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Abstract: Automatic feature extraction from images of speech articulators is currently achieved by
detecting edges. Here, we investigate the use of pose estimation deep neural nets with transfer
learning to perform markerless estimation of speech articulator keypoints using only a few hundred
hand-labelled images as training input. Midsagittal ultrasound images of the tongue, jaw, and hyoid
and camera images of the lips were hand-labelled with keypoints, trained using DeepLabCut and
evaluated on unseen speakers and systems. Tongue surface contours interpolated from estimated and
hand-labelled keypoints produced an average mean sum of distances (MSD) of 0.93, s.d. 0.46 mm,
compared with 0.96, s.d. 0.39 mm, for two human labellers, and 2.3, s.d. 1.5 mm, for the best perform-
ing edge detection algorithm. A pilot set of simultaneous electromagnetic articulography (EMA) and
ultrasound recordings demonstrated partial correlation among three physical sensor positions and the
corresponding estimated keypoints and requires further investigation. The accuracy of the estimating
lip aperture from a camera video was high, with a mean MSD of 0.70, s.d. 0.56 mm compared with
0.57, s.d. 0.48 mm for two human labellers. DeepLabCut was found to be a fast, accurate and fully
automatic method of providing unique kinematic data for tongue, hyoid, jaw, and lips.

Keywords: multimodal speech; lip reading; ultrasound tongue imaging; pose estimation; speech
kinematics; keypoints; landmarks

1. Introduction

In speech science, kinematic analysis of speech articulators is a key methodology in the
quantification of speech production [1]. It can be used to relate movement to muscle activa-
tion and the timing of neural control signals. Biomechanical engineers can evaluate their
models, sociophoneticians can quantify changes in articulatory gestures, clinical phoneti-
cians can assess progress after intervention for speech disorders, and speech technologists
can use the objective measures as input for silent speech recognition or lip-reading.

Electromagnetic articulography (EMA) is an important method for measuring the
kinematics of speech articulators in 3D space. It has an advantage over image-based
techniques because it generates movement coordinates of keypoints on articulators, such
as tongue tip, blade and dorsum, lips, and jaw. It is the preferred technique for kinematic
speech studies and, since the decommissioning of X-ray microbeam facilities, unique in
providing intraoral keypoint data. Limitations on where the 2 mm × 3 mm electromagnetic
sensors can be attached means that movement of the posterior tongue surface and hyoid
cannot be monitored.

Ultrasound tongue imaging and camera video of the lips and face are instrumental
techniques within the budget of most speech laboratories and have become popular as a
source of articulatory speech data. They are non-invasive, convenient, and suitable for field
work. Dynamic MRI of the vocal tract is another fast-evolving imaging technique with the
important ability to image all the structures in the vocal tract although with significant
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disadvantages in cost, access, temporal/spatial resolution, unnatural recording conditions
and severe acoustic noise. All of the aforementioned imaging techniques provide data,
which must be postprocessed to extract measurable dynamic and static features of the vocal
tract. Postprocessing of speech articulator image data has almost exclusively taken the form
of edge detection or boundary segmentation. Accurate boundaries are useful for estimating
vocal tract area functions but not so useful for measuring kinematics of articulators. It is
also the case that edge detectors are sometimes fooled by imaging artefacts.

Recent advances in computer vision and machine learning offer an alternative ap-
proach, learning the mapping between an entire articulatory image and keypoints, labelled
by experts, which need not be related to an edge or boundary. This paper investigates
the potential of such pose estimation deep neural nets. We show that pose estimation can
estimate the position and shape of articulatory structures within an image to an accuracy
matching that of a human labeller. The movement of estimated keypoints partially corre-
lates with that of EMA sensors. Further, more rigorous investigation is required to establish
the limits of pose estimation in this regard.

1.1. State-of-the-Art in Ultrasound Tongue Contour Estimation

In order to determine which edge detection methods to compare with pose estimation
we will review the state-of-the-art. Early attempts to extract a tongue surface contour
from a midsagittal ultrasound image of the oral cavity were based on active contours (aka
snakes) [2]. The most frequently referenced technique is EdgeTrak [3], where a spline with
up to 100 control points is iteratively attracted to contiguous edge features in the image.
The technique must be “seeded” with a contour close to the desired edge. To avoid the
need to seed by hand every frame in a movie sequence, it is common to hand-label the first
image and proceed through the movie by seeding each following frame with the estimated
position of the contour in the preceding frame. This process leads to a tendency for the
estimated contour to drift away from the tongue contour over time and become longer
or shorter [4]. This approach is also, by design, bound to find an “edge” (continuous line
where pixels are brighter above than below or vice versa). It cannot estimate the position
of the tongue where there is no edge. SLURP [5] forms the most recent and successful
development of the active contour approach. It incorporates a particle filter to generate
multiple tongue configuration hypotheses. These hypotheses are used as seeding for the
active contour to avoid the problem of drift. It also employs an active shape model, trained
on a small number of tongue contour samples, for the purpose of constraining the shape
and iteratively driving the snake optimization.

Machine learning was first used to estimate ultrasound tongue contours by Fasel
and Berry [6]. They report a mean sum of distances (MSD, see Appendix A) accuracy of
0.7 ± 0.02 mm for their deep belief network, AutoTrace, which is remarkable given there
were only 646 inputs to the network, meaning each image was resized to 19 × 34 pixels.
The high accuracy score can be explained by the holdout method commonly used for
testing network performance whereby a small percentage of images are randomly selected
from the same dataset used for training and isolated for testing. Due to the slow rate of
change of tongue movement with respect to sampling frequency, many test images are
therefore almost identical to images seen in the training set. This ‘holdout’ method of testing
produces accuracy scores that are not representative of how the estimation network would
perform on data from unseen speakers and recording conditions. This was demonstrated by
Fabre et al. [7] who showed their MSD accuracy of 1.9 mm diminished to 4.1 mm when no
image frames from a test speaker were used in training, even when the recording conditions
(ultrasound model, probe geometry, depth, field of view and contrast) were the same. Fasel
and Berry [6] used a 20% holdout. Xu et al. [8] used a holdout of 8% of their hand-labelled
frames reporting a MSD accuracy of 0.4 mm. More recent work by Mozzaffari [9] used a
5% holdout. Akgul and Aslan [10] used a 44% holdout and reported an MSD of 0.28 mm.

Many previous attempts to use deep networks for tongue contour estimation (BowNet [9],
MTracker [11], and DeepEdge [12]) have adopted the U-net architecture [13] or U-net-like
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architecture (IrisNet [9]). U-Net is a convolutional neural network, developed for biomedical
image segmentation with an architecture designed to work with a few thousand training
images. This network classifies pixels with a probability of them belonging to a learned
boundary. TongueNet [9] constitutes the only previous report on using a network for
landmark feature identification as opposed to image segmentation. The authors indicate
that about 10 keypoints along the tongue surface is optimal for accurate performance
(see Table 1).

AutoTrace [6] was re-evaluated along with TongueTrack [14] and SLURP by Laporte [5].
The MSD accuracy scores are summarised in Table 1.

Table 1. Mean sum of distances (MSD) error scores reported in the literature for estimated vs. hand
traced contours quoted by authors for speaker independent tests.

Algorithm MSD (Mean/s.d.) mm

EdgeTrak 1 6.8/3.9
SLURP 1 1.7/1.1

TongueTrack 1 3.5/1.5
AutoTrace 1,2 2.6/1.2

DeepEdge (NN + Snake) 3 1.4/1.4
MTracker 4 1.4/0.7
BowNet 5 3.9/-

TongueNet 5 3.1/-
IrisNet 5 2.7/-

Human-human 0.9 6/-, 1.3 7

1 MSD values taken from Laporte et al. [5]. 2 when trained on the first 1000 frames of the test set. 3 MSD
values taken from Chen et al. [12] 5.7 pixels at 0.25 mm/pixel. 4 MSD values taken from Zhu et al. [11].
5 MSD values taken from Mozzafari et al. [9]. Value in mm estimated based on 128 × 128 images of 80 mm
depth = 0.638 mm/pixel. Trained and tested on the same dataset with 5% test holdout. 6 Reported MSD between
two hand-labellers Jaumard-Hakoun et al. [15]. 7 Reported RMSE standard deviation of 7 labellers Csapo and
Lulich [4].

From the contour estimation algorithms listed in Table 1, SLURP, DeepEdge, and
MTracker report the best performance with MSD values of 1.7, 1.4, and 1.4 mm, respectively.
The authors of these methods also provide code that can be freely downloaded. These algo-
rithms are therefore selected for further investigation and comparison with DeepLabCut
pose estimation.

1.2. Lip Contour Estimation

Estimating lip contours from video of the face has a similar history to ultrasound
tongue contour estimation. Early attempts used Snakes [16] and Active Shape Models [17].
Kaucic et al. [18] used Kalman filters to track the mucosal (inner) and vermillion (outer) bor-
ders of the lips. There is a need for lip feature extraction for the speechreading/lipreading
application. Since 2011, with the development of convolutional neural networks (CNNs),
this approach has dominated. However, the CNN lip feature encoders form part of a larger
network for speech recognition and are embedded with no means to extract the lip features.

In the speech science field, the most often referenced technique, and one currently
still in use for estimating lip contours for gestural speech research, is from a 1991 PhD by
Lalouche [19]. This requires the participant’s lips to be coloured blue. All blue pixels are
then extracted from the image by chroma key, and post-processing is carried out to estimate
the mucosal and vermillion borders. In a similar approach, but without the requirement
for blue lips, King and Ferragne [20] have used the semanticseg function in the MATLAB
deep learning toolbox to extract lip boundaries and postprocessed by fitting an ellipse to
the boundary shape to give an estimate of width and height of the vermillion border.

The Lalouche chroma key method cannot operate on greyscale images so evaluation
of DeepLabCut is compared here only with hand-labelling.
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2. Pose Estimation

Recent advances in computer vision and machine learning have dramatically im-
proved the speed and accuracy of markerless body-pose estimation [21]. There are a
growing number of freely available toolkits that apply deep neural networks to the es-
timation of human and animal limb and joint positions from 2D videos. These include
DeepLabCut [22], DeepPoseKit [23], and SLEAP [24]. These software packages all use
Google’s open-source TensorFlow platform to build and deploy convolutional deep neural
network models. The DeepLabCut toolkit (DLC) [21,22,25] has a broad user base and
has continuing support so was selected here for evaluation of pose estimation in the
speech domain.

DeepLabCut

Once installed, the Python-based DeepLabCut toolbox is run using a simple graphical
user interface (GUI) requiring no programming skills. The GUI makes it easy for users
to label keypoints, train the convolutional neural network, apply the resulting model to
identify pixel coordinates of keypoints in images, and output them in a simple comma
separated text file. The processes for training and estimating pose with DeepLabCut are
outlined in Figure 1. Auxiliary tools, for visualizing and assessing the accuracy of the
tracked keypoints are also available within the DLC graphical user interface. Deep learning
approaches require very large amounts of labelled data for training. Large, labelled corpora
are publicly available for classical problems, such as facial landmark detection and body
pose estimation [26,27], but not for ultrasound tongue image contouring. It is not practical
to hand-label tens of thousands of ultrasound images, but it is possible to leverage existing
networks trained on large datasets in one domain, and transfer learning to a new domain
using only a few hundred frames. DLC applies transfer learning from object recognition
and human pose estimation. With only a small number of training images and a few hours
of machine learning, the resultant network can perform to within human-level labelling
accuracy [22]. Here, we evaluate that performance claim on the domains of ultrasound
tongue imaging and lip camera imaging.

Figure 1. DeepLabCut training and analysis processes.

Deep net architectures designed for markerless pose estimations are typically com-
posed of a backbone network (encoder), which functions as a feature extractor, integrated
with body part detectors (decoders). DeepLabCut provides a choice of encoders (Mo-
bileNetV2 [28], ResNet [29], or EfficientNet [30]), all with weights pretrained on the Im-
ageNet corpus that consists of 1.4 million images labelled according to the objects they
contain. The body part detector algorithms are taken from a state-of-the art human pose
estimation network called DeeperCut [31] from which it takes its name. DeeperCut is in
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turn trained on the Max-Planck-Institut für Informatik human pose dataset [27], consisting
of 25,000 images containing over 40,000 people with annotated body joints. The “Lab”
nomenclature references the ability of DeepLabCut to transfer learning from human pose
estimation to other domains, such as animals or medical images, using only a few labelled
images, making the process manageable for a single research laboratory.

Encoders are continuously being redesigned to improve the speed and accuracy of
object recognition, and it has been shown that this improved encoder performance feeds
directly through to improve pose estimation [25], particularly with respect to:

1. Shorter training times.
2. Less hand-labelled data required for training.
3. Robustness on unseen data.

For each labelled keypoint, the decoder produces a corresponding output layer whose
activity represents a probability score-map (aka heat-map). These score-maps represent
the probability that a body part is at a particular pixel [31]. During training, a score-map is
generated with unity probability for pixels within a ‘pos_dist_threshold’ (default = 17) pixel
radius of the labelled keypoint pixel and zero elsewhere. Mathis et al. recommend a 17-pixel
distance threshold after experimenting on different threshold values for a 1062 × 720-pixel
resolution video input.

It is possible to use features of the score-maps such as the amplitude and width, or
heuristics such as the continuity of body part trajectories, to identify images for which the
decoder might make large errors. Images with insufficient automatic labelling performance
that are identified in this way can then be manually labelled to increase the training set and
iteratively improve the feature detectors.

DeepLabCut can use deep, residual networks, with either 50, 101, or 152 layers
(ResNet). The optional MobileNetV2 is faster for both training and analysis and make
analysis with CPU (as opposed to GPU) feasible. EfficientNet encoders are also available.

Labelling the training set with multiple related anatomical keypoints improves the
accuracy of individual keypoint estimates. Mathis [22] shows a network, trained with all
body part labels simultaneously, outperforms networks trained on only one or two body
parts by nearly twofold. DeepLabCut applies image augmentation to artificially expand
the training set by modifying the base set with images transformed by scaling, rotating,
mirroring, contrast equalization, etc. In this paper, only scaling and rotation were applied.

3. Materials and Methods
3.1. Ultrasound Data Preparation
3.1.1. Training Data

Ultrasound images were downsampled to fit in an image of 320 × 240 pixels. Where
the original image was not 4:3 aspect ratio, it was letterboxed to lie centrally, and a black
background added. The images were encoded using H.264 (greyscale, rate factor 23, zero
latency, and YUV_4_2_0 palate) to provide a compact data storage with minimal loss. The
original images had vertical heights of 80, 90, or 100 mm, and after letterboxing, the output
images had vertical heights of 100–125 mm, leading to a pixel resolution of approximately
0.4–0.5 smm per pixel. It is worth noting that the axial resolution in mm of a 3 MHz 3-cycle
ultrasonic pulse is 3 × 0.5 × 1540/3,000,000 × 1000 = 0.77 mm so our 320 × 240 image has
better resolution than the underlying data. Preliminary tests indicated that, compared to a
320 × 240 video, a 800 × 600 video took 5× longer to analyse and a 1200 × 900 video took
12× longer. Therefore, 320 × 240 was determined to be a practical resolution.

The tongue contour may be partly obscured by mandible or hyoid shadows or other-
wise indistinct. The labeller then has a choice either to omit keypoints in these regions or to
estimate their position based on clues elsewhere in the image or audio. For this paper, we
mainly adopted the latter approach.

Hand-labelling was carried out on 20 frames each, from 26 recordings. The frames
were selected by k-means clustering using the DLC labelling tool so that they were distinct



Sensors 2022, 22, 1133 6 of 27

from each other. A few frames were rejected if they had no discernible features leaving a
total of 520 test frames. The recordings comprised:

• A total of 10 recordings from 6 TaL Corpus [32] adult speakers (Micro system, 90◦ FOV,
64-element 3 MHz, 20 mm radius convex depth 80, 81 fps). These recordings were the
first few recordings from the corpus and not specially selected.

• A total of 4 recordings from 4 UltraSuite corpus [33] Ultrax typically developing chil-
dren (Ultrasonix RP system, 135◦ FOV, 128 element 5 MHz 10 mm radius microconvex,
depth 80 mm, 121 fps). These were randomly selected. 10 recordings of the authors, us-
ing the Micro system with 64-element, 20 mm radius convex probe, and with different
field of view and contrast settings

• A total of 2 recordings by Strycharczuk et al. [34] using an EchoB system with a
128-element, 20 mm radius convex probe. These data are from an ultrasound machine
not represented in the test set and included to generalize the model.

3.1.2. Test Data

Hand-labelling was carried out on 40 k-means selected frames from 25 recordings
using the DLC labelling tool to generate a total of 1000 test frames. Each recording was
from a different speaker and were taken from several publicly available corpora:

• A total of 10 TaL corpus adult speakers (Articulate Instruments Micro system, 90 FOV,
64-element 3 MHz, 20 mm radius convex depth 80, 81 fps).

• A total of 6 UltraSuite Ultrax typically developing children (Ultrasonix RP system,
135◦ FOV, 128 element 5 MHz 10 mm radius microconvex, depth 80 mm, 121 fps).

• A total of 2 UltraSuite Ultrax speech sound disordered children (recorded as previous).
• A total of 2 UltraSuite UltraPhonix children with speech sound disorders (SSD)

(recorded as previous).
• A total of 2 UltraSuite children with cleft palate repair. Ultrasound (Articulate instru-

ments Micro system, 133◦ FOV, 64-element 5 MHz, 10 mm radius microconvex, depth
90, 91 fps.

• A total of 3 UltraspeechDataset2017 [35] adults. Ultrasound images (Terason t3000
system, 140◦ FOV, 128-element, 3–5 MHz 15 mm radius microconvex, depth 70 mm,
60 fps).

None of the test speakers were used in the training set. The hand-labelling was
conducted by the first author with the same protocol used to train the DLC model (see
Section 3.1.3). The second author also hand-labelled 25% of the same test frames (every
fourth frame) for the purpose of comparing hand-labelling similarity.

3.1.3. Ultrasound Keypoint Labelling

Eleven points were selected along the upper surface of the tongue: vallecula, root1,
root2, back1, back2, dorsum1, dorsum2, blade1, blade2, tip1, tip2. This number is sufficient
to describe the shape of the surface. Separation between the consecutive blade and tip
points were approximately half that of other points in order to better represent the flexibility
of that part of the tongue. An attempt was made to maintain consistency in placement
relative to the tongue surface, even when these points were obscured by hyoid or mandible
shadow. This approach to labelling differs from traditional labelling, which is limited in
length to the extent of the bright edge visible in the image. In addition, keypoints were
labelled on the hyoid and on the mandible at its base and at the mental spine where the
short tendon attaches. The latter point is important as it forms the insertion point for the
fanned genioglossus muscle fibres. These fibres principally control the midsagittal shape of
the tongue body. Figure 2 shows the location of the labelled keypoints.
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Figure 2. Outline of midsagittal tongue contour and the labelled keypoints.

The bright surface of the epiglottis and any saliva bridge between the tip of the
epiglottis and the tongue root is often traced as part of the tongue (see Figure 3A for an
example). This may be an appropriate contour to trace if the boundary of the oral cavity
is being assessed, but for studies investigating tongue root retraction and for the sake of
consistently modelling the tongue surface, in this study, we elected to follow the surface of
the tongue to the vallecula rather than the visible surface of the epiglottis.

Figure 3. Ultrasound image showing (A) bright reflection from tip of epiglottis (B) double reflection
parasagittal surface (upper) and midsagittal surface (lower) of the tongue blade.

It is sometimes the case that there are two apparent edges (e.g., Figure 3B). This most
often occurs at the tongue blade when it is grooved to produce an (s) sound. In this



Sensors 2022, 22, 1133 8 of 27

study, we hand-labelled the lower of the two edges even when it was less distinct, as this
represents the contour of the midline of the tongue.

Where possible, the tongue tip position was estimated even when there was no bright
contour. In particular, the bright artefact often generated by the tip raising gesture was
not labelled as part of the tongue contour. This bright artefact is due to the ultrasound
beam reflecting off the surface of the tongue to the underside of the blade and back along
the same path (Figure 4). Again, this means that the hand labels do not strictly follow the
brightest edge.

Figure 4. Ultrasound image with beam tracing (blue) showing actual path of ultrasound beam
(dotted) and the resulting bright artefacts based on the equivalent time of travel in the direction of
the transmitted beam (solid). A—hyoid; B—mandible base; C—short tendon base.

Hyoid, mandible base, and short tendon base are indicated in Figure 4 as points A, B,
and C, respectively.

3.2. EMA-Ultrasound Test Data

Simultaneously recorded ultrasound and EMA data are rare. Some pilot data gener-
ously made available by Manchester and Lancaster Universities (UKRI grant AH/S011900/1)
were used here to evaluate the ability of DLC output to emulate EMA sensor movement.
EMA data were recorded using the Carstens 501 system (Carstens Medizinelektronik
GmbH, Bovenden, Germany) with three coils placed on the tongue tip (1 cm from apex),
tongue blade and dorsum (approximately 15 mm separation between each sensor). The
corpus consisted of three carrier phases “She said X clearly”, “She said X”, and “She said
X again”. Unfortunately, in many of the ultrasound recordings there was loss of tip in-
formation as the probe failed to make contact with the chin. As a result of the restricted
vocabulary and missing tip images, only five recordings were used to evaluate the ability
of DeepLabCut to estimate EMA sensor movement. These were all the phrase “She said X
clearly” with X = Bide, Bart, Bore, Bead, Bee.

3.3. Lip Camera Data Preparation
3.3.1. Training Data

The TaL sample corpus was used for training. A total of 24 recordings, one from each
of 24 speakers, were selected at random. Moreover, 7 or 8 frames were selected by k-means
clustering from each recording, providing 207 training frames.
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3.3.2. Test Data

Testing was carried out on 10 TaL corpus speakers who were not included in the
training set. A total of 40 frames were labelled from each speaker, providing 400 test frames.
These speakers were selected to represent a range of age, sex, ethnicity, and facial hair. A
second labeller re-labelled every fifth hand-labelled frame (20% of the test set).

3.3.3. Lip Keypoint Labelling

The lip video was taken from the TaL corpus [32], which uses a front facing camera.
This presents the opportunity to label the commissures (corners), midsagittal point on the
upper and lower mucosal boundary, and points midway between the commissures and
midpoints, as indicated in Figure 5.

Figure 5. Keypoints labelled on the lip video. Dotted line indicates mucosal border on the lower
lip that makes contact with the upper lip when the mouth is closed. A and B—commissures; C
and D—centre of the upper and lower lip, respectively (defined by philtrum midpoint and not
necessarily equidistant from A and B); E—equidistant from A and C; F—equidistant from A and D;
G—equidistant from B and C; H—equidistant from B and D.

3.4. Accuracy Measures

To assess the accuracy of an estimated tongue contour, Jaumard-Hakoun et al. [15]
proposed a mean sum of distances (MSD). For every point on the hand-labelled curve, the
distance to the closest point on the estimated curve was calculated, and for every point
on the estimated curve, the distance to the closest point on the hand-labelled curve was
calculated. The total sum of these distances was then divided by the total number of
distance measures. This per-frame mean sum of distances was then averaged across all
frames to give a single score. This curve similarity measure can give an identical score
for the case where two curves match perfectly but one is longer than the other, and the
case where the curves are the same length but do not match. We chose to separate these
two factors. We used the standard MSD calculation, but when considering the endpoints
of spline B, only one distance to a point on Spline A was included in the calculation: the
shortest one. This means that the MSD is not affected by the relative lengths of the splines.
Instead, we report a separate spline length difference measure (length hand-labelled spline—
length estimated spline). Each spline was cubically interpolated prior to performing this
MSD calculation so that it had 100 points regardless of its length.
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DeepLabCut includes a root mean square error (RMSE) for the distance between
hand-labelled points and estimated points. This measure is only applicable to DeepLabCut,
since it is the only point estimation algorithm being considered.

For lip analysis, the area bounded by the upper and lower lip contours was measured
in mm2. The width between commissures was measured. The MSD of the upper and lower
lips were reported separately.

For comparison between EMA tongue sensors and the estimated tongue tip, blade,
and dorsum keypoints, a Pearson correlation coefficient was calculated.

3.5. Ultrasound Tongue Contour Estimation Methods

The configuration of DeepLabCut, SLURP, MTracker, and DeepEdge are described in
the following sections and Table 2 summarises their training and analysis rates.

Table 2. Comparison of ultrasound contour tracking algorithms showing the analysis frame rate,
image size, training frame rate, and time for the network training to converge.

Algorithm Frames per Second
1 (GPU/CPU) Image Size Training Data/Time

(Frames/Hours)

SLURP 2,3 NA/8.5 data N/A
DeepEdge (NN + Snake) 2.7/NA 64 × 64 2700/2

DeepEdge (NN only) 3.0/NA 64 × 64 2700/2
MTracker 27/NA 128 × 128 35,160/2

DeepLabCut (MobNetV2_1.0) 287/7.3 4 320 × 240 520/7.5
DeepLabCut (ResNet50) 157/4.0 4 320 × 240 520/16
DeepLabCut (ResNet101) 105/2.6 4 320 × 240 520/30

DeepLabCut (EfficientNet B6) 27/1.7 4 320 × 240 520/48
1 Using Windows laptop PC with Core i7-10750H 16GB RAM and NVIDIA RTX 2060 MaxQ. 2 SLURP is the only
algorithm tested here that does not use the NVIDIA GPU. 3 SLURP requires the first frame of each recording to be
manually seeded with at least 6 points using GetContours MATLAB GUI. The timing recorded here excludes this
manual labelling step. 4 Analysing using batch size 8.

3.5.1. DLC Ultrasound

For body tongue/hyoid/mandible inference, we used DeepLabCut (version 2.1.10.0) [22,36].
We used a MobileNetV2-1.0 [25] based neural network with default parameters *. We also
compared this with ResNet50, ResNet101, and EfficientNetB6 [25]. A total of 0.8 million
iterations were used for training after preliminary testing (see Appendix B) showed conver-
gence occurred with this amount of training. We validated with one held-out folder of the
1000 hand-labelled test frames. The image size was 320 × 240; ~0.5 mm/pixel. We then
used a p-cut-off of 0.6 to determine root mean square error scores. This network was then
used to analyse each of the test videos generating csv files of keypoints with associated
confidence values, which were imported into the AAA software package (version 219_06,
2021, Articulate Instruments Ltd., Musselburgh, UK). The 11 tongue keypoints were con-
verted into a single cubic tongue spline with 11 control points. The pixel to mm scale was
calculated separately for each recording. MSD and length measures in millimetres were
then made with respect to the hand-labelled keypoints similarly imported.

* ImgAug with ±25◦ rotation and random scaling in the range 0.5–1.25 (40% of the
original dataset); pos_dist_threshold of 17.

3.5.2. SLURP

The GetContours GUI [37] implemented in MATLAB was used to run the SLURP edge
detection function. SLURP employs tongue-shape models but does not provide tools for
in-domain training. Retraining the shape models on the training data used in this study
was thought unlikely to make a substantial difference to the performance. Two different
shape models provided by the author were tested and the one that gave the best results
was selected. Increasing the minimum number of particles did not substantially improve
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the performance. The resulting reduction in the analysis rate was therefore not justified
and the default settings were used:

Colormap = “gray”, Sigma = 5.0, Delta = 2.0, Band Penalty = 2.0, Alpha = 0.80,
Lambda = 0.95, Adaptive Sampling = Enabled, Particles = Min 10, Max 1000.

Each frame was seeded by hand with a 15-point spline. The tracker ran at 8.5 fps pro-
ducing 100 edge contour points. These spline points were downsampled to 50 by removing
every alternate point and imported into AAA software for MSD and length analysis.

3.5.3. MTracker

A region of interest was defined as the area between the coordinates [50,50] and
[200,300] relative to the top-left of the image. Dense U-Net model “dense_aug.hdf5” was
used. This model has 50% of the training data with image augmentation. The tracker ran
at 27 fps producing 100 points or fewer when the confidence threshold of 50% was not
reached. These spline points were downsampled to 50 by removing every alternate point
when imported into the AAA software for MSD and length analysis.

3.5.4. DeepEdge

DeepEdge version 1.5 ran under MATLAB R2021a with deep learning toolbox, image
processing toolbox, and computer vision toolbox. Three optional models are provided,
each trained on different datasets. A model trained on the same ultrasound system and
probe used in our 6 Ultrax TD child test recordings was tried first. However, this model
performed more poorly on the test set than another of the models. The best performing
model was (“DpEdg_CGM-OPUS5100_CLA651_21JUL2021”), and this was the model used
for this study. All videos were mirrored, such that the tongue was pointing to the left, then
after running DeepEdge and exporting the data, the results were then mirrored again to face
tongue tip right before importing into AAA. The tracker ran at 3 fps producing 20 edge
contour points. These contour points were imported into AAA software for MSD and
length analysis.

3.6. Method for Comparing EMA Position Sensors to DLC Keypoints

The ultrasound data were analysed using the DLC ResNet50 model trained as per
Section 3.5.1. The estimated tip1, blade1, and dorsum1 keypoints were picked as close
matches to the tip, blade, and dorsum EMA sensors. Sections of the five recordings
corresponding to the spoken utterances were selected. The sensor positions were compared
to the estimated keypoints for every ultrasound frame timepoint, and Pearson correlation
values recorded.

3.7. Method for Evaluating DLC Performance on Lip Camera Data

The same DeepLabCut configuration used for ultrasound images was used to train
lip images. Only MobileNetV2_1.0 and ResNet50 encoders were tested. Keypoints were
imported into the AAA analysis package (version 219_06, 2021, Articulate Instruments
Ltd., Musselburgh, UK) as an upper lip spline and lower lip spline. Both splines shared the
commissure keypoints as endpoints. MSD values were calculated for the upper lip and
lower lip separately. A width (distance between commissure keypoints) and aperture (area
enclosed by the upper and lower lip splines) were also recorded, as these are measures that
speech scientists are interested in.

4. Results
4.1. Ultrasound Contour Tracking

We evaluated DLC with the MobileNetV2_1.0 encoder by training on 100% (twice),
75%, 50%, and 25% of the 520 hand-labelled frames. A small difference in MSD scores
occurred between models generated in two separate training runs with 100% of the training
data. This is likely due to the random selection of frames for image augmentation and
the random amounts of augmented scaling and rotation. Table 3 shows that, compared to
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using 100% of the data, using 75% (390 frames) did not reduce performance significantly.
ResNet50 backbone also produced no significant difference when using 75% compared
to 100% of the training data. Using 50% of the total available hand-labelled frames, i.e.,
260 hand-labelled frames with distinct tongue shapes extracted from 26 recordings, gave
marginally poorer performance (p = 0.03). Performance was reduced when the number
of frames used to transfer learning from human pose estimation to ultrasound tongue
images was limited to 130. For this paper, we used models trained on all 520 hand-labelled
frames. While it is possible that generalization to a very different scanner and probe might
require the model to be retrained with supplementary frames from that domain, very few
additional images would be needed. Certainly, no more than 260 and likely less than 50.
The test set used here included recordings from a Terason scanner and probe unseen in the
training set and performed very well (mean MSD 1.00 SD 0.30 for speaker TH c.f. mean
MSD 1.06 SD 0.71 for all 25 speakers.

Table 3. Error scores vs. hand contoured for 20, 15, 10, and 5 frames per recording used for training.

MobileNetV2
Training Data MSD (Mean, s.d., Median) MSD

p Value 1
%Length Diff (Mean,

s.d., Median)

conf 80% 520 frames 1.06, 0.59, 0.90 1.00 +1.8, 7.0, +2.0
1.06, 0.71, 0.89 0.89 +1.8, 9.1, +1.8

conf 80% 390 frames 1.12, 0.86, 0.91 0.09 +2.8, 10.7, +2.5
conf 80% 260 frames 1.13, 0.71, 0.94 0.03 +1.9, 9.7, +1.7
conf 80% 130 frames 1.17, 0.79, 0.94 <0.001 +3.5, 8.1, +3.2

1 Two tailed t-test assuming equal variance with reference to the MSD data generated by the model corresponding
to the first row MSD distribution.

MSD mean and standard deviation values reported in Table 4 show SLURP, MTracker,
and DeepEdge all performed less well on the test set used for this study than previously
reported (1.7, 1.1 c.f. 2.3, 1.5) (1.4, 0.7 c.f. 3.2, 5.8) (1.4, 1.4 c.f. 2.7, 3.1). DeepLabCut
still performed better than the originally reported MSD values for these other methods.
0.9 mm vs. 1.4–1.7 mm.

Table 4. Error scores vs. hand contoured (including regions where hand labels had to be guessed at
tip and vallecula.

Algorithm MSD (Mean, s.d.,
Median)

MSD
p Values 1

%Length Diff (Mean,
s.d., Median)

SLURP 2.3, 1.5, 1.9 <0.001 −3.8, 14.4, −4.6
DeepEdge (NN only) 2.8, 3.1, 1.9 <0.001 −27.5, 25.3, −26.0
MTracker 3.2, 5.8, 1.5 <0.001 −49.0, 28.7, −44.4
DLC (MobileNetV2_1.0 conf 80%) 1.06, 0.59, 0.90 0.04 +1.8, 7.0, +2.0
DLC (ResNet50 conf 80%) 0.93, 0.46, 0.82 0.29 +1.6, 8.8, +2.2
DLC (ResNet101 conf 80%) 0.96, 0.67, 0.81 0.80 +1.8, 9.1, +1.8
Inter-labeller 0.96, 0.39, 0.88 1.0 −4.3, 6.2, −4.8

1 Two tailed t-test assuming unequal variance with reference to the MSD data generated by the inter-labelling.

The quality of the ultrasound images may have been poorer in this test set than the
original SLURP, MTracker, and DeepEdge studies, partly explaining the reduction in perfor-
mance. It may also be the case that the training and test sets in the original studies were
closely matched and the trackers have a limited ability to generalise to unseen data. In
particular, DeepEdge comes with three models, each trained on a different system rather
than one general model. If DeepEdge were trained on the same dataset that DeepLabCut was
trained on it may have performed better, but DeepEdge requires at least 4× the available
hand-labelled frames to train successfully and no training software is provided. Further-
more, the hand-labelled contours, used here as ground truth, follow the tongue contour and
not necessarily the brightest edge. The original studies may have been evaluated against
hand-labels of the brightest edge.
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Table 4 shows that DLC with a ResNet50 encoder provided MSD scores equivalent to
the MSD between the two hand-labellers in this study. The inter-labeller mean of 0.96 mm
is close to the inter-labeller MSD of 0.9 mm reported by Jaumard-Hakoun [15]. It also
indicates that, while the second hand-labeller tended to assign tongue contours 4% shorter
than the first labeller, DLC was closer in length producing contours that were on average
only 2% longer. The slightly poorer performance of ResNet101 compared with ResNet50
may be due to overtraining or variance in performance vs. number of training iterations
(see Appendix B).

Table 5 shows the mean root mean square error scores across all keypoints with a
confidence greater than 0.6 (60%). For example, if a tongue tip keypoint is obscured by the
mandible shadow, then the network might generate a low confidence in its position and
this point would be ignored. Using MobileNetV2 with 520 training samples as a baseline,
the RMSE pixel accuracy is shown to decrease by up to 3.5% when less training data are
used and increase by up to 3% when using a ResNet encoder. Interestingly ResNets are less
accurate when all keypoints are considered but more accurate when unconfident points are
ignored. EfficientNetB6 performed poorly, perhaps because the amount of training data
were insufficient for such a large encoder network.

Table 5. Root mean square error scores on test set and times for training.

Network RMSE
Test (p > 0.6) Pixels

Train Time 1 0.8
Million Iterations

Analyse Time 1

Frames/s

DLC (MobileNetV2_1.0) 6.15 7.5 h 190
DLC (MobileNetV2_1.0) 6.17 7.5 h 190
DLC (MobileNetV2_1.0) 75% 6.28 7.5 h 190
DLC (MobileNetV2_1.0) 50% 6.39 7.5 h 190
DLC (MobileNetV2_1.0) 25% 6.38 7.5 h 190
DLC (ResNet50) 6.07 16 h 100
DLC (ResNet101) 5.99 30 h 46
DLC (EfficientNet b6) 11.55 48 h 14

1 Time measured using a GTX 1060 GPU (slower than the GPU used for timings in Table 2).

Figure 6 shows two frames evaluated within DLC. Image (a) shows that, although the
11 tongue keypoints hug the tongue surface, producing a low MSD value, they sometimes
do not match the hand-labelled locations along that surface. This leads to RMSE scores of
6 pixels (~3 mm) compared to only 1 mm for MSD. Figures 7 and 8 show how the overall
results in Table 4 break down across test speakers. Speakers 01F_BL1 and PB both have
very poor image quality, with DLC ignoring keypoints in some frames, resulting in shorter
length estimates.

Figure 6. (a) Shows points estimated to lie on the tongue surface but distributed differently to
the hand labels; (b) an example where the positions are estimated accurately. ‘+’ indicates the
estimated position.
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Figure 7. Mean sum of distances (MSDs) between hand-labelled randomly selected frames (40 frames
for each speaker) and each of the assessed methods (DLC using MobileNetV2_1.0 encoder).

Figure 8. Relative length distance between hand contoured randomly selected frames (40 frames for
each participant) and each of the assessed methods (DLC using MobileNetV2_1.0 encoder).

Figure 9 shows plots of x-axis = MSD vs. y-axis = %length difference for every test
frame that generate the overall results in Table 4. An ideal estimator would have all points
at (0,0) (see Appendix A for why an MSD of 0.0 is unlikely). Of the three previously
reported estimators, SLURP is the most robust when MSD and length are considered. The
tighter cluster for DLC more closely matches the inter-labeller plot.
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Figure 9. MSD vs. %length difference (hand-label estimator) for SLURP, MTracker, DeepEdge, DLC
MobileNetV2, DLC ResNet50, and second labeller.

Figures 10–12 show every fifth hand-labelled test frame for the speakers 17ms (from the
TaL corpus), 03F_BL1 (from the UltraSuite UXSSD corpus) and DF (from the UltraSpeech
corpus). SLURP (green) has pretrained shape models, which restrict the shape of the
contour. In Figure 10, a plausible tongue shape does not always match the underlying data.
The flick upwards at the root of the tongue in Figure 11 may be as a result of how SLURP’s
shape model was trained. MTracker (yellow) fits the tongue surface quite well, but because
the length is controlled by a 50% confidence threshold, it very often omits the more difficult
tip and root sections of the tongue contour. When we raised the threshold, MTracker
performed very poorly in these regions. DeepEdge (pink) tended to underestimate the
length. The option to postprocess by applying EdgeTrak to the neural net output produced
poorer results, and so is not reported here. DLC ResNet50 (cyan) matches the hand-labelled
contour (blue) so well that, in many frames, it sits directly on top. Disagreements mainly
occur at the root where the hand-labelled contour is often speculative.
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Figure 10. Speaker TaL17ms; blue—hand-label; green—SLURP; yellow—MTracker; pink—DeepEdge;
cyan—DLC_ResNet50.

Figure 11. Speaker UXSSD03F; blue—hand-label; green—SLURP; yellow—MTracker; pink—
DeepEdge; cyan—DLC_ResNet50.



Sensors 2022, 22, 1133 17 of 27

Figure 12. Speaker UltraSpeechDF; blue—hand-label; green—SLURP; yellow—MTracker; pink—
DeepEdge; Cyan—DLC_ResNet50.

4.2. Ultrasound-EMA Point Tracking

The splines were scaled in mm and consisted of the 11 tongue-surface keypoints. The
TT1, TBl1, and TD1 keypoints were selected as being close to the positions of the three
EMA sensors on the tip blade and dorsum, respectively. The bite plane [38] was recorded
in both the EMA and ultrasound data (see Figure 13) and both sets of data were rotated so
that the bite plane formed the x-axis.

Figure 13. Image of the tongue pressed against a bite-plate and a green fiducial line superimposed.
All coordinates were rotated so that the green line formed the horizontal axis.

Figure 14 shows the comparison of x and y EMA sensor positions (red) with the
positions estimated by DLC ResNet50 (black) as the phrase “She said bead clearly” is
spoken. It is apparent that there is very little correlation in the x-axis, while there is a
modest correlation in the y-axis.
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Figure 14. The phrase ‘She said “bead” clearly’ showing x and y position against time for the tongue
tip (TT), blade (TBl), and dorsum TD. Red—EMA sensor; black—DLC estimated position. The y-axis
has no units.

Figure 15 plots, each EMA coordinate vs. the corresponding DLC estimated the
coordinate for every ultrasonic frame of the five simultaneous EMA/ultrasound recordings.
Again, correlation is only good for the y-coordinates of the tip and blade. Table 6 shows
that the Pearson correlation coefficients calculated across all ultrasound frames for the five
recordings confirm the visual findings.

Table 6. Pearson correlation values for each sensor coordinate calculated over the five recordings.

Sensor Coordinate Pearson Correlation Coefficient

Tongue tip x 0.37
Tongue tip y 0.88
Tongue blade x 0.39
Tongue blade y 0.93
Tongue dorsum x −0.03
Tongue dorsum y 0.44
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Figure 15. EMA coordinate vs. DLC estimated coordinate plotted for every ultrasonic frame of the 5 si-
multaneous EMA/ultrasound recordings. TT—tongue tip; TBl—tongue blade; TD—tongue dorsum.

4.3. Camera Lip Tracking

Table 7 shows RMSE scores for all lip keypoints. Unexpectedly, ResNet50 does not
significantly outperform MobileNetV2. It may be that although experiments on the ultra-
sound images showed that 260 frames were adequate for good MobileNetV2 performance,
the 207 training frames used here were insufficient for ResNet50 to reach its full potential.
We used fewer training frames because the training set was homogeneous as each speaker
was recorded under identical conditions.

Table 7. Root mean square error (average for all lip keypoints).

Network RMSE
Test (p > 0.6) Pixels

DLC (MobileNetV2_1.0) 3.79
DLC (ResNet50) 3.74



Sensors 2022, 22, 1133 20 of 27

Table 8 shows a comparison of MSD for upper and lower lips, lip aperture and lip
width for the two DLC encoders and the second labeller. As with RMSE, these perfor-
mance indicators reveal that unlike for ultrasound images, DLC does not quite match the
inter-labeller lip performance. More training data might improve the performance. Lip
contouring does not follow a bright edge. Indeed, the lower lip contour labelling criterion
was to mark where it would meet the upper lip rather than the visible boundary of the lip
and oral cavity. As shown by the smaller average area estimates, DLC tends to mark this
visible boundary of the lips and oral cavity. This is also apparent in the labelled images
shown in Figures 16–18. Estimation of the commissures and, therefore, of the width of the
mouth is, however, as accurate as the inter-labeller score.

Table 8. MSD, aperture difference, and width difference comparing hand labels to DLC (Mo-
bileNetV2_1.0).

Lip Measure Inter Labeller
Mean/s.d./Median

DLC MobileNetV2_1.0
Mean/s.d./Median

(p Value) 1

DLC ResNet50
Mean/s.d./Median

(p Value)

MSD upper lip (mm) 0.41/0.23/0.36 0.59/0.29/0.54 (<0.001) 0.59/0.40/0.47 (=0.001)
MSD lower lip (mm) 0.73/0.71/0.55 0.86/0.75/0.64 (0.17) 0.82/0.67/0.64 (0.65)
Lip aperture (mm2) 4.6/54/6.2 −23/61/−10 −19/48/−11
Lip width (mm) −0.1/3.6/-0.5 0.8/2.4/0.7 −0.2/3.7/0.4

1 Two tailed t-test assuming unequal variance with reference to the MSD data generated by the DLC inter-labeller
distribution. Not applicable to aperture and width.

Figure 16. Speaker 25fs; blue—hand-label; red—MobileNetV2; cyan—ResNet50.

Figure 17. Speaker 12me; blue—hand-label; red—MobileNetV2; cyan—ResNet50.
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Figure 18. Speaker 17ms; blue—hand-label; red—MobileNetV2; cyan—ResNet50.

Figure 19 shows the MSD values for lower and upper lips, comparing DLC Mo-
bileNetV2, DLC ResNet50, and inter-labeller. Of note, ResNet50 improves the estimates of
speaker 12me, but it performs more poorly on speaker 17ms (their lips are partially obscured
by a moustache). Example frames from these two speakers are shown in Figures 17 and 18,
respectively. MobileNetV2 estimates the lower lip closer to the lip edge for speaker 12me
than the labeller. For speaker 17ms, ResNet50 can be seen to perform very poorly and with
low confidence.

1 
 

 

Figure 19. Mean sum of distances (MSDs) between hand-labelled randomly selected frames (40 frames
for each speaker) and DLC using MobileNetV2_1.0 and ResNet50 encoders. Upper lip and lower lip
shown separately.

Figures 20 and 21 show the lip aperture and width respectively, comparing DLC
MobileNetV2, DLC ResNet50 and inter-labeller for each speaker. As can be observed in
Figure 19, ResNet50 had trouble identifying the lip commissures for speaker 17ms, but
MobileNetV2 did surprisingly well. These figures also show that the second human labeller
had trouble following the instructions for the positioning of the lower lip boundary for
speakers 07me and 12me. They also overestimated the width in speaker 12me, where
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whiskers obscured the commissure positions. High Pearson correlation values of 0.95 for
hand-labelled vs. DLC lip aperture and 0.89 for hand-labelled vs. DLC lip width were
recorded for DLC MobileNetV2.

Figure 20. Difference in lip area between hand-labelled randomly selected frames (40 frames for each
speaker) and DLC MobileNetV2_1.0, DLC ResNet50 and a second hand-labeller.

Figure 21. Difference in lip width between hand-labelled randomly selected frames (40 frames for
each speaker) and DLC MobileNetV2_1.0, DLC ResNet50, and a second hand-labeller.

5. Discussion

In this study, we investigated an open tool for pose estimation applied to speech
articulator image data. By leveraging existing networks pretrained on general object
recognition and human body pose estimation, relatively small amounts of speech articulator
training data result in a model capable of achieving human-level accuracy on unseen data.
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In a field dominated by segmentation and edge-detection methods, we show the following
for the first time:

• Pose estimation is capable of learning how to label features that do not necessarily
correspond to edges.

• Pose estimation can estimate feature positions to the same level of accuracy as a
human labeller.

The hand-labels used here, as in similar studies, were subjectively determined. How-
ever, labelling, adhering to the prescribed guidance (see Section 3.1.3), could be learnt by
both another human and the DLC network equally well. From this, we can be encouraged
that if a more principled ground truth were to be established, perhaps by mapping points
from MRI or EMA onto the ultrasound images, then that ground truth would be learnt.

It is possible that the performance of SLURP, MTracker, and DeepEdge could be im-
proved if trained on the same data as DLC. However, Zhu et al. [11] test MTracker on two
of the test sets used here; namely, the Ultrax Child corpus and the French UltraSpeech
corpus. Looking at Figures 7 and 8, speakers from those datasets (02TD1M, 05TD1M,
07TD1F, 08TD1F, 09TD1, 11TD1F, TH, DF, PB) do not show broadly better performance
by MTracker. Conversely, the UltraSpeech corpus is not represented in the DLC training
data and Figures 7 and 8 do not show worse performance by DLC on TH, DF, and PB
than on other speakers. Neither DeepEdge nor MTracker make a training package publicly
available. If users could train these models on their data, it is questionable whether they
would choose to hand-label the 2000–35,000 frames needed to train these networks. By
contrast, the DLC model trained in this study appears to generalise well. DLC includes a
simple training package and the training data used in this study is available online. Thus,
if the model did perform poorly on a user’s dataset, a few (<100) hand-labelled frames
from that dataset could be added to the existing training data and the model retrained. The
small number of images required for training also permits time for more careful, consistent,
and expert labelling.

Outside the scope of this study, DeepLabCut can also estimate the position of the
hyoid, and jaw if these features lie within the image. These are point structures rather than
edges and cannot easily be estimated by segmentation or edge detection algorithms.

Where speed is a consideration, DLC MobileNetV2 and ResNet50 perform faster
(with a GPU) than real time even with ultrasound frame rates of 119 fps. DLC could
therefore perform tongue contour estimation on live ultrasound and lip images. Real-time
performance is important for live lipreading or visual feedback of tongue for speech therapy.
For offline analysis, DLC MobileNetV2 performs at 7 fps using a CPU and can process a
batch of recordings at this rate. It does not require manual intervention for each recording
so can be left to run overnight if necessary.

DeepLabCut analyses each frame independently. No frame-to-frame continuity is
applied. Given that it tracks so well, the absence of temporal continuity constraints can
be seen as an advantage because problems of “drift” in contour position cannot occur.
Frame-to-frame jitter in keypoint position can be filtered out in post-processing if the frame
rate is significantly faster than the articulator movement.

Pose estimation offers the possibility of tracking keypoint positions. Whether it is
possible to track points on the tongue remains an open question. Results from our pilot
investigation comparing the EMA sensor position to DLC estimates, and high RMSE values
(~3 mm) w.r.t. MSD values (~1 mm), both indicated poor estimation of the sensor position
along the tongue surface. This is likely due, in part, to inconsistency of training keypoint
placement by the human labeller, despite an effort in this study to try to label as if the
keypoints were attached to a specific flesh point. A further multi-speaker study where
simultaneous EMA and ultrasound is used to train and to evaluate the estimation of the
sensor positions is required.

Edge tracked partial tongue contours provide no indication of which part of the
contour corresponds to root, body, or tip. This has dictated what kind of further analysis
can be performed on estimated lip and tongue contours. The intersection of the tongue
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contour with a fixed measurement axis is often used to assess raising or lowering of a
part of the tongue. Measuring tongue tip movement in this way runs into problems when
the tip is retracted, and the contour no longer crosses the axis. Pose estimation opens the
possibility of measuring the contraction of the root, body, dorsum, and blade with respect
to the anatomically defined position of the short tendon where bundles of the genioglossus
muscle attach to the mandible (see Figure 2). This provides a measure independent of probe
rotation. Lip rounding can be identified not only using the overall width and aperture
measures but also the relative height of the midpoints compared to the parasagittal points.
With reference to Figure 5, a measure for lip rounding can be formulated as:

(abs (C − D) − 0.5 (abs (E − F) + abs (G − H))) / abs (A − B)

Pose estimation has recently been applied to sustained speech articulations recorded
using MRI of the vocal tract [39]. A total of 256 × 256-pixel images with 1 pixel/mm
resolution were analysed and RMSE accuracy results of 3.6 mm reported. These results are
similar to the RMSE scores reported here for ultrasound. Beyond the scope of the current
study, we piloted articulatory keypoint estimation using dynamic MRI of the vocal tract
taken from a public multi-speaker dataset [40]. The data consisted of 84 × 84-pixel images
(83 Hz) and perhaps because of the low spatial resolution, the method was less successful.
A larger amount of training data were perhaps required, and this would be something to
be investigated further.

DeepLabCut provides a package for estimating 3D positions using multicamera data
and could be applied to form a richer feature set for lip movement. A side-facing camera
would capture lip protrusion information. DeepLabCut could also be investigated as a
means for tracking other expressive facial features, such as eyebrows, or for monitoring
head movement. DeepLabCut also provides a package to run on a live video stream and
work is underway to implement this for live ultrasound input.

In summary, the combination of transfer learning and pose estimation, evaluated
here using DeepLabCut, provides a ground-breaking level of efficiency, practicality, and
accuracy when applied to feature labelling of speech articulatory image data. The models
generated by this study have been made available in Supplementary Materials for use and
further evaluation by other research groups.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22031133/s1. Videos of all test recordings with DLC MobileNetV2
contour estimates superimposed; an AAA project freely accessible by downloading the AAA software
where all of the estimation methods can be compared.
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Appendix A

The mean sum of distances (MSDs) between two contours A and B each consisting of
n equally spaced x/y coordinates is defined by Jaumard-Hakoun et al. [15] as:

MSD(A, B) =
(
∑n

i=1 minj(‖Bi− Aj‖+ ∑n
j=1 mini(‖Ai− Bj‖

)
/2n

The MSD first considers each defining x/y coordinate of contour A and its distance
to the closest point on contour B, and then considers each point along contour B and its
distance to the closest point on contour A. It then averages the resulting 2n distances. Using
this formulation, the two sums in the MSD are considerably different in magnitude when
the length of one contour is significantly different from the length of the other.

In this paper we modified the above formula so that the MSD is unaffected by differ-
ence in length between the two contours. While measuring distances between the first point
on contour A and all points on contour B only the distance to the closest point on contour B
is accumulated and n is incremented only for this distance. The same process applies to the
last point on contour A. Then the process is repeated when taking points along contour B
and comparing to contour A. In this way, distances corresponding to disparate endpoints
of the contours are not counted. If contour B is very much shorter than contour A but the
two contours match exactly, then the MSD score will be close to zero.

Note: the mean tongue contour length is 86 mm. For this paper n = 100 so the distance
between contour vertices is on average 0.86 mm. If two contours sit perfectly on top of each
other but the vertices are offset by 0.43 mm then the MSD score would be 0.43 mm, not
zero. Our MSD results show very few image frames where the score was less than 0.4 mm.

Appendix B

Typical training loss and corresponding root mean square error (RMSE) for ultrasound
keypoint estimation showing hand-labelled data vs. test data.

Figure A1. Training iteration loss.
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Figure A2. RMSE for ultrasound test set (excludes points with confidence less than 0.6).
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