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Integrating molecular markers into metabolic
models improves genomic selection for
Arabidopsis growth

Hao Tong 123 Anika Kitken® '3 & Zoran Nikoloski@ 123

The current trends of crop yield improvements are not expected to meet the projected rise in
demand. Genomic selection uses molecular markers and machine learning to identify
superior genotypes with improved traits, such as growth. Plant growth directly depends on
rates of metabolic reactions which transform nutrients into the building blocks of biomass.
Here, we predict growth of Arabidopsis thaliana accessions by employing genomic prediction
of reaction rates estimated from accession-specific metabolic models. We demonstrate that,
comparing to classical genomic selection on the available data sets for 67 accessions, our
approach improves the prediction accuracy for growth within and across nitrogen environ-
ments by 32.6% and 51.4%, respectively, and from optimal nitrogen to low carbon envir-
onment by 50.4%. Therefore, integration of molecular markers into metabolic models offers
an approach to predict traits directly related to metabolism, and its usefulness in breeding
can be examined by gathering matching datasets in crops.
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dvances in accuracy, precision, and throughput of mole-

cular marker technologies have provided the basis for new

approaches to improve agronomically important poly-
genic traits (e.g. fresh weight and yield)!. Genomic selection (GS)
is currently considered the most promising breeding method to
speed up the development and release of new genotypes?. It uses
machine learning to integrate phenotypic data of a given trait
with molecular markers (e.g. single nucleotide polymorphisms
(SNPs)) in a statistical model for a training population. The
model for the trait is then used to predict genomic estimated
breeding values (GEBV) of genotypes in a testing population
which have been genotyped but not phenotyped* (Fig. 1a). The
predicted GEBVs of unseen genotypes can be used for selection,
even for complex traits with low heritability, without any further
phenotyping. Therefore, an increase in GS accuracy can accelerate
genetic gain by shortening the breeding cycles>°. Yet, it remains
elusive whether the accuracy of GS predictions within and, in
particular, across environments can be improved2®7.

Although GS simultaneously estimates effects of markers by
foregoing statistical testing, it does not integrate information of
cellular networks available for model plants and some crops®. For
instance, high-quality large-scale metabolic network models of A.
thaliana, maize, and rice have been used to generate insights into
genotype-phenotype relationships by using the constraint-based
modeling framework that includes simplifying, but biochemically
relevant constraints®~11. Metabolic network models include all
known enzymatic functions of primary metabolism that influence
growth. They further incorporate a biomass reaction that char-
acterizes the chemical composition of a gram dry weight of the
modeled plant or tissue in a specific environment!?, Plant
metabolic models have been employed to: (i) predict reaction
rates through major pathways!>14, (ii) study the effect of
manipulating pathways (e.g. photorespiration!® or introducing
photorespiratory bypasses!©), (iii) estimate the impact of nutrient
deficiency on growth!l, and (iv) compare the different types of
photosynthesis!7-18,

Here, we focus on plant growth as an agronomically relevant
trait largely determined by the rate at which the available nutri-
ents are transformed into the building blocks of biomass. We
show that metabolic reaction rates (i.e. fluxes) are polygenic traits
which can be predicted by GS and employed in estimating growth
for a given genotype. As a result, we propose an approach for
network-based GS (termed, netGS) that uses metabolic models
and improves the prediction accuracy of classical GS for growth
within and across environments (Fig. 1b). The formulation of
netGS allows its applications for traits which are directly related
to metabolism.

Results

Flux distribution of A. thaliana population. To integrate
knowledge of metabolic network models in GS, we couple SNP
datal® with predictions of steady-state fluxes from accession-
specific metabolic models of 67 A. thaliana accessions with bio-
mass reactions for optimal nitrogen (N) conditions (see Methods,
Supplementary Fig. 1, Supplementary Data 1). The models are
developed based on the data obtained from rosettes, where key
processes relevant for growth take place. Estimating genome-wide
steady-state fluxes with labeling approaches in a photo-
autotrophically grown A. thaliana rosette is currently practically
infeasible2. To apply GS with fluxes as phenotypes, we first
determine a reference steady-state flux distribution from A.
thaliana accession Columbia (Col-0) (Supplementary Fig. 1). To
this end, we use flux balance analysis (FBA)?! with a model that
integrates a Col-0-specific biomass reaction and constraints on
the rates of canonical pathways and key reactions (i.e. ratio of

starch synthesis to sucrose synthesis rates and RuBisCO’s car-
boxylation to oxygenation rates) (Eq. 1) obtained from existing
studies under optimal N20. This strategy has been used to accu-
rately simulate the effects of photorespiratory bypasses'® and
model different types of photosynthesis!®. As a result, we predict
that 336 of the 549 reactions (61.2%) in the metabolic model for
Col-0 have non-zero fluxes (Supplementary Data 2). Most of the
remaining zero-flux reactions are involved in export of amino
acids to other tissues and in starch degradation (Supplementary
Data 2). Since solutions obtained from FBA are often not unique,
we also check the variability of the estimated reference flux dis-
tribution of Col-0. We show that the variability for more than
95% of reactions is negligible (see Methods, Supplementary Fig. 2,
Supplementary Data 3) and, thus, does not affect the predictions
that follow.

We obtain the flux distribution, under optimal N, for a model
with a biomass reaction specific to another accession by
minimizing the distance to the reference flux distribution of
Col-0. To this end, we further impose an additional constraint
that the ratio of predicted biomass fluxes, which model growth, fit
the ratio of measured rosette fresh weights (Eq. 2, Fig. 1b,
Supplementary Fig. 1, Supplementary Data 2). This method to
estimate flux distributions is widely used in microbial and plant
studies to estimate the flux distribution of mutant genotypes!>22,
As a result, we obtain a flux profile for every reaction in the A.
thaliana metabolic model over the population of 67 accessions
grown under optimal N.

Biological and statistical properties of flux distribution. We
next examine if the estimated flux distributions are biologically
reasonable. Differences in fresh weight of 67 A. thaliana acces-
sions are expected to be directly linked to alterations in nutrient
acquisition, fixation, and (re)allocation as well energy demand
between accessions. Indeed, we find that the largest flux ranges
across the 67 accessions are observed for reactions involved in:
photosynthesis, i.e. the Calvin-Benson cycle and light reactions,
glycolysis, oxidative phosphorylation, pentose phosphate path-
way, gluconeogenesis, glutamate synthesis and degradation, gly-
cine synthesis, and pyruvate metabolism (Fig. 2, Supplementary
Fig. 3). More specifically, we find that the average ratio between
the RuBisCO’s carboxylation and oxygenation rates exhibits a
41.7% decrease, while the average ratio the between starch
synthesis and synthesis rates shows a 59.5% decrease relative to
the measured value in Col-0, demonstrating an expected varia-
bility in the flux through canonical pathways to explain differ-
ences in fresh weight?®> (Supplementary Table 1).

To further demonstrate that the predicted fluxes are biochemi-
cally feasible, we contrast the predictions with measurements of
maximal rate (V,,,,,) for six enzymes: nitrate reductase, glucose-1-
phosphate adenylyltransferase, glutamine synthase, malate dehy-
drogenase, glutamate synthase, and fumarate hydratase?. We
expect that if the predicted fluxes are biochemically feasible, they
must not exceed the accession-specific V... Indeed, we find that
the predicted fluxes in every accession are in line with this
expectation for five out of the six enzymes, and there are only
very small deviations in nitrate reductase for 30 accessions
(Supplementary Data 4). Therefore, the estimated fluxes are
biologically feasible and can be used in further analyses.

We next quantify the similarity between every pair of
accessions based on the Pearson correlation of the accession-
specific data on SNPs, measured metabolite levels, and estimated
fluxes, and investigate the congruence of the resulting matrices by
the Mantel correlation?* (Supplementary Fig. 4). To this end, we
use two types of SNP data: SNPs which fall in coding sequences of
genes included in the metabolic models, termed enzymatic SNPs
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Fig. 1 Comparison of classical and network-based genomic selection. a Classical genomic selection uses a statistical model g(x), devised from genotypic
data x and phenotypic data y in a training population, to predict the performance of individuals in a testing population with available genotypic data x/ only.

b Network-based genomic selection uses phenotypic data to devise accession-

specific metabolic models for the training population. The metabolic models

are used to estimate steady-state fluxes for each metabolic reaction over the considered genotypes and to build respective statistical models g;(x) based on

the genotyping data x. The statistical models are then used to identify a flux

distribution, under metabolic constraints (e.g. steady-state), alongside the

corresponding growth for a genotyped individual x/ from the testing population.
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Fig. 2 Flux ranges of metabolic systems in the metabolic model of A.
thaliana. The metabolic systems with the most variable fluxes are shown in
the x-axis. Largest variation is exhibited for glycolysis, photosynthesis light
reactions, and pentose phosphate pathway. The remaining metabolic
systems exhibit small fluxes, small variations, or both (Supplementary
Fig. 3). n=3 to 76 fluxes in each metabolic system are used. Center line,
median; box limits, 75th and 25th quartiles; whiskers, 1.5xinterquartile
range; points, outliers. Source data are provided as a Source Data file.

(1824), and all SNPs, termed genome-wide SNPs (180,859) (see
Methods). The matrices capturing the similarity of accessions
based on the enzymatic and genome-wide SNPs exhibit a
significant and large Mantel correlation (0.94, p-value < 10730),
while all other pairs show negligible correlations (Supplementary
Table 2). These findings show that enzymatic SNPs are
representative markers, and that relationships between accessions
based on genomic data are not congruent with those based on
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metabolic phenotypes. The latter is consistent with established
characterizations of metabolic phenotypes as polygenic traits of
relatively low heritability?>. As a result, we focus the analysis on
enzymatic SNPs, and show that the findings also hold with the
larger set of genome-wide SNPs.

The flux distribution of every non-reference accession is
obtained independently of data and models of other non-
reference accessions. So we next investigate if the predicted
fluxes are suitable for statistical modeling. We observe that 293
reactions (i.e. 87.2% of reactions with non-zero flux) show
coefficients of variation greater than 10% (Supplementary Fig. 5,
Supplementary Data 5), a level of variation that is sufficient for
statistical modeling. If every flux exhibits high correlation to
measured fresh weight, we would not be able to improve GS
accuracy by integrating marker data into metabolic models. We
find that 96 reactions (28.6%) show an absolute value of the
Pearson correlation coefficient smaller than 0.9, with the smallest
of these corresponding to the flux of water diffusion between
different cellular compartments (Supplementary Data 6). There-
fore, not all fluxes mimic the fresh weight data, used as
constraints in the flux estimation, and they may be used to
improve the accuracy of genomic prediction of growth.

Improvement of GS accuracy by usage of metabolic models.
We next employ the enzymatic SNPs and devise a statistical
model for the flux of each reaction. To this end, we opt to use a
state-of-the-art statistical approach for GS, the ridge regression
best linear unbiased prediction (rrBLUP) with 3-fold cross-vali-
dation?6. We employ the resulting models to determine flux
GEBVs for each reaction (Supplementary Fig. 1). The average
accuracy of the flux models is 0.225, which is lower than the
accuracy of predicted growth (0.241, biomass reaction) (Supple-
mentary Data 6). The prediction accuracy for fluxes of only 95
reactions (28.3%) is higher than that of growth, and it is negative
for five fluxes (1.5%) (Supplementary Fig. 6A). Moreover, con-
sistent with the high correlations between estimated fluxes and
measured biomass, the accuracy of models for 223 reactions
(66.4%) falls in a narrow range (i.e. between 0.22 and 0.26) to that
of growth. However, the fluxes with most accurate models (larger
than 0.40) exhibit lower correlations to biomass (~0.72) (Sup-
plementary Data 6). Similar findings hold for genome-wide SNPs,
where the prediction accuracy for fluxes ranges between —0.062
and 0.464, with an average of 0.339 (Supplementary Fig. 6B,
Supplementary Data 6).

However, estimations of GEBV for fluxes as traits cannot be
directly used in netGS for growth, since the predictions resulting
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from statistical models may not respect the basic physico-
chemical constraints (e.g. mass balance and upper bounds on
fluxes). To address this problem, we determine the closest steady-
state flux distribution to the predicted flux GEBVs which exceed
the GEBVs of the flux through the biomass reaction (Eq. 4,
Supplementary Fig. 1). The resulting steady-state flux GEBVs are
associated with a flux through the biomass reaction which we use
as a GEBV for growth. The average accuracy of netGS from a 3-
fold cross-validation is 0.31, which leads to a significant increase
of 28.2% over the accuracy for prediction of fresh weight (as a
proxy for growth) using the classical GS (Supplementary Table 3,
p-value = 9.01x107>, paired t-test). We also investigate the effect
of using only the flux GEBVs from statistical models with
accuracy above a given threshold. Following this strategy, we
demonstrate that the accuracy of netGS can be further increased
to 32.6% relative to the classical GS when using only flux models
with prediction accuracy larger than that for fresh weight (Fig. 3a,
Supplementary Table 3, p-value = 6.28x1076, paired t-test).

It has been shown that larger differences between the training
and testing populations lead to worse GS accuracy?’. However,
this remarkably does not hold for netGS: in the cross-validation
case with the largest population difference, with a coancestry
coefficient?8 of 0.21, we find that the accuracy of the classical GS
is nearly zero, but that of netGS reaches 0.31 (Supplementary
Data 7). However, while netGS cannot further improve 83.3% of
the cases with accuracies larger than 0.4 from the classical GS,
and we find that all cases with negative prediction accuracy from
the classical GS are improved by netGS (Supplementary Fig. 7,
Supplementary Data 7).

Since netGS combines the interdependence of fluxes with
measured metabolite levels to create accession-specific models, we
also examine the effect of integrating accession-specific metabo-
lite levels. To this end, we repeat the calculations by only using
the biomass reaction for Col-0 across all accessions. Our findings
show that the prediction accuracy of netGS without accession-
specific biomass reactions is decreased by ~50% (Fig. 3a,
Supplementary Data 7). Therefore, the improved performance
of netGS can be attributed to combining network information
with data on accession-specific metabolite levels. We also
examine if the prediction accuracy of netGS is affected by
alteration of the reference flux distribution. To this end, we
performed a robustness analysis, and show that for 50 reference
distributions close to that of Col-0, netGS further improves the
prediction accuracy relative to the classical GS with a significant
increase of 45.5% (see Methods, Fig. 3a, Supplementary Data 8, p-
value = 1.04x10~°, paired t-test). Altogether, netGS achieves
better predictions within the same environment than the classical
GS when using enzymatic SNPs and similar performance when
using genome-wide SNPs, and the robustness analysis indicates
further improvements (Fig. 3a, Supplementary Data 7, Supple-
mentary Data 8).

netGS improves prediction for unseen environment. Successful
deployment of GS in plant breeding depends on the availability of
data for phenotypes in possible future environments!. As a result,
we next ask if netGS can be used to make predictions for an
unseen environment for which accession-specific models are not
available. To this end, we take advantage of the fact that differ-
ence in environments is principally reflected in the exchange (i.e.
import and export) fluxes on the boundary of the metabolic
network. The alterations in the exchange fluxes then propagate to
and affect the rest of the fluxes in the network. To determine
these alterations, we use a steady-state flux distribution of the
reference genome, in this case Col-0, in a second environment to
determine the ratio of exchange fluxes between the two
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Fig. 3 Comparison of GS prediction accuracies for growth. The predictions
for growth are performed based on the classical GS (rrBLUP approach,
gray), netGS using biomass reaction specific to Col-0 only (green), netGS
using accession-specific biomass reaction (blue), and netGS with additional
robustness analysis (red). The prediction accuracies are measured by the
mean values of Pearson correlation coefficient between measure and
predicted biomass using either enzymatic SNPs or genome-wide SNPs with
150 cross-validations (i.e. 50 repetitions of 3-fold cross-validation). The
comparison is presented for two scenarios: (a) the optimal N condition and
(b) the low N condition using metabolic models based on data from optimal
N condition. The prediction accuracies of netGS with accession-specific
biomass reaction is significantly higher than the classical GS using
enzymatic SNPs (p-value = 6.28 x 10~¢ within optimal N condition and p-
value = 2.72 x 10~ from optimal N to low N condition, two-sided paired t-
test, n =150 cross-validations, *denotes significant at level 0.01). Data are
presented as mean values and standard deviation (s.d.). Source data are
provided as a Source Data file.

environments. To arrive at the reference flux distribution for Col-
0 in the second environment, we identify the closest flux dis-
tribution compatible with the change in biomass between the two
environments (Eq. 5).

To test the approach, we employ the flux distribution for Col-0
under optimal N together with a biomass reaction specific to low
N, to determine the respective reference flux distribution for low
N condition. The fluxes of all exchange reactions are smaller
under low N compared to optimal N, with an average fold-change
of 0.71, reflecting the smaller fresh weight under low N
(Supplementary Table 4). We find that the flux value of nitrate
import reaction in low N condition is, as expected, smaller than
in optimal N condition, with a fold-change of 0.77. Further, the
flux of nitrate import under low N falls in the range of all
observed accessions under optimal N (i.e. between 3.08 and 8.46
mmol gDW~1d~1) (Supplementary Table 4). The import of
phosphate changes the most between the two conditions, with a
fold-change of 0.52, while the import of photons changes the
least, with a fold-change of 0.98 (Supplementary Table 4).

With the reference flux distribution under low N established,
we next seek to determine the steady-state flux distribution for an
accession under low N. To this end, we find the closest steady-
state flux distribution to the flux GEBV from optimal N that is
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compatible with constraints on the exchange fluxes under low N,
together with an accession-specific biomass reaction under
optimal N (Eq. 6). Therefore, models for low N are not used
for any accessions other than the reference. We then use the
resulting flux distribution to determine GEBV for growth under
low N. Following this approach, we find that the across-
environment prediction accuracy of netGS is similar to that of
the classical GS when considering only the constraint on nitrate
import. However, when we additionally impose constraints on
import of photons, carbon dioxide, and water, we show that
netGS using enzymatic SNPs improves the across-environment
prediction accuracy by 51.4% relative to the classical GS (Fig. 3b,
Supplementary Data 9, p-value=2.72x107%, paired t-test).
Similar trends are observed with genome-wide SNPs (Fig. 3b,
Supplementary Data 9).

Effects of population structure and statistical approach. The
power of GS may depend on the statistical approach used and can
be affected by the population structure?®. To determine the effect
of other statistical approaches, we use BayesC with enzymatic
SNPs. We observe that the prediction accuracy of GS with BayesC
is similar to that based on rrBLUP (Supplementary Data 10,
Supplementary Data 11). We also find that netGS with BayesC to
determine models for reaction fluxes improves the within-
environment prediction accuracy by 31.6% (Supplementary
Data 10, p-value =1.21x107>, paired t-test), while the across-
environment prediction accuracy is improved by 67.8% in com-
parison to the classical GS (Supplementary Data 11, p-value =
7.13x10~9, paired t-test). To examine the effects of the popula-
tion structure, we employ the first ten principal components
(PCs) with the enzymatic as well as genome-wide SNP. We find
that the inclusion of the first ten PCs improves the prediction
based on the enzymatic SNPs for both GS and netGS within and
across environments using rrBLUP, respectively; however, the
effects with the genome-wide SNPs are negligible. In all examined
cases with the different statistical approaches (i.e. rrBLUP and
BayesC), netGS consistently outperforms the classical GS (Sup-
plementary Data 12, Supplementary Data 13). Therefore, netGS
offers a cost-effective alternative to consideration of environ-
mental effects in GS for metabolic traits as it does not rely on data
from large-scale phenotyping under multiple environments.

Effects of constraint-based approach for flux estimation. The
flux distribution of the reference and the other genotypes in
netGS are determined based on FBA in addition with constraints
that render a robust and biologically meaningful flux distribution.
Nevertheless, there are other approaches that can be used to
estimate fluxes, including the parsimonious FBA (pFBA)3. By
using pFBA, we find that the prediction accuracy of netGS within
and across nitrogen environments are up to 39.4% (Supplemen-
tary Data 14, p-value=2.36x10"7, paired t-test) and 19.6%
(Supplementary Data 15, p-value =0.02, paired t-test) higher
than those of classical GS. Therefore, the findings between pFBA
and FBA are qualitatively similar.

Application of netGS with other environments. The formula-
tion of netGS allows transferability of the statistical models for
metabolic fluxes between two environments as long as there are
estimates for the flux distributions of the reference genotype for
the respective environments. While we showed that netGS
improves prediction accuracy between environments which differ
in the same factor, namely, availability of nitrogen, it remains
questionable if netGS leads to increase in performance if models
are transferred between two environments which show

differences in two factors, namely nitrogen and carbon. To test
the applicability of netGS in such a scenario, we applied our
netGS approach estimating from optimal nitrogen condition to a
low carbon condition. By using a constraint on the ratio of carbon
dioxide import flux and statistical models for the fluxes from
optimal nitrogen condition, we show that netGS lead to an
improvement up to 50.4% comparing with the classical GS
(Supplementary Data 16, p-value = 2.29x1079, paired t-test).

Discussion

We demonstrate that netGS provides the means to integrate
molecular markers in large-scale metabolic models, which on the
data set from 67 A. thaliana accessions resulted in improved
prediction of plant growth using enzymatic and genome-wide
SNPs. Plant performance has classically been predicted by crop
growth models (CGMs), which cast agronomically relevant traits,
such as yield and growth, as a function of other morphological
and physiological traits as well as environmental variables3!. Two
approaches already allow for integration of genome-wide SNPs in
CGMs by simultaneously inferring the physiological model
parameters and effects of genome-wide SNPs on the parameters
in a Bayesian framework32-33, While these approaches have been
shown to improve the accuracy of predictions over the classical
GS and facilitate the modeling and inference of genotype-by-
environment interactions, they use information about the ranges
of the physiological parameters over all genotypes and require
environmental variables as input. In addition, CGM approaches
are statistical in nature and do not provide mechanistic insights
about the reasons for the particular performance of specified
genotypes. In contrast, netGS does not directly include environ-
mental variables; the environment is reflected in the metabo-
lomics data which are used in the development of the
environment-specific models for the reference genotype. Fur-
thermore, by using metabolic network models and the flux dis-
tributions, as an intermediate phenotype, netGS provides
mechanistic understanding for the differences in performance
between two genotypes.

Our study provides a proof-of-principle that netGS provides a
feasible approach to predict growth for the model plant A.
thaliana. The approach is tested by using accession-specific
models which integrate metabolomics data from A. thaliana
rosettes in respective condition- and accession-specific biomass
reactions for the relatively small population. Future simulation
studies will examine how changes in the size of the used popu-
lation may affect the prediction accuracies, which in the exam-
ined datasets show comparable uncertainties with those resulting
from the classical GS.

As a constraint-based modeling approach, netGS can be
extended to integrate transcriptomics, proteomics and metabo-
lomics data34-37 and, thereby, impose additional constraints and
explore their effect on prediction accuracies, as done in classical
prediction of fresh weight38. The current state of plant metabolic
modeling does not yet allow incorporation of information about
catalytic rates, as plant-specific information about this is still
lacking. Future studies may aim to expand netGS to integrated
models which consider multiple, interconnected metabolic net-
works of different tissues3>40.

Our findings suggest that the improved prediction accuracies
within and across environments may be due to the consideration
of accession-specific metabolic networks and flux phenotypes that
tacitly include interactions between molecular markers which are
otherwise challenging to integrate in statistical models. Most
importantly, our results from the studied A. thaliana population
show that environment-specific metabolic models are needed
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only for the reference genotype to facilitate improved accuracy of
prediction across environments. To further decrease the effort for
generating genotype-specific metabolic models for a single
environment, necessary in netGS, future studies may investigate
the generation of biomass reactions directly from SNPs data
following the classical GS.

Due to the constraint-based formulation, netGS appears facile
to apply for traits directly related to metabolism in agronomically
relevant crops. However, testing the performance of netGS on
metabolic traits in crops, e.g. maize and rice, that have experi-
enced recent history of intense selection will necessitate the
assembly of high-quality metabolic models. Another difficulty is
that the models must be able to reproduce growth and other
metabolic traits of representative organs or the plant as a whole,
before they can be employed for the estimation of fluxes, as
intermediate traits. In addition, dedicated experiments will have
to be designed to assemble accession-specific biomass reactions
which are able to simulate metabolic traits of interest in specific
contexts. Therefore, the usage of netGS in decreasing the phe-
notyping effort and expediting the development of superior crop
genotypes remains to be validated in future studies that address
the aforementioned challenges.

Methods

Plant materials and datasets. We used data gathered from a panel of 97 diverse A.
thaliana accessions in a previous study*!. For two nitrogen (N) conditions (optimal
N and low N), all accessions were grown under 12-h photoperiod; for low carbon
(C) condition, all accessions were grown under 8-h photoperiod?2. In the low N
condition, the soil was constituted of 50% (v/v) white peat (Gramoflor GmbH) and
30% (v/v) fine and 20% (v/v) coarse-grained vermiculite (AGRA-RHP, Kausek
GmbH). Additionally, 260 mg K,HPO,, 396 mg GRANUKAL 85 (80% [w/v]
CaCOj; and 5% [w/v] MgCOs, Kreidewerke Dammann KG), 1.6 mg Fetrilon-
Combi micronutrient fertilizer (BASF AG), and 30 mL of tap water was added per
100-mL pot. In the optimal N condition, a supplement of 90 mg solid NH,;NO; was
added to low N soil per 100-mL pot. The inorganic N per pot in low N and optimal
N was ca. 1.25 and 31.5 mg, respectively*>. For the low C condition, the soil
substrate was GS90 (peat, clay, coconut fiber, 2 g L1 salt, 160 mg L~! nitrogen, 190
mg L1 P,0s, 230 mg L~! K,O, pH 6; Werner Tantau GmbH & Co.) and vermi-
culite (Gebrueder Patzer GmbH & Co.). At 21 days, plants were transferred to a
controlled small growth chamber for two additional weeks. Harvests were per-
formed at the end of the light period. The fresh weight (i.e. biomass) and meta-
bolites including amino acids, sugars and TCA-related metabolites, as well as the
total protein and starch were measured for every accession in all conditions*2.
These data were used to help obtain accession-specific biomass reactions in a
bottom-up assembled model of Arabidopsis metabolism.

We used the Arabidopsis core model covering the major characterized
metabolic reactions from primary plant metabolism®. The network consists of 407
metabolites and 549 reactions. It includes a biomass reaction denoting the
percentage contribution of different metabolites and cellular components to a gram
dry weight. Therefore, this synthetic reaction allows us to simulate biomass yield
under specific conditions similar to the microbial studies*%. The network provides
three biomass reactions corresponding to optimal N and low N conditions as well
as low C condition based on the measurement of soluble metabolites, starch, cell
wall precursors, lipid precursors and nucleotides of A. thaliana accession
Columbia-0 (Col-0) in the three conditions.

We used 67 A. thaliana accessions for which there were genotypic data of same
coverage available. Altogether, we had access to 214,051 SNPs, here referred to as
genome-wide SNPs!®. To determine the power of consideration of only the genes
included in the model, we used only SNPs in the coding regions of the genes
included in the model. After filtering the 5% minor allele frequency (MAF) SNPs,
GS was conducted with 180,859 genome-wide SNPs and 1824 enzymatic SNPs. To
examine the effects of population structure, we also considered the first ten
principle components (PCs) of the genome-wide SNPs.

Reference flux distribution of Col-0. In the following, we avoid consideration of
effect of photoperiod which has effects on partitioning of plant resources*>, and
model steady-state growth in the light. A steady-state reference flux distribution,
vl in Col-0 was obtained by FBA2L, wherein the flux through the biomass
reaction is maximized under the constraints of: (i) steady-state of the model,
specified with a stoichiometric matrix N, with m rows denoting metabolites and n
columns denoting reactions; (ii) lower and upper flux capacities (i.e., bounds); and
(iii) bounds on the ratio between the carboxylation and oxygenation reactions
catalyzed by RuBisCO to 2.88 and between starch and sucrose synthesis to 2.5820.

The resulting linear maximization program is as follows:

Col0
max Vo
s.t.
N . pColo — o
; ; Colo
Vi, 1<i<n a;<vi®’ <B,, W
Col0 — 2.88VC0]0

carboxylation oxygenation ?

Colo — Colo
Vstarchsynth - z‘ssvsucmsesynth’

where «; and f3; denote the generic lower and upper flux boundaries (—1000
and 1000, respectively, for reversible reactions and 0 and 1000, respectively, for
irreversible reactions). This modeling strategy reduces the set of possible flux values
while ensuring optimal growth at the biochemical constraints for the selected
reactions determining the flux partitioning in carbon primary metabolism. In
addition, the imposing of the latter constraints has been shown to lead to
prediction about manipulation strategies based on the introduction of
photorespiratory bypasses!®. This optimization program was solved with the help
of the COBRA package*® in MATLAB.

Flux distribution of other genotypes. The flux distribution of another genotype
Z, v*, was obtained by minimizing the distance between v* and the flux dis-
tribution of Col-0, v“°°, under the assumption that the genotype minimizes the
flux redistribution relative to the fluxes in Col-0. To this end, the Euclidean dis-
tance for genotype-specific fluxes of a given reaction was scaled by the reciprocal of
the respective flux in Col-0. Therefore, we only considered redistribution of 336
non-zero fluxes in v, corresponding to the assumption that genetic variants in
an enzyme-coding gene affect the magnitude of non-blocked reactions. The con-
straint of the ratio between the fluxes of the carboxylation and oxygenation reac-
tions and the ratio between fluxes of starch and sucrose syntheses can vary
depending on the photoperiod and genotype?’. In the absence of information
about genotype-specific ratios, we assume the ratios of carboxylation to oxygena-
tion reactions and starch to sucrose syntheses to be bounded in the ranges between
0.94 and 3.81 and between 0.79 and 3.37, respectively, obtained from the measured
ratios in Col-0 assuming a variance of (2.88 +1)/2 and (2.58 + 1)/2.

Two more constraints were added to the optimization program: (i) the
genotype-specific biomass reaction and (ii) that the ratio of fluxes through the
biomass reaction in Col-0 and genotype Z equals the ratio of measured biomass,
M,y and M, respectively. The resulting quadratic program is as follows:

1 Col0 Z :
,Colo (v = v7)

v ieR,, LVi
s.t.
N- v =0,
Vi l1<i<n,a;<vF<p;,
0'94Vgxygenalion < carboxylation < 3'81V02Xygenalion7
0'79v>‘zucrosesymh < 1/sztarchsynth < 3'37vszucmsesynth7 (2>
Nbiomass - N%iomass7
Vl%iomass = I\fl\ffm l(J:i(())ll'(X)laSS *e,

where R, denote the set of reactions with non-zero flux in the reference, Ny, . is
the column in stoichiometric matrix corresponding to biomass reaction, N, . - is
the stoichiometric coefficient from the measurement of genotype Z, and € is a
tunable parameter defined as 90% confidence interval to ensure that the feasible
space is non-empty. In addition, the measured biomass values were scaled to fit the
range of biomass values that can be obtained with the used model. To this end, for
each genotype we first determined the maximum flux through the genotype-
specific biomass reaction under the constraints: (i) steady-state, (ii) bounds on the
ratio between the carboxylation and oxygenation reactions and between starch and
sucrose syntheses, (iii) non-negative carboxylation flux, for biological
meaningfulness, and (iv) genotype-specific biomass reaction, by the linear program
as Eq. 3:

7
milX Vbiomass
Vv
s.t.
N-v* =0,
: ; Z
Vi,1<i<n a;<vi<p;,
<3.81v%

oxygenation ?

0.94v%

Z
oxygenation < Vcarboxylation

<3.37v%

VA Z
0.79v <v, sucrosesynth ?

sucrosesynth = "starchsynth =

Z
Vcarboxylation 20,
Z
Nbiomass - Nbiomass'

We used the average of the maxima over all genotypes to define the model

scaling parameter 5,4 = V.. To determine the genotype-specific flux
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distribution by the quadratic program above, we imposed the constraint that

Z rati M .

e = 2= Vo > where Mo and My are the measured fresh weights of Col-
Colo o7

Col0

0 and genotype Z, respectively, and v;2)  is the biomass flux in the estimated

reference flux distribution. Then the measured maximum biomass was defined as

) Il rati .
the maximum value among all genotypes, s cqurement = MaX (Vi )» and is

referred as the measurement scaling parameter. To ensure the feasibility of our

approach, the biomass flux in the genotype Z in the optimization program (Eq. 2)

Z,scale __ (Spoga—9) , Z, ratio

was finally scaled by the two scaling parameters above, as vp; " = - biomass’

‘measurement

where ¢ is a tunable parameter, here set of the value of 1.1 x 10~4. All quadratic
programs were solved with the help of the cvx package in MATLABY.

The genotype-specific biomass reaction was determined as in the Arabidopsis
core model reconstruction’. In total 30 soluble metabolites including free amino
acids, sugars, TCA-related metabolites and others, as well as starch, were measured
in all accessions and converted into the unit of pmol per gram dry weight. The
protein-bound amino acids were calculated from the fraction of 20 amino acids in
the total protein concentration for every accession. Because there are no genotype-
specific measurements available for cell wall precursors, lipid precursors,
nucleotides and ATP, we assumed them to be the same for all accessions (the same
values in every row of Supplementary Data 1). Differences between growth of the
accessions, used as constraints, compensate for keeping the coefficients of these
components of biomass the same across the accessions.

From statistical models of fluxes to predicted biomass. We note that the
predicted genotype-specific flux distributions provide the flux value across all
accessions for each reaction in the analyzed model. The flux of each reaction R; is
modeled according to classical GS based on the given set of SNPs. This resulted in
the function g;(-) for the training set, which was in turn used to obtain a predicted
flux GEBYV for the testing set. Statistical modeling is successful in the case where the
trait shows variability around a single mode. To this end, all non-zero fluxes were
modeled using the state-of-art method for GS, ridge regression Best Linear
Unbiased Prediction (rrBLUP). rrBLUP is based on a linear mixed model that can
be simultaneously estimated from genome-wide SNPs.

Since the flux distribution resulting from the functions g;(-), evaluated from a
given set of SNPs, S, of a genotype Z, may not be at steady-state, we determine the
closest steady-state flux distribution, w%, in a similar minimization program, given
below:

2

min 3 [ (0 - 8652)
s.t.

N-w? =0,
Vi, 1<i<n a;<w?<p,,
<3.81w’

oxygenation

<3.37w”

sucrosesynth >

0.94w%

Z
Xygenation < Wcarboxylatinn

0.79w% <w

Z
sucrosesynth = "starchsynth

Nbiomass - N%iomass‘r

W%iomass 20.

Instead of constraining the biomass flux to the ratio of measured biomass, this
program only constrained the biomass flux to be positive. Thus, the resulting flux
distribution contains the entry for w% . which we use as GEBV for biomass
resulting from our approach. To determine the predictability of the approach, we
conducted 3-fold cross-validation with 50 repetitions to obtain the mean
correlation coefficient between measured and predicted flux through the biomass
reaction. GS modeling and predictions were conducted in the R programming
environment using the rrBLUP packageZ®. For comprehensive comparative
analysis, was also used the BayesC models, obtained by using the R package BGLR
(Bayesian Generalized Linear Regression)*S.

Transferability of the approach to an unseen environment. The developed flux
models in environment E; may have poor performance in another environment E,
due to the usually large genotype-by-environment interaction observed for yield-
related traits*>. We extended our approach to allow for prediction of flux and
biomass GEBV across environments. To this end, we propose an approach which
relies on the reference flux distribution of Col-0 in two environments. Again, given
the flux distribution, v°°F1, of Col-0 in environment E;, we obtain the flux dis-
tribution, v*°*E2, in environment E, under the assumption that it minimizes the
distance while ensuring that (i) the Col-0 biomass reaction in E, and (ii) the ratio
of measured biomasses coincides with the ratio of biomass fluxes in two envir-
onments. This can be obtained by solving the following quadratic program:

2

min Z 1 OO0, Col0,E,
HCol0.Ey VColO, By i i

i€R,, Vi

s.t.
N- VColO.EZ —0.

S Col0.E,
Vi, 1<i<n, a;<v; <B;,

0'94ng;géiixlion = Vgaorll?(;i;lation < 3'81v§§;géiilionv
0798 =+ =357 ©
Nbiomass - lfl?)lriizs’
Meopo &
oo, _ Moms 0001

where N;:lgl‘:‘szs is the stoichiometric coefficient from the measurement of Col-0 in
environment E; and Mcjop, and M, 5, are the measured biomass of Col-0 in
environment E; and E,, respectively.

Let P be a subset of exchange reactions whereby the organism exchanges
molecules with the environment. Given v“%F1 and v“°F2 we can obtain the flux
ratio for each reaction in P between the two environments. To obtain the flux
distribution w”E2 for genotype Z in the unseen environment E,, given the flux
GEBVs g(S,) and the flux ratios for the exchange reactions in P from v and
vCOIOE: | we solve the following quadratic program:

i 32 oy (7 -e5)]

s.t.
N-wZE =0,
Vi, 1<i<na<w” ™ <p,
0'94W§)$§genation = Wf;flioxyla(ion < 3'81W§;(f71gena(ion7
0'79WSZL;f:osesynth < Wszt;El'ihsynth < 3‘37WSZ\;§1fosesynth’ (6)
Nbiomass - Nl%i’fr‘nasw
Whiomass 20
Col0E

. A
Vj € P, 2 =V’m—”|gj(82)ie.
J

We note that the genotype-specific biomass reaction used in this program is
from the measurement in environment E,. For prediction in an unseen
environment, we additionally require only access to a reference genotype-specific
biomass reaction from environment E,. In the program, we considered the
exchange reactions of photon, CO,, H,O and NOj; to belong to the set P when
predicting from optimal N to low N condition, and the exchange reaction of CO,
when predicting from optimal N to low C condition. Similarly, the predictability
was determined by the mean correlation coefficient between measured and
predicted biomass using 3-fold cross-validation with 50 repetitions.

The differences in the effect of the environment on a genotype may in part be
due to the presence of genotype-environment interactions. Our approach accounts
for such differences since the last program does not impose that all genotypes
respond in the same fashion to the environmental change, particularly not with
respect to their internal fluxes. The reason is that the statistical model for the fluxes,
w%E2, based on the genotypic data, can take a particular direction for a specific
genotype when imposing the steady-state and other constraints.

Robustness of Col-0 flux distributions. To test the robustness of the reference
genome flux distribution, we randomly sample 50 values v; for each reaction i from
the respective variance interval [ve0 — v£o0x e, vol0 4 o0 ] resulting in the
set of sampled reference flux distributions v*,r =1, ... , 50, e is the variance per-
centage. The sampled flux distributions, however, might not comply with the
physio-chemical and steady-state constraints. Therefore, we use a minimization
program to obtain the steady-state flux distribution v®%" closest to a sampled flux
distribution v". The ratio between fluxes of the carboxylation and oxygenation
reactions and between starch and sucrose syntheses, as well as the biomass flux, are
constrained to the values in the original reference flux distribution. The quadratic
program is given in the following Eq. 7:

1 r Col0,r :
E Vi —V;

min
yColor
i€R,, L1
s.t.
N- 1/Col().r -0
=Y
: : Col0,r
Vi, 1<i<n,a;<v;* " <B;,
Colo,r _ Colo,r )
vcarboxyla&ion =2 'ngoxygenation te, (7)
Colo,r _ Col0,r
starchsynth — 2'58vsucrosesynth +e,
Colo,r __ _ Colo
biomass ~ "biomass?

where ¢ is a tunable parameter, here set of the value of 104, For the reason that we
observed very small variance between 50 random flux distributions, the means of
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the resulting flux distributions were used as a reference flux distribution in the
netGS approach to determine the robustness of the predictions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this Article is available as a
Supplementary Information file. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. The source data
underlying Figs. 2 and 3, and Supplementary Figs. 2-7 are provided as a Source Data file.

Code availability
The R and Matlab code of netGS approach can be found in Supplementary Software 1 or
at https://github.com/Hao-Tong/netGS.
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