunotherapy response assessment in neuro-oncology
(iRANO) criteria. iRANO integrates the framework of response
assessment that the RANO group established for workup
of LGG and HGG to establish guidelines for interpreting
initial progressive imaging findings in patients with LGGs
and HGGs on immunotherapy with goals of optimizing
immunotherapy regimens (Okada et al., 2015). There may
be a role in the incorporation of iRANO criteria in the
context of pseudoresponse as these criteria continue to be
refined and updated.

Positron Emission Tomography as a Tool
for Assessing Pseudoresponse
Positron emission tomography also plays a role in differentiating
pseudoresponse from treatment response in patients with GBM
recurrence receiving bevacizumab immunotherapy. Anti-VEGF-
A properties of bevacizumab often lead to a substantial, rapid
radiologic response of contrast enhancement reduction and
decreased edema just days after treatment; however, current
evidence indicates that bevacizumab does not confer a benefit
in OS (Norden et al., 2008). A large fraction of patients
that originally exhibit radiological response eventually develop
disease progression that can be tracked by increases in T2/FLAIR
signal hyperintensities; however, objective measures of T2 FLAIR
changes are challenging employ reliably (Boxerman et al., 2018).
AA PET has been reported as a potentially viable adjunct in
analyzing pseudoresponse. As a prognostication tool in the
context of pseudoresponse, AA PET shows promise with existing
evidence showing that persistent 18FET-PET signal on NCE
tumor during bevacizumab treatment is predictive of a significant
decrease in OS (Wirsching et al., 2021).

EMERGENCE OF RADIOMICS

Radiomics is the practice of extracting and analyzing quantitative
information from diagnostic images in a manner that can
track subtleties in tumor characteristics and complex patterns
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that are difficult to recognize by the human eye to produce
prognostically important information such as treatment response
vs. the likelihood of tumor progression and survival estimates
(Mayerhoefer et al., 2020). Additionally, radiomics may be a
method of characterizing heterogeneity throughout the entire
tumor volume, compared to tumor biopsies that only capture
heterogeneity within a specific, local region (Mayerhoefer
et al., 2020). While detailing all of the different radiomics
methodologies that can be employed to study tumor composition
is beyond the scope of this review (Hu et al., 2020; Mayerhoefer
et al., 2020), there are existing radiomics methods that have
been employed to study intratumoral characteristics in the
context of GBM. One example lies in one study where image-
guided regional biopsies of GBM were collected, regional
GBM driver genes were identified, and biopsy sites were co-
registered with MRI and texture maps to match genetic regional
status with specific imaging measurements (Hu et al., 2017).
Machine learning algorithms were then employed to identify
MRI signatures at the voxel level that correlated with GBM
driver gene status within different regions of GBM tumor (Hu
et al., 2017). This type of technique can thus serve to produce
an imaging algorithm that can potentially capture tumoral
molecular markers based on stereotyped imaging patterns.

Radiomics and Recurrence
One example of an integrated radiomics model for discriminating
tumor recurrence from radiation necrosis in glioma patients has
recently been developed by Wang et al. (2020). This model was
developed in a primary cohort of 112 patients with pathologically
confirmed gliomas and was validated by a cohort of 48 additional
glioma patients. 18F-FET PET and 11C-MET PET along with
individualized patient data and characteristics were utilized to
generate a model predicting tumor recurrence. The integrated
model consisted of 15 features that were identified as significant
predictors of recurrence (p < 0.001) including variables like mean
tumor-background ratio (TBR) of 18F-FET, maximum TBR of
11C-MET and patient age as well as a radiomics signature, was
found to be highly predictive of recurrent glioma and accurate
across both test and validation cohorts (Wang et al., 2020). More
work will be needed to confirm radiomics based models are
generalizable across different institutions with different scaling
parameters, but this is an exciting emerging field that is advancing

understanding of glioma behavior and developing valuable
prognostic information in a non-invasive manner. Although
there are still significant strides that remain to be made before
broad clinical applications of emerging radiomics models, these
are important initial steps in advancing individualized patient
care for management of gliomas.

CONCLUSION

MR and PET scans have revolutionized the management of
glioma patients. Upon diagnosis of intra-axial brain tumor, it is
standard of care to obtain T1, T2/FLAIR, DWI, and susceptibility
images to guide preoperative planning. Increasingly, this practice
is being enhanced further through the use of advanced imaging
modalities such as MR perfusion, diffusion, and spectroscopy
and PET scans. Moreover, surgical resections are assisted
by functional imaging assessments and intra-operative use of
anatomical images and neuronavigation to maximize the safety
of glioma resection. The monitoring of tumors during treatment
through serial imaging is of great importance, but can be
challenging, as distinguishing between treatment response and
progression is often difficult. In the future it will be important to
standardize the use of sequences like MR perfusion, diffusion, and
spectroscopy and PET scans for postoperative tumor surveillance
as they can dramatically improve interpretation of the underlying
biologic process. Lastly, radiomics is emerging as an exciting
big data tool for quantifying the information provided in
the images and thereby potentially improving precision and
accuracy, however the generalizability and role for radiomics for
the management of gliomas is still unanswered.
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