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Abstract 

Cryo-electron microscopy (cryo-EM) has revolutionized our understanding of macromolecular 
complexes, enabling high-resolution structure determination. With the paradigm shift to in situ 
structural biology recently driven by the ground-breaking development of cryo-focused ion 
beam milling and cryo-electron tomography, there are an increasing number of structures at 
sub-nanometer resolution of complexes solved directly within their cellular environment. 
These cellular complexes often contain unidentified proteins, related to different cellular 
states or processes. Identifying proteins at resolutions lower than 4 Å remains challenging 
because the side chains cannot be visualized reliably. Here, we present DomainFit, a 
program for automated domain-level protein identification from cryo-EM maps at resolutions 
lower than 4 Å. By fitting domains from artificial intelligence-predicted models such as 
AlphaFold2-predicted models into cryo-EM maps, the program performs statistical analyses 
and attempts to identify the proteins forming the density. Using DomainFit, we identified two 
microtubule inner proteins, one of them, a CCDC81 domain-containing protein, is exclusively 
localized in the proximal region of the doublet microtubule from the ciliate Tetrahymena 
thermophila. The flexibility and capability of DomainFit makes it a valuable tool for analyzing 
in situ structures. 
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Introduction 
 
In the last decade, cryo-electron microscopy (cryo-EM) has become a powerful technique to 
determine the structures of macromolecular complexes. With advances in cryo-EM image 
processing algorithms, large endogenous complexes have been solved at high resolutions 
such as the phycobilisomes in red algae 1, the mitochondrial membrane bending 
supercomplex 2 and the doublet microtubules of the cilia 3,4. Recently, in situ cryo-electron 
tomography (cryo-ET) from thin lamellae of cells prepared by a cryo-focused ion beam (cryo-
FIB) instrument has emerged as a transformative technique, revolutionizing our 
understanding of cellular structures and molecular processes 5. With high-throughput tilt 
series acquisition and improvement of subtomogram averaging software 6-13, subtomogram 
averaging of complexes can reach sub-nanometer resolution and in some cases better than 4 
Å resolution 11,14-16. Structures of protein complexes obtained in situ often contain 
unknown components, unlike in vitro reconstituted protein complexes. In addition, depending 
on the cellular context, space- and/or time-specific interactions with unknown proteins might 
be revealed by subtomogram averaging. Due to the lower resolution of these in situ 
structures, identification of proteins requires a different approach than traditional molecular 
modelling programs. 
 
For high-resolution structures, there are many methods that can be used for the modelling 
and identification of unknown proteins including CryoID, DeeptracerID, FindMySequence, 
and modelAngelo 17-20. These programs trace and model the backbone of the protein 
density. Then, the identity of the protein is predicted by comparing the side-chain densities 
against a database of protein sequences. This approach was successful in determining many 
proteins in the doublet microtubule 21,22, radial spokes and central apparatus and the 
phycobilisomes 17. However, all these methods only work reliably at a resolution better than 
4 Å. 
 

In most cases, the attainable resolution by subtomogram averaging is lower than 4 Å. This is 
due to the low throughput of cryo-FIB milling and low abundance of the target protein 
complex. Furthermore, in situ structures  can have problems related to orientation, sample 
thickness and signal-to-noise ratio. Therefore, it is a challenge to identify proteins from in situ 
subtomogram averages. 

 
In the last few years, there has been a breakthrough in artificial intelligence (AI)-assisted 
protein structure prediction. Programs like AlphaFold 23, ColabFold 24 and RoseTTAfold 25 
can produce accurate structure predictions. With the establishment of the AlphaFold Protein 
Structure Database (AlphaFold DB), everyone now has access to over 200 million predicted 
models. For certain organisms such as humans, mice, zebrafish and nematodes, 
AlphaFold2-predicted models of the entire proteome are available. 
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With the good accuracy of the AI-predicted models, it is possible to identify the fold signature 
of a protein at a resolution of less than 4 Å by fitting the AI-predicted models into the density. 
Using complementary data such as in situ chemical cross-linking mass spectrometry, 
quantitative mass spectrometry and/or BioID, it is possible to identify proteins from the fit list. 
For example, microtubule inner proteins (MIPs) were identified from the in situ subtomogram 
average of human sperm doublet microtubules at ~6-7 Å using Colores Situs program by 
fitting over 21,000 AlphaFold2-predicted protein models of the mouse proteome 26. In 
another study, 38 proteins were identified from the mouse sperm by manually fitting 
AlphaFold2-predicted models of proteins found in the mass spectrometry analysis of the 
same sample 16. 
 
While those studies illustrate that it is possible to identify well-structured proteins from a map 
lower than 4 Å resolution, the methods are not automated or are difficult to use. In addition, 
the criteria to evaluate and identify proteins from the fitting solutions are not clear from these 
studies. While the accuracy of the AI-predicted model is high for compact domains, the 
tertiary structure of the predicted model might not be correct, due in part to poor prediction of 
flexible regions. Therefore, protein identification is easier when domains are extracted from 
each AI-predicted model and used instead of the entire model. 
 
In this work, we developed a program called DomainFit to identify domains of proteins from 
cryo-EM maps of lower resolution than 4 Å. DomainFit uses popular programs such as 
Phenix 27, R 28 and UCSF ChimeraX (ChimeraX) 29, making it easy to install and accessible 
to people. In addition, DomainFit is flexible and has a clear statistical approach to evaluate 
the identity of proteins. Lastly, DomainFit uses ChimeraX, which allows easy visualization to 
aid in evaluating the fit. Our workflow will be useful for the upcoming wave of in situ structures 
as cryo-FIB and cryo-ET become more popular. 
 
 

Results 

An automated pipeline for domain parsing and fitting into cryo-EM 
map 

Overall, the program is designed to first download a database of AI-predicted models of 
candidate proteins (i.e. full species proteome or a limited list based on mass spectrometry 
studies), then divide each model into different domains and fit each individual domain into a 
segmented cryo-EM density. Finally, the program generates a statistical evaluation of all the 
fitted domains (Fig. 1A). The identification of the correct domain can be based purely on 
statistical analysis but also on other complementary data such as surrounding densities, 
protein size, chemical cross-linking and quantitative mass spectrometry. 
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The list of candidate proteins can be obtained from the mass spectrometry results of the 
target sample such as the proteome of isolated organelles or pull-down analysis. In case a 
targeted list is not available, it is possible to use AI-predicted models of the entire proteome 
of the organism, even though it will increase computational time significantly. In DomainFit, 
we provide a script getAlphaFoldPDBs.py to automatically download the AlphaFold2-
predicted models from the AlphaFold DB using a list of protein UniProtIDs (Fig. 1A). The 
downside of downloading automatically from the AlphaFold DB is that for many organisms, 
high molecular weight proteins ( > 100kDa) are not yet available in the database. These 
missing proteins can be predicted using ColabFold, RoseTTAFold or a local instance of 
AlphaFold. 
 
Many ideas have been proposed to break PDB models into compact domains automatically 
27,30,31. With AI-predicted models, it is possible to partition into domains based on the 
predicted alignment errors (PAE) of each model (Fig. 2A-D). PAE is the expected positional 
error for residue x if the predicted and actual models are aligned at residue y 23. Using an 
image-based approach, it is possible to partition predicted models into domains based on 
their respective PAE files (Fig. 2B-D) 30. We used phenix.process_predicted_model program 
from the Phenix package 27 for the partitioning of the PDB into domains because of its 
flexibility. phenix.process_predicted_model can function based on PAE but also based on the 
3D arrangement of the proteins without PAE information. Therefore, we implemented a 
Python wrapper process_predicted_models.py to partition PDBs into domains in batch (Fig. 
1A). Users can customize the options for parsing based on their needs. 
 
To increase the flexibility of our program, process_predicted_models.py writes out the 
information of the predicted domains using the format employed by DPAM 31. As a result, we 
can use domain information data from either phenix.process_predicted_model or existing 
domain data of certain organisms such as human, mouse, and zebrafish from DPAM 31 to 
generate the PDBs of individual domains. In the case of a small number of target proteins, we 
can even edit the domain information files manually to generate customized domain parsing. 
 
At this step, we recommended imposing a filter on the minimum and maximum domain sizes 
for fitting. At the lower end, 40 amino acids is the minimum size that allows us to reduce the 
number of domains used without affecting the results since domains under 40 amino acids 
tend to be either wrongly partitioned or not compact. On the upper limit, we recommend using 
a bigger value like 1,000 amino acids as a fail-safe in the case that domain parsing does not 
work properly. 
 
To prepare for the fitting of domains, a volume containing a compact density should be 
segmented from the cryo-EM map. The compact density means either globular or coiled-coil 
bundle. A long helical density does not work since its shape is not unique for identification of 
protein fold. Ideally, the segmented density should be equivalent to a domains of more than 
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50-300 amino acids in size. This serves two purposes: (i) to reduce computational time, and 
(ii) to avoid the wrongly predicted tertiary conformation caused by long flexible loop between 
different domains. 
 
Once the segmented density is prepared, fit_domains_in_chimerax.py is used to fit all the 
individual domain models into the density to find the best fitting position of each domain (Fig. 
1A, Fig. 2E). The script uses the ChimeraX fitmap command to fit each domain in the density 
from a fixed number of initial random translated and rotated search positions within the 
density defined as “initial search placements”. Instead of exhaustive six dimensional search 
like Colores package in Situs, for global search, ChimeraX fitmap places the model randomly 
in rotation and translation within the map, and performs rigid-body local optimization from 
each initial placement. After the local optimization, ChimeraX will group the fitting solutions of 
based on similarity in orientation. Therefore, the number of fitting solutions tend to be smaller 
than the number of initial search positions due to clustering. These fitting solutions’s 
correlation score are then z-transformed and then used for the calculation of the p-value, the 
likelihood that the top hit is correct and clearly significant compared to the rest of the fitting 
solutions (See Materials & Methods, Fig. 2F). Once the fitting is done for every domain in the 
density, we expect that top hits with the correct fold/domain are clearly distinguished from 
other fitting solutions by their z-transformed scores, whereas those with the incorrect domain 
are not so differentiated (Fig. 2G). Visualizing the fitting statistics i.e. p-values and cross 
correlation coefficient of all domains allow a quick way to see how distinct is the top hits (Fig. 
2H). 
 
A comma-separated value (CSV) file containing the best fitting position of each domains is 
written at the end, sorted first by p-value and then by the correlation score for quick 
evaluation.  

DomainFit benchmarking for MIP identification 

To assess the efficiency of DomainFit, we tested it on segmented  densities from the single-
particle cryo-EM map of the doublet microtubule from Tetrahymena thermophila (EMD-
29685) at ~4 Å resolution. More than 40 MIPs were identified and modelled using an AI-
assisted modelling approach  (Fig. 3A). Even though the resolution of the doublet microtubule 
cryo-EM map was high, modelling and identifying proteins  was laborious and time-
consuming. Our goal for this test was to see whether we could identify the MIPs using 
DomainFit independently. 
 
We segmented 24 densities from 13 identified MIPs in the cryo-EM map corresponding to 
different domains of MIPs (Supplementary Table 1, Figure 2B). We established a database 
comprising 856 AlphaFold2-predicted models based on the mass spectrometry data of the 
WT cilia without membrane (994 detected proteins) 21. One hundred and thirty eight proteins 
were not available from the AlphaFold DB because of a lack of predictions due to their high 
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molecular weight. For benchmarking purpose, we ignored them for this test since the 856 
AlphaFold2-predicted models covered all the tested MIPs. 
 
Using process_predicted_models.py and save_domains_from_info.py, we divided 856 
AlphaFold2-predicted models into 2819 domains. We removed domains of less than 40 
amino acids which left us with 1561 domains for fitting (Fig. 3C). We then fitted all 1561 
domains into each density filtered at 4 Å using 200 initial search position placements. On 
average, each density search took ~30 minutes using 12 cores (20 threads) on an i7-12700K 
(12 core-CPU and 32GB RAM). 
 
Out of all the densities tested, we found 22 out of 24 correct domains are present in the top 5 
hits ranked by descending p-value (Supplementary Table 1, Fig. 3D, Fig. S1). Overall, we 
found the p-value to be a better predictor of correct identification and fitting than the 
normalized cross correlation coefficient, which is called correlation about mean in ChimeraX. 
Often, the domains were correctly found as the top hits with the highest correlation and best 
p-value such as PACRGB, an inner junction protein 32 (Fig. 3E). Our results show that the p-
value ranks consistently higher than the correlation score for the correct domains for the 
densities (Fig. 3D). In the cases where domains have a common fold, multiple domains 
returned a p-value of 2.22*10-16 (limit of R program). Thus, we sorted the fitting solutions first 
based on p-values, and then by their normalized cross correlation coefficient. As a result, 
hereafter, top hits will refer to the top p-value ranked hits. 
 
In some cases such as Density 6 (CFAP5213-317), by looking at the fit of the domains in the 
density, we can roughly estimate the size of the domain and establish a minimum domain 
size threshold, which allows quicker identification of the correct domain (Fig. S2A-B). 
 
There are quite common cases where the partitioned domain is bigger than the segmented 
density (Supplementary Table 1, Fig. S1, Density 6, 10-13, 16-17, 19-22, 24). This might 
affect the fitting of DomainFit. For example, our parameters for domain parsing tend to keep 
entire EF-hand domain pairs as a single domain, instead of two separate EF-hand domains. 
For RIB22, while the density represents only RIB221-91, RIB224-191 was partitioned as one 
domain (Fig. 3F). On the other hand, the correct fitting was found for RIB224-191 with a p-value 
and correlation value of rank 1st (Fig. 3F, Supplementary Table 1). 
 
Interestingly, for Density 10, corresponding to the EF-hand domain RIB571-91, DomainFit 
failed to find the correct domain (Fig. 3G). While all the top hits were the wrong protein, they 
all had the correct EF-hand fold (Fig. 3G). when we compared the experimentally determined 
model of RIB57 (Fig. 3H) and the AlphaFold2-predicted model, there was a big difference 
between the two models from residues 6 to 91 (RMSD 5.164 A, Fig. 3I). Therefore, the failure 
to find RIB571-91 density (Density 10) was due to both the difference in the AlphaFold2-
predicted model and the unsuccessful parsing of RIB571-91 domain. 
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We conclude that DomainFit works well but attention needs to be paid to potential mis-
identification of proteins due to their size and domain parsing. Also, running with a higher 
number of initial search placements is a safeguard against inaccuracy in domain parsing to 
accommodate more initial translated and rotated positions. 

 

Performance of DomainFit depending on the number of initial 
placements and resolution 

Our test results showed that DomainFit is effective in identifying compact densities and the p-
value is the most reliable indicator of the correct hit. For p-value to be estimated properly, a 
reasonable number of data points, i.e. fitting solutions are needed.  Therefore, we wanted to 
explore the sensitivity of the p-value estimation to the number of initial search placements. 
We ran DomainFit for Density 1 100 times for each initial search placement value ranging 
from 1 to 300 and plotted the average p-value found. Our analysis shows that above 150 
initial search placements, the resulting p-value is consistently found to be as high a value as 
it can be (Fig. 4A). Thus, setting a search placement value of 150 should yield optimal results 
for the speed and accuracy of the fits in this setup. This setting is appropriate for a domain of 
100-150 amino acids while larger domains may require a higher number of initial search 
placements. We also looked at the z-transform correlation score for the correct domain at 
different numbers of initial search placements (Fig. S3A-D). The statistical calculation is 
certainly less reliable when the number of fitting points is small. For the correct domain, if the 
correlation score of the top hit is distinct from that of the rest, a good p-value can still be 
obtained.  
 
The number of fitting solutions found does not depend only on the number of initial search 
placements but also on the resolution of the map. Next, we wanted to check the effect of map 
resolutions on the success of DomainFit. To test whether the program could successfully 
identify domains at lower resolutions, we filtered and ran the density maps of the MIPs at 4, 
6, 8, and 10 � (Fig. 4B). We found that the search consistently identified the correct domain 
within the top 10 results at 4 to 8 � resolution (Fig. 4C). At lower resolutions, there are 
significantly fewer fitting solutions found even with the same number of initial search 
placements (Fig. 4D). This is because of the smoothening of the map at lower resolutions, 
which does not allow many unique fitting solutions. Because of this, ChimeraX produces a 
small number of clusters of fitting solutions from a large number of initial search placements. 
This leads to less confidence in statistical analysis of the top hits. If we look at the z-
transformed correlation score at 4, 6, 8 and 10 Å of the correct domain (Fig. 4E, F), we can 
see that at 6 Å, the distribution of the fitting solution and the top hits still maintains its shape, 
allowing reliable p-value calculation. At 8 Å, while the top hit is still well separated from the 
distribution, the rest of the solution does not look normally distributed. At 10 Å, not only does 
the distribution of the correlation score is not normally distributed but the difference between 
the top hit and the rest gets smaller.  
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As a result, DomainFit seems to work best in the 4-to-6 Å resolution range. At 8 Å resolution, 
the number of initial search placements must be increased to help with statistical calculation. 
At lower than 8 Å, DomainFit should only be used for finding types of folds that fit well in the 
density by visual inspection of the top hits but it should not be used for domain identification. 

New MIP identified in the doublet microtubule 

With our success in testing and validating the DomainFit program, we attempted to identify 
unknown proteins from cryo-EM maps with a resolution lower than 4 Å. An unidentified MIP 
was previously reported  in the subtomogram average of the T. thermophila doublet 
microtubule 33 (Fig. 5A). However, this density was not observed in the single particle cryo-
EM map of the doublet microtubule 21 (Fig. 5B) and at too low resolution to be identified.  
 
We re-processed the cryo-EM dataset containing the 48-nm particles of T. thermophila K40R 
doublet microtubule 21 with Cryosparc 34 Using 3D classification and refinement, we 
obtained a 4.5 Å resolution cryo-EM map with the same density as the subtomogram average  
(Fig. 5C, Fig. S4A, B). 
 
To identify the proteins in the unknown density, we segmented the density into 12 smaller 
densities (Fig. 5D). To improve the accuracy of the search, we used the ciliome of the salt-
treated doublet microtubules 4. The reason is that the cryo-EM map of salt-treated doublet 
microtubules retains most of the MIPs and the unknown density 35. The salt-treated ciliome 
of 166 proteins was divided into 334 domains of at least 40 amino acids. We ran DomainFit 
with these 334 domain models for the above 12 densities. 
 
Interestingly, the top hits for the 12 densities came from only three proteins (Fig. 5E, 
Supplementary Table 2). Upon inspecting the results, we concluded that the 12 densities are 
composed of only two proteins I7MB72 (TTHERM_00525130) and I7M688 
(TTHERM_00649260) because of the overall architecture (Fig. 5F, Fig. S5A) and the fit of 
unique domains in both proteins (Fig. 5G-H).  
 
I7MB72 matches unknown density 1 with high confidence in p-value and correlation (Fig. 5F), 
referring as BMIP1 from here onwards. Upon inspection of the map, density 1 was always 
present in the doublet microtubule (EMD-29692) but was not identified previously. As a result, 
we could model extra regions of the protein BMIP1 in the T. thermophila K40R map (EMD-
29692) at 3.5 Å resolution, confirming the identity of unknown density 1 and the success of 
DomainFit (Fig. 6A, B). In addition, BMIP1 is abundant in both salt-treated and native doublet 
microtubules similar to the profiles of most MIPs. BMIP1 has a cross-link to CFAP45, which 
exists as two copies between protofilaments B8B9 and B7B8, as shown in studies that 
usedchemical cross-linking coupled with mass spectrometry of cilia 21,36 (Fig. 6C). While the 
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cross-linked residues (Lysines 213 and 222) from BMIP1 are not modelled, they seem to be 
within the cross-link distance (< 35 Å) from lysines 403 and 283 of CFAP45. 
 
Densities 2-12 (Fig. 5D) belong to I7M688, a CCDC81-domain containing protein. We named 
I7M688 as CCDC81B from here onwards. The CCDC81 domain of CCDC81B is 
unambiguously fitted into unknown density 2 (Fig. 5H). There are a few CCDC81-containing 
proteins in the cilia of T. thermophila: IJ34 (UniprotID I7M9T0), CCDC81A (UniprotID 
I7MLF6), CCDC81B (UniprotID I7M688), Q240Y1 and Q22HG4. IJ34 is a MIP near the inner 
junction 21 and CCDC81A was identified as a ciliary tip protein 37. Q240Y1 and Q22HG4 are 
clear paralogs of CCDC81B with similar architecture but are washed away in salt-treated cilia 
21. 
 
Mass spectrometry results show  that CCDC81B is resistant to salt and is similar to a MIP 
profile 21. In situ cross-linking mass spectrometry shows that CCDC81B is crosslinked to 
tubulin alpha, CFAP106, FAP210, and interestingly RIB43A 36. All these cross-links are 
satisfied relative to the CCDC81B position in the unknown density, except for RIB43A (Fig. 
6C). Therefore, we are confident that CCDC81B corresponds to unknown densities 2-12. 
 
For a quick comparison of DomainFit with complete AlphaFold2 model fitting, we also fitted 
166 complete AlphaFold2-predicted models into the full segmented density (Fig. S4). The top 
hits were IJ34 and CCDC81B. Both proteins contain a CCDC81 domain (Fig. S5B). BMIP1 
only ranks 22 in p-value. The AlphaFold2-predicted model of CCDC81B has good tertiary 
structure prediction, which helps the complete model fitting. However, this shows the 
weakness of complete model fitting. First, complete model fitting seems to penalize smaller 
domains such as BMIP1. Second, doing complete model fitting does not allow to filter the 
sizes of the fitted domains, which is useful to eliminate false positive fits. Finally, with 
DomainFit, we can visualize the top hits from different densities (Fig. S5A), allowing a quicker 
identification of multidomain proteins without relying on the quality of the tertiary structure 
prediction. On the other hand, complete model fitting of 166 AlphaFold2-predicted models in 
the density filtered at 10 Å resolution also found CCDC81B as the top hit with good fitting 
accuracy, thanks to good tertiary structure prediction (Fig. S5C, D). 
 
To further confirm that CCDC81B is a MIP found only in a subset of the doublet microtubule, 
we generated a T. thermophila strain with CCDC81B fused with GFP. Under superresolution 
structured illumination microscopy, the signal of CCDC81B was limited to the 1-1.5 um 
proximal region of the cilia (Fig. 6C). That explains the ratio of about substoichiometric 
fraction of the particles containing CCDC81B densities from the single-particle cryo-EM data. 
As a result, we can confirm that CCDC81B is a MIP that localizes to the proximal region of 
the cilia. 
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Discussion 
 
In this paper, we demonstrated that it is possible to identify compact domains of proteins in 
maps at a resolution lower than 4 Å using the DomainFit program. We benchmarked 
DomainFit using known structures and successfully identified CCDC81B and BMIP1 as two 
new proteins in the doublet microtubule of T. thermophila. Notably, we showed that 
CCDC81B only exists in the proximal region of the cilium using superresolution structured 
illumination microscopy of T. thermophila cells expressing CCDC81B fused to GFP. 
 
While DomainFit works, it is not as definite without complementary data as high-resolution 
cryo-EM data where side-chain information is available. We showed that the statistical 
analysis of the best-fitting domain works well. When the fold of the domain is unique, the 
identification works excellently. When the fold is not unique, DomainFit still finds the correct 
fold. Tools like Foldseek 38 can then be used to list all the proteins with the same fold 
available. With other complementary info such as chemical cross-linking mass spectrometry, 
BioID, and stoichiometry of proteins from quantitative mass spectrometry, it is possible to 
narrow down and identify the right proteins as demonstrated by this work and other integrated 
structural biology approach 39. There are certain cases in which the AlphaFold2-predicted 
model is not similar to the protein fold in the map, leading to the wrong identification. 
However, it does not happen often with compact domains. 
 
The validation of DomainFit using known MIPs highlights a caveat of the workflow in the 
partitioning of domains. Breaking proteins into compact domains will never be perfect since 
over-partitioning will produce smaller domains and therefore increase false positive fits while 
under-partitioning produces bigger domains, requiring a high number of initial search 
positions, compromising the computational requirement. Perhaps, the development of 
domain partitioning with better customization in the future can improve the usability of 
DomainFit. Despite that caveat, our work shows that domain fitting is in general more 
accurate than complete model fitting since AlphaFold2 domain prediction is in general more 
accurate than AlphaFold2 tertiary structure prediction. 
 
Another point to consider for a successful identification is the quality of the map. It seems that 
DomainFit works well between 4 and 6 Å resolution where detailed secondary structural 
features can be visualized. It is recommended to use appropriate post-processing methods to 
improve the interpretability of the map such as DeepEmhancer 40, LocSpiral 41 or Density 
Modification 42. 
 
At the lower resolution of 8-10 Å, DomainFit can still work but requires complementary data 
for validation. For lower resolution, perhaps using domains with bigger partitions or even the 
entire AlphaFold2-predicted model might help with the fitting and identification if the tertiary 
structure is predicted correctly. With the flexibility of DomainFit, users can try both 
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approaches and evaluate the fitting visually in the case of low resolutions using scripts 
provided by DomainFit. 
 
In addition, since the program is rather quick, it is possible to use DomainFit to construct the 
structures of complexes with known compositions. A database of domains from all the known 
components can fit into different densities of the map. This allows a more unbiased way of 
building up the structure of the protein complex. 
 
In conclusion, we presented here the DomainFit program, which allows the unbiased fitting of 
domains of proteins into the cryo-EM map. At resolutions better than 6 Å, the program can be 
used reliably as a tool to identify compact proteins in the map. 
 

Materials & Methods 

Domain parsing 

For domain parsing, we used the option split_model_by_compact_regions=True from 
phenix.process_predicted_model. In addition, we set the option maximum_domains for each 
protein so that the maximum_domains equal the protein size in amino acids divided by 100 
amino acids. 

p-value calculation 

The p-value calculation for the fitting of each domain has been implemented in R 43 in the 
integrated modelling software Assembline 45 and used for the identification of the nuclear 
pore complex Y-shaped scaffold 44. 
 
In brief, for each domain, ChimeraX clusters the results into a number of fitting solutions with 
distinct rotational and translational parameters, and cross-correlation scores. As a result, 
many searches with different initial rotation and translation placement, resulting in similar final 
fitting orientation are clustered into one fitting solution. The correlation scores of all fitting 
solutions are transformed to z-scores using Fisher’s z-transform and centered to yield an 
approximately normal distribution (Fig. 2F).  
 
Then, the two-sided p-value and Benjamini-Hochberg adjusted p-value are calculated from 
the z-scores using the false discovery rate (fdr) package in R. The top hit for each domain 
which corresponds to the highest correlation score and lowest p-value is recorded in an 
aggregated list. Once this process is done for all the domains, the list is then sorted by p-
value. When the correct domain is evaluated, the top hit’s z-transformed score is clearly 
discriminated from the rest of the fitting solution while the difference in value is not as clear 
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when a wrong domain is evaluated (Fig. 2F, G). That translates to a lower p-value for the top 
hit of the correct domain. 
 
The p-value is a more reliable indication of true positives than the correlation score since it is 
less sensitive to the size of the domain fitted in the density. Small domain models due to 
wrong partitioning always have high correlation scores because they fit perfectly in a small 
area of the density. For the correct domain, the correlation score difference between the top 
hit and the second hit tends to be larger except for domains with a symmetrical shape (e.g. 
WD40 beta-propeller). We also found that the Benjamini-Hochberg adjusted p-value functions 
similar to p-value. 
 

Cryo-EM and image analysis 

The single particle cryo-EM data of the 48-nm repeating unit of the doublet microtubule from 
T. thermophila was originally published in 21. 
 
To obtain the density with a resolution better than 12 Å resolution of the subtomogram 
average, we constructed a focused classification mask at the region of the density based on 
the EMD-24376 subtomogram average map and performed 3D classification without 
alignment for four classes on the 48-nm particles cryo-EM dataset of T. thermophila K40R 
doublet microtubule 21 using Cryosparc 34 (Fig. S4A). After classification, class 1 contains 
~45,000 particles showing the same density as the subtomogram average (Fig. 5C). This 
suggests that the density feature observed by subtomogram averaging is not uniformly 
located in the cilia. We further refined Class 1 in Cryosparc with focused local refinement 
using a refinement mask slightly larger than the classification mask, resulting in a cryo-EM 
map of 4.5 Å resolution (Fig. 5C, Fig. S4A, B). The details in the density map suggest a 5-5.5 
Å resolution. 
 
The final map was post-processed using DeepEMhancer 40. 
 
All the visualization of maps and models were done in ChimeraX 46. 
 

Cryo-EM density map segmentation 

To segment the density of interest for DomainFit from the cryo-EM map, we manually placed 
markers onto the density of interest in ChimeraX. After that, we colored the density around 
the markers, and use volume splitbyzone function of ChimeraX to segment the density out 
and save. 
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Modelling 

For modelling of BMIP1 (UniprotID I7MB72, TTHERM_00525130), we started with the 
AlphaFold2-predicted model of the globular domain of BMIP1 fitted in its density. We fixed 
the model manually in Coot 47 and modelled some extra regions of the protein. The final 
models were then real-space refined in Phenix 46. 
 
For the modelling of CCDC81B (UniprotID I7M688, TTHERM_00649260), best fitting 
positions of different domains of CCDC81B were found using DomainFit. We joined all the 
domains together using Coot 47 and refined in Phenix 36.  
 
 

Cross-link mass spectrometry visualization 

Cross-links to BMIP1 and CCDC81B were obtained from a chemical cross-linking mass 
spectrometry of T. thermophila cilia  (Reported in Supplementary Table 1 in 48). The 
crosslinks were visualized in ChimeraX using the bundle XMAS 49. 

 

Cell culture and gene editing 
All Tetrahymena strains used in this study were grown in SPP media 50 in a shaker incubator 
at 30°C and 120 rpm. 
 
The CCDC81B gene, TTHERM_00649260 gene was edited by homologous DNA 
recombination using a targeting plasmid carrying the neo4 selectable marker. The portions of 
TTHERM_00649260 required for  gene targeting were amplified using primers 5F (5’- 
ctatagggcgaattggagctttgtgaaatagatggaagag-3’) and 5R (5’- 
atcaagcttgccatccgcggacttgtgaatttttaaagagat-3’) amplified a terminal portion of the coding 
region and primers  3F (5’- gcttatcgataccgtcgaccatcaattatttcaaagtattaa-3’) and 3R (5’- 
agggaacaaaagctgggtacgcattatccaaaatatattctaa -3’) amplified a portion of the 3’ UTR and 
cloned into the pNeo24-GFP plasmid 51. The resulting edited fragment TTHERM_00649260 
was targeted to the native locus using biolistic bombardment of T. thermophila cells and 
paromomycin selection.  

Immunofluorescence 

For immunofluorescence, T. thermophila cells were fixed and stained as described 52. The 
primary antibodies used were the mouse monoclonal anti-polyglycylated tubulin AXO49 
(diluted 1:200) 52 and polyclonal anti-GFP antibodies (Rockland, 1:800). The secondary 
antibodies used were goat-anti-mouse IgG-FITC and goat-anti-rabbit-Cy3 antibodies 
(Jackson Immunoresearch). SR-SIM imaging was conducted on an ELYRA S1 microscope 
equipped with a 63× NA 1.4 Oil Plan-Apochromat DIC objective. The optical slices were 
analyzed by Fiji/ImageJ (Z project tool). 
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Data Availability 
The data generated in this study are available in the following databases: XXX (The proximal 
proteins from the 48-nm Tetra K40R doublet), EMD-YYY (The proximal density from the 48-
nm Tetra K40R doublet). All data used but not produced in this study are available in the 
following databases: 8G2Z (PDB-model of the 48-nm Tetra WT doublet),  EMD-29685 (48-
nm Tetra WT doublet), EMD-29692 (48-nm Tetra K40R doublet).  
 

Code Availability 
The code for DomainFit is available at https://github.com/builab/DomainFit   
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Figures 

Figure 1: Workflow of DomainFit. (A) Overview of the program. (i) Download the predict
PDBs for all candidate proteins. (ii) Predict domains and split them into single PDB files. Th
step can be done through the script process_predicted_models.py or results from oth
programs such as DPAM. (iii) Fit each domain into the unknown density using ChimeraX a
generate the best fitting position of each domain and fitting scores. (iv) Interpret the fitti
results based on p-value, correlation, and size of proteins.  

 
icted 
 This 
other 
 and 

fitting 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569001doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569001
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2. Domain partitioning and fitting evaluation in DomainFit. (A) An example of 
AlphaFold2-predicted model of a multi-domain protein (RIB72B, UniprotID I7MCU1). (B) T
PAE plot of the RIB72B. (C) Domain partitioning of RIB72B based on the PAE plot. (
Domain partitioning of RIB72B corresponding to (C). (E) Fitting of a domain of RIB72B insi
its corresponding segmented density at 4 Å resolution. (F) Histogram of the z-transform
correlation score of all obtained fits of the correct domain of RIB72B. The top hit (red)
separated from the score distribution. (G) Histogram of the z-transformed correlation score
a wrong domain into the same density in (F). (H) The scatter plot to visualize the value o
log10 of Benjamini Hochberg adjusted p-value versus the normalize cross correlati
coefficient of each domain fitting into the density of interest. The top right corner two poin
are well separate for the rest of the point cloud, indicating likely well-matched domains in
the density. 
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Figure 3: Identification of MIPs in the T. thermophila doublet microtubule. (A) T
doublet microtubule structure with MIPs (PDB: 8g2z). (B) Densities (red) in the cryo-EM m
of the doublet microtubule (EMD-29685 ) for testing with DomainFit. (C) A histogram 
domain size.  Red bars indicate domains of less than 40 amino acids and are excluded fro
fitting. The x-axis is limited to a domain size of 800 amino acids. (D) DomainFit ranking by
value and correlation about mean of the correct domain for 24 densities. (E) Example of t
perfect match between the AlphaFold2-predicted model of PACRGB fitted within t
corresponding density. (F) The domain of RIB22 is not partitioned as expected. However, t
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bigger domain was still fitted correctly into the density due to good agreement between the 
AlphaFold2-predicted model and the density. Due to incorrect parsing and the fact that the 
EF-hand domain is abundant in the cilium, the fit of the correct domain is ranked 9 but the p-
value is still ranked 1st. (G) When the fold of the density is common (EF-hand domain 
RIB571-91 - Density 10), the top hits consist of domains with a similar fold. The top five hits are 
all domains from CFAP115, which have the same EF-hand fold as the correct domain 
RIB571-91. (H) The experimentally determined model of RIB57 (PDB: 8g2z) is shown inside its 
corresponding density. (I) There is a big discrepancy between the experimentally determined 
model (cyan) and AlphaFold2-predicted model (purple) of RIB571-91 (RMSD: 5.164 �), which 
leads to the poor fitting of RIB57. 
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Figure 4: Performance of DomainFit at different numbers of initial search placemen
and resolutions. (A) -log10 of the average p-value at increasing initial search placements 
a correct and an unrelated domain. Standard deviations are shown in coloured regions. (
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ts for 
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Appearance changes of a density filtering at 4, 6, 8 and 10 Å resolution. (C) p-value rank of 
the correct domains fitted to different densities of MIPs at 4, 6, 8, and 10 Å resolution. (D) 
Number of fitting solutions versus number of initial search placements for maps at 4 Å (blue), 
6 Å (red), 8 Å (green) and 10 Å (yellow) resolution. (E) A histogram of the z-transformed 
correlation score of a correct domain fitted to a density at 4 Å resolution shows a clear 
separation between the top hit and the rest of the fitting solutions. (F) Histograms of z-
transformed correlation score of the same domain fitted to the densities filtered at 6, 8 and 10 
Å resolutions. There are significantly fewer fitting solutions at lower resolutions and the 
separation of the top hit, and the rest is reduced. 
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Figure 5: New proteins identified from the doublet microtubule of T. thermophila. 
Overview of the unknown density (yellow) from the 48-nm repeating unit subtomogra
average map of doublet microtubule (EMD-24376) 33. (B) The same density is not visible
the same view of the single particle cryo-EM map of the 48-nm repeating unit of the doub
microtubule from the T. thermophila K40R map (EMD-29692) 21 . (C) The unknown dens
exists in the doublet microtubule map after 3D classification. (D) Segmentation of t
unknown density into different small unknown densities for DomainFit. (E) DomainFit top h
for each unknown density using an AlphaFold database of salt-treated ciliome. (F) Correct
model of protein domains after examining, showing BMIP1 (UniprotID I7MB72) is density
and CCDC81B (UniprotID I7M688) forms density 2-12. (G) Fit of AlphaFold2-predicted mod
BMIP112-168 into density 1. (H) Fit of AlphaFold2-predicted model CCDC81B38-218 into dens
2. 
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Figure 6: Validation of the newly identified MIPs. A. Model of BMIP1 (UniprotID I7MB7
using Coot. B. Side-chain densities of a helix from BMIP1. C. Intra-cross-links (yellow) with
CCDC81B and inter-cross-links (orange) between CCDC81B and CFAP106, a known M
protein 32. D. Merged super resolution-structured illumination microscopy image of 
thermophila cells with CCDC81B-GFP shows that CCDC81B only localizes to the proxim
region of the cilia. Rectangle indicates the zoom-in view in (E). Red: CCDC81B-GFP sign
Green: doublet microtubule labelled by polyG-Antibody; Blue: Hoechst dye labelling t
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nucleus. E. The zoom-in merged image (top) and GFP channel (bottom) showing t
localization of CCDC81B to the proximal region. 

Supplementary Figures 

Fig. S1: All segmented densities and best-fitted domains found by DomainFit. Blu
correct domain; Orange: incorrect domain. The correct domains corresponding to Density
10-13, 16-17, 19-22, 24) were partitioned bigger than the densities. 
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Fig. S2. Application of domain size filtering for domain identification. (A) Top three h
for Density 6 fitting. While rank 1 and 2 domains fit well in Density 6, they are clearly not t
right domain due to the unoccupied region. With the size of rank 2 domain (212 aa), it
possible to guess that domain occupied Density 6 should be at least 250 amino acids. (
Plotting of the fitting statistics for all domains in Density 6 using a size filter of 250 ami
acids. Purple indicates domain larger or equal 250 amino acids while light cyan indicat
domains smaller than 250 amino acids and filtered out. With this size filtering, we can redu
false positive hits and identify the right domain easier. In this case, the correct doma
(CFAP52) was ranked 3 in p-value before size filtering and ranked 1 in p-value after si
filtering of 250 amino acids. 
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Fig. S3. Statistical analysis of fitting solutions. (A-D) The effect of 100 (A), 200 (B), 4
(C) and 800 (D) initial search placements on z-transformed correlation score for the corre
domain. Even at a sampling of 100 initial search placements, the top hit (correct solution) s
seems discriminated from the rest of the fits. 
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Fig. S4. Analysis and reconstruction of the unknown density in the 48-nm doub
microtubule structure. (A) The cartoon indicates the view of the section of the B-tubule
the doublet microtubule. The classification mask is shown inside the 48-nm unit of the doub
microtubule (EMD-29692) showing the density inside is barely visible. Using Cryosparc 3
classification into four classes, Class 1 shows the density clearly inside the classificati
mask compared to classes 2-4. Local refinement of class 1 with the classification ma
resulted in a 4.5 Å resolution structure. After post-processing with DeepEmhancer, t
density is segmented out of the map for protein identification by DomainFit. (B) The Four
Shell Correlation curve of the map obtained in (A).  
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Fig. S5. Comparison between domain fitting and complete model fitting. (A) The bum
chart shows the top 5-hit proteins across 12 densities by p-value with a size filtering of 
amino acids. Any domain ranked outside the top 4 hits is plotted at the same position in t
plot (> 4). There are only three proteins among the top hits (BMIP1, CCDC81B and Q23KF
CCDC81B is consistently the top hit in many densities, helping us to rationalize the identity
the multidomain CCDC81B. (B) Top three hits for complete model fitting into the density a
the right protein BMIP1 (ranked 22). Top 1 and 2 fit well to the density while I7MCW2 a
BMIP1 fit poorly in the density. (C) Complete model fitting into the proximal density filtered
10 Å resolution. At this resolution, CCDC81B became the top hit. (D) Overlap of the best fit
CCDC81B into the proximal density at 4 and 10 Å resolution shows that the fitting positio
found are almost identical (RMSD = 1.309 Å). 

ump 
of 60 
n the 
F9). 

ity of 
 and 
 and 
ed at 
 fit of 
itions 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.569001doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.28.569001
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Table 
Supplementary Table 1: Identification of MIPs in the cryo-EM map of the doublet 
microtubule using DomainFit.  
 

Density Protein UniProtID 
Domain 
Residues 

Corr 
Rank 

p-value 
Rank Note 

Density 1 RIB72B I7MCU1 413-516 1 1  

Density 2 PACRGB I7M317 132-319 1 1  

Density 3 PACRGA I7MLV6 1-319 1 1  

Density 4 CFAP20 Q22NU3 1-195 1 1  

Density 5 CFAP52 Q22ZH2 1-609 2 1  

Density 6 CFAP52 Q22ZH2 12-317 3 1 Domain partitioned bigger 

Density 7 IJ34 I7M9T0 1-251 1 1  

Density 8 CFAP115 Q23KF9 26-117 1 1  

Density 9 CFAP115 Q23KF9 133-233 1 1  

Density 10 RIB57 I7ME23 1-91 36 36 
Domain partitioned bigger, AlphaFold2 
prediction different 

Density 11 RIB57 I7ME23 92-196 1 1 Domain partitioned bigger 

Density 12 RIB35 I7ME81 1-96 1 1 Domain partitioned bigger 

Density 13 RIB35 I7ME81 99-196 1 1 Domain partitioned bigger 

Density 14 RIB35 I7ME81 207-295 3 1  

Density 15 CFAP161A Q22WJ6 58-280 1 1  

Density 16 CFAP161A Q22WJ6 304-389 2 1 Domain partitioned bigger 

Density 17 CFAP161A Q22WJ6 392-490 2 1 Domain partitioned bigger 

Density 18 CFAP67 W7XGD1 1-77 1 1  

Density 19 CFAP67 W7XGD1 89-221 2 1 Domain partitioned bigger 

Density 20 CFAP67 W7XGD1 236-371 2 1 Domain partitioned bigger 

Density 21 RIB72A I7M0S7 420-510 7 1 Domain partitioned bigger 

Density 22 RIB72A I7M0S7 526-611 1 1 Domain partitioned bigger 

Density 23 RIB26 Q232I6 1-237 1 1  

Density 24 RIB22 I7LT67 94-191 1 1 Domain partitioned bigger 
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Supplementary Table 2: Reason for identification of unknown densities  
 Top Hit Correct domain Fitting stats of correct domain 

Density UniProtID Domain UniprotID Domain 
Corr. 
rank 

p-value 
rank 

Rationale 

Unknown density 1 I7MB72 12-168 I7MB72 12-168 1 1 Unique domain 

Unknown density 2 I7M688 38-218 I7M688 38-218 1 1 Unique domain 

Unknown density 3 I7M688 303-387 I7M688 303-387 1 1 
Good fit & continue 
with other domains 

Unknown density 4 I7M688 408-472 I7M688 408-472 1 1 
Good fit & continue 
with other domains 

Unknown density 5 I7M688 484-566 I7M688 484-566 1 1 
Good fit & continue 
with other domains 

Unknown density 6 I7M688 577-675 I7M688 577-675 1 1 
Good fit & continue 
with other domains 

Unknown density 7 I7M688 705-796 I7M688 705-796 1 1 
Good fit & continue 
with other domains 

Unknown density 8 I7M688 829-1005 I7M688 829-1005 1 1 
Good fit & continue 
with other domains 

Unknown density 9 I7M688 1006-1089 I7M688 1006-1089 1 1 
Good fit & continue 
with other domains 

Unknown density 10 Q23KF9 752-816 I7M688 1148-1328 19 1 
Good fit & continue 
with other domains 

Unknown density 11 I7M688 705-796 I7M688 1148-1328 15 1 
Good fit & continue 
with other domains 

Unknown density 12 I7M688 1421-1548 I7M688 1421-1548 1 1 
Good fit & continue 
with other domains 
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