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Pyroptosis correlates with tumor immunity
and prognosis
Xiaoying Lou1,5, Kexin Li1,5, Benheng Qian2, Yiling Li1, Donghong Zhang 3✉ & Wei Cui 4✉

Pyroptosis, as a proinflammatory form of regulated cell death, plays an important role in

multiple cancers. However, the diagnostic and prognostic values of pyroptosis and its

interaction with tumor immunity in pan-cancer are still unclear. Here, we show an elevated

general expression of 17 pyroptosis-associated genes of tumor patients with high-immune-

activity and a reduced pyroptosis in low-immune-activity tumors. Moreover, pyroptosis is

positively correlated with immune infiltration and immune-related signatures across 30 types

of cancer. Furthermore, our experimental data suggest that pyroptosis directly modulate the

expression of immune checkpoint molecules and cytokines. We generate a pyroptosis score

model as a potential independent prognostic indicator in melanoma patients. Interestingly, 3

of pyroptosis-associated genes including CASP1, CASP4 and PYCARD, can predict the

effectiveness of anti-PD-1 immunotherapy for patients with melanoma. Our study demon-

strates that pyroptosis correlates with tumor immunity and prognosis, might be used as a

potential target for immune therapy.
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Pyroptosis, a proinflammatory form of regulated cell death
(RCD), is characterized by cellular swelling, lysis, and the
release of proinflammatory cytokines. It was first observed

in macrophages treated with anthrax lethal toxin in 1986 and
then identified in myeloid cells infected with pathogenic bacteria,
which misclassifies pyroptosis as apoptosis and delays the
recognition of this type of cell death as pyroptosis for nearly two
decades1–4. Subsequently, Cookson et al. proposed the term
“pyroptosis” to define this type of cell death and pointed out that
it is an alternative pathway that has evolved from a simple and
quiet method of death into a visible proinflammatory response of
cell death5.

Until 2015, the key molecular mechanism of pyroptosis has
been elucidated for the first time. Gasdermin D (GSDMD), a key
member of gasdermin family, was the executor of pyroptosis and
could be cleaved and activated by caspase-1/4/5/116,7. The
N-terminal fragment of GSDMD oligomerizes in membranes to
form a pore that leads to the occurrence of pyroptosis8,9. Sub-
sequently, pyroptosis was defined as gasdermin-mediated pro-
grammed necrosis10. Recent studies have shown that GSDME,
another member of the gasdermin family, could be cleaved and
activated by caspase-3, leading to the transition from apoptosis to
pyroptosis11,12. In 2018, the Nomenclature Committee on Cell
Death (NCCD) redefined the concept of “pyroptosis”, as a type of
RCD that is critically dependent on members of the gasdermin
(GSDM) family to form plasma membrane pores, usually (but not
always) as the result of inflammatory caspase activation13.

The process of pyroptosis can be divided into three phases
includes an initiation phase, activation phase, and effector
phase14. The initiation phase involves the activation of upstream
proteins of the GSDM family, such as inflammasomes and che-
motherapy drugs15–17. The inflammasome was assembled in the
stimulated cells to recruit and activate members of the caspase
family, such as caspase-1/4/5/1118–20. Subsequently, members of
the gasdermin family, such as GSDMD, GSDME, and GSDMB,
were cleaved, and then their N-terminal was exposed and allowed
to bind to phospholipids of the cell membrane, during the acti-
vation phase21. Moreover, the precursors of the proinflammatory
cytokines (pro-IL-1β and pro-IL-18) were cleaved by activated
caspase-122. Next, the effector phase involved the rupture of the
cell membrane and the release of activated inflammatory factors
(IL-1β and IL-18), which triggered a series of inflammatory cas-
cade amplification reactions14,23.

Due to the proinflammatory properties of pyroptosis, it pro-
duced a dual effect on the tumors24. As a form of programmed
cell death, pyroptosis could inhibit the growth of tumor cells;
while, the inflammatory response induced by pyroptosis provided
a suitable microenvironment for tumor cell survival25. Interest-
ingly, several studies reported that pyroptosis could induce an
anti-tumor immune response26–28. GSDME could mediate cancer
cell pyroptosis by granzyme B released by killer cells, which
increases the infiltration of killer lymphocytes26. Meanwhile,
GSDME could enhance the infiltration of CD4+/CD8+ T cells
based on a new bio-orthogonal system. Thus, GSDME induced
tumor clearance is immune-dependent28. Subsequently, another
study showed that granzyme A released from cytotoxic NK and T
lymphocytes could cleave GSDMB, thereby triggering the pro-
lapse of target cells and leading to tumor clearance27. Therefore,
an understanding of the interaction between pyroptosis and
immune response may provide a potential strategy for immune
checkpoint blockade (ICB) therapy.

In this study, we systematically analyzed the expression levels
of the pyroptosis-associated genes (PAGs) and their correlation
with genetic alterations, including mutations and copy number
variations in pan-cancer. To further understand the mechanism
of pyroptosis-related anti-tumor immunity, we explored the

relationship between the general expression pattern of pyroptosis
and immunocompetence with bioinformatical analysis and
experiments. Next, we investigated the prognostic function and
the predictive effect on the anti-programmed cell death protein 1
(PD-1) treatment of PAGs in patients with skin cutaneous mel-
anoma (SKCM). Our pan-cancer analysis demonstrated that
pyroptosis is involved in tumor development, prognosis, and ICB
therapy might through the modulation of tumor immune
pathway.

Results
The landscape of the PAGs across cancer types. We first
determined the RNA expression profiles of the PAGs in 17 types
of cancer using data obtained from The Cancer Genome Atlas
(TCGA). The four sets of PAGs displayed a similar pattern and
dynamic expressions across 17 cancer types (Fig. 1a, Supple-
mentary Table 1). Positive correlations were found between
individual genes internally and externally in the four sets of PAGs
(Fig. 1b). Therefore, we generated the NESPAGs for the whole
pyroptosis assay during tumors development. Cancers were also
grouped into “hot cancer” and “cold cancer” to define the high-
immune-activity and low-immune-activity cancers, based on the
PD-L1 expression and the proportion of TILs (Supplementary
Table 2). Interestingly, elevated NESPAGs were found in 5 of the
10 “hot cancers”; whereas reduced NESPAGs were found in 4
“cold cancers” but only in 2 “hot cancers”, when compared with
their controls (Fig. 1c). Our observations indicated that pyr-
optosis may be correlated with tumor immunocompetence.

To explore the diagnostic value of NESPAGs in both “hot” and
“cold” cancers, we performed the receiver operating characteristic
(ROC) curve analysis. Figure 1d, e showed that NESPAGs could
effectively be used to distinguish between tumor and normal
tissues in both groups. In “hot cancers”, the area under the curve
(AUC) value of NESPAGs for head and neck squamous
carcinoma (HNSC) was 0.821 (95% CI 0.763–0.880), for kidney
renal papillary cell carcinoma (KIRP) was 0.929 (95% CI
0.887–0.971), for kidney renal clear cell carcinoma (KIRC) was
0.948 (95% CI 0.922–0.974), for thyroid carcinoma (THCA) was
0.698 (95% CI 0.611–0.785), and for esophageal carcinoma
(ESCA) was 0.846 (95% CI 0.722–0.969). On the other hand, the
AUC of NESPAGs for colon adenocarcinoma (COAD) was 0.836
(95% CI 0.785–0.887), for liver hepatocellular carcinoma (LIHC)
was 0.645 (95% CI 0.572–0.718), for liver hepatocellular
carcinoma (READ) was 0.835 (95% CI 0.749–0.922), and for
prostate adenocarcinoma (PRAD) was 0.695 (95% CI
0.622–0.768) in “cold cancer”. We also investigated the genetic
variations of the PAGs in 33 cancer types. However, a very low
frequency of somatic mutations (median= 0.002), copy number
amplifications (median= 0.018), and copy number deletions
(median= 0.017) was found for an individual of 17 PAGs
(Supplementary Tables 3–5 and Supplementary Figs 1, 2). Taken
together, these results indicated that PAGs are associated with
tumor diagnosis that could discriminate between tumor and
normal samples, based on their tumor immune activity during
cancer development.

Pyroptosis correlated with immune infiltration and immune
activation. To further understand the interaction between pyr-
optosis and the tumor microenvironment, we first calculated the
proportion of immune cells, stromal cells, and tumor purity for
tumor environment assessment29. Intriguingly, we found that
NESPAGs showed global strong positive correlations with
immune cells or stromal cells, while they showed negative cor-
relations with tumor purity in each cancer (Fig. 2a). Furthermore,
we also quantified the proportions of immune-cell types in 30
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types of cancers using a deconvolution algorithm of
CIBERSORT30. Among the 22 immune cells that had infiltrated
the tumor microenvironment, the CD8+ T cells showed a posi-
tive correlation with NESPAGs in a majority of cancers with
statistical significance (9/10) (Supplementary Fig. 3a).

The relationship between pyroptosis and immune activity was
further assessed using 28 immune-related signatures, which
included adaptive and innate immunity, as well as the common
immune-related pathways. Single sample gene set enrichment
analysis showed that most immune-related signatures were
strongly and positively correlated with NESPAGs across the 30
cancer types (Fig. 2b). Additionally, we applied hierarchical
clustering to quantify and qualify immune activity in both SKCM
and KIRP cohorts (Supplementary Fig. 3b, c). We found a high
level of NESPAGs appearing an elevated immune activity,
immune scores, and stromal scores, and an inverse trend of
tumor purity in both SKCM and KIRP cohorts (Fig. 2c, d). These
observations suggested that elevated expression of NESPAGs was
positively correlated with the proportion and activity of immune
cells in the tumor microenvironment, especially in high-immune-
activity cancers.

Since the MSI or TMB presence and PD-L1 expression were
associated with the outcome of cancer patients treated with
immune checkpoint inhibitors31–33, we next analyzed the

correlation of pyroptosis with MSI, TMB, and PD-L1. As shown
on the radar maps, we found that NESPAGs were negatively
related to MSI in a majority (77.8%) of “hot cancers”. Only 2
“cold cancers” showed a positive correlation, in which COAD
showed the strongest positive correlation (Fig. 2e. coefficient=
0.293, p < 0.001). In addition, NESPAGs expression was
positively correlated with TMB in 5 out of the 7 “cold cancers”
(Fig. 2f). Since the “hot cancer” and “cold cancer” were grouped
according to immunotherapy sensitivity, we indeed found that
the positive correlation between pyroptosis and PD-L1 in “cold
cancer” was much stronger than that of “hot cancer” (Fig. 2g).
Thus, similar to PD-L1, the induced-pyroptosis expression might
improve the susceptibility to tumor immunotherapy.

Pyroptosis altered immune activity in cancer cells. To confirm
the correlation between pyroptosis and immune, we stimulated
pyroptosis by overexpressing GSDMD-NT in A375 and A549
cells9. Western blot assay showed that GSDMD-NT was suc-
cessfully upregulated by transfection of GSDMD-NT plasmid
(Fig. 3a and Supplementary Fig. 4). The inflammatory cytokines
(IL23A, TNFα, IL12A, MIF, IL17A, TGFB1, IL6, IL1B and IL18)
and immune checkpoint-related genes (PD-L1, LAG3, IDO1,
TNFRSF8, PDL2, TIM3, and VTCN1) were significantly elevated
in GSDMD-NT overexpressed A549 and A375 cell lines by qPCR

Fig. 1 The landscape of pyroptotic factors across 17 cancer types. a Heatmap of RNA expression alterations of the 17 pyroptosis-associated genes (PAGs)
in 17 cancer types. RNA expression levels were calculated as log2 (average expression of the tumor to normal); b The correlation heatmap of the 17 PAGs
in the 17 cancer types. X, P > 0.05; c The violin plots of the normalized enrichment score of the pyroptosis-associated genes (NESPAGs) for normal and
tumor samples. The violin filling in red represents tumor samples, while that in blue represents normal tissue. d, e The receiver operating characteristic
curve (ROC) curves for the prediction of normal and tumor samples.
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Fig. 2 Correlation analysis between pyroptosis signature and immune-related signatures across 30 cancer types. a, b The relationship between
normalized enrichment score of the pyroptosis-associated genes (NESPAGs) and tumor environment scores (a), as well as immune-related signatures (b).
c, d The heatmap of tumor microenvironment scores and immune activity between high and low NESPAGs group in skin cutaneous melanoma (SKCM) (c) and
kidney renal papillary cell carcinoma (KIRP) (d) cohorts. e–g The correlation of pyroptosis with microsatellite instability (MSI) (e), tumor mutational burden
(TMB) (f), and programmed death-ligand 1 (PD-L1) (g) across 30 cancer types. P values were calculated using the Spearman correlation test orWilcoxon rank-
sum test (*P < 0.05; **P < 0.01; ***P < 0.001). The blue color text indicates “cold cancer”, while the red color text indicates “hot cancer”. Tfh T follicular helper,
TIL tumor-infiltrating lymphocyte, aDC activated dendritic cells, iDC immature DCs, NK cells natural killer cells, pDC plasmacytoid dendritic cells.
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assay (Fig. 3b, c). Interestingly, the gene expressions of the type I
TNF response pathway (IFIT1, IFIT2, IFIT3, IRF7, ISG20, MX1,
MX2, RSAD2, and TNFSF10) were increased by transfection of
GSDMD-NT plasmid in both A375 and A549 cell lines (Fig. 3d).
Consistent with bioinformatical analysis, our experimental data
suggested that pyroptosis altered tumor immunity.

The prognostic value of pyroptosis in skin cutaneous mela-
noma. Since tumor-infiltrating immune activity could affect and
predict the prognosis of cancer patients34. Next, we explored the
prognostic value of the PAGs in 33 cancer types using a cox
proportional hazards regression analysis (Supplementary Fig. 5).
Interestingly, NESPAGs served as an indicator of poor prognosis
in most “cold cancers”, such as LAML, brain lower-grade glioma

(LGG), pancreatic adenocarcinoma (PAAD), and uveal mela-
noma (UVM). Conversely, an opposite result was found for “hot
cancers” of the SKCM cohort (HR= 0.236; 95%
CI= 0.124–0.450; p < 0.001). Similarly, the Kaplan–Meier survi-
val plot confirmed that a high level of NESPAGs indicated a
longer survival time than that of a low level of NESPAGs in
patients with SKCM (Fig. 4a).

Next, we determined whether the individual pyroptotic factors
that could be used to predict SKCM prognosis using a cox
proportional hazards regression analysis. As expected, up to 14 of
17 PAGs were considered as biomarkers of SKCM prognosis
(Fig. 4b). To improve model accuracy and decrease model
overfitting, we carried out a LASSO analysis and established a risk
model based on the expression of 6 PAGs (CASP5, NEK7, AIM2,
CASP1, NLRC4, and GSDMD) (Supplementary Fig. 6a, b). The

Fig. 3 Pyroptosis altered immune activity in cancer cells. a Western blot assay showing the successfully upregulated GSDMD-NT by GSDMD-NT
plasmid transfection. b qPCR analysis of inflammatory cytokines gene expression in A375 and A549 cell lines with GSDMD-NT plasmid transfection or its
control. GAPDH was used as an internal control for qPCR analysis. c qPCR analysis of immune checkpoint-related genes expression in A375 and A549 cell
lines with control or GSDMD-NT plasmid. d qPCR analysis of the Type I TNF response pathway-related genes expression in A375 and A549 cell lines with
control or GSDMD-NT plasmid. Data was mean ± Standard Deviation (SD). P values were calculated using the Spearman correlation test or Student’s
t-tests after the assessment of normality (n= 4/group, *P < 0.05; **P < 0.01; ***P < 0.001).
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model was further divided into a high-risk and low-risk group
based on the median risk score (0.159). Interestingly, the low-risk
group presented a survival benefit, compared with the high-risk
group, as shown through survival curves (Fig. 4c). The risk model
displayed a good performance in predicting the 5-year survival
rates of the SKCM cohort using the ROC curve analysis
(AUC= 0.701, Fig. 4d). In addition, we found that the risk
model was closely correlated with the clinical features of the
SKCM cohort, including age, stage status, and tumor size (Fig. 4e,
Supplementary Table 6). The univariate Cox regression analysis
showed that age, tumor stage, tumor size, lymphatic metastasis,
and risk score were associated with poorer survival of SKCM
patients. Moreover, the risk score predicted a worse outcome
independent of tumor size, lymphatic metastasis, age, and tumor

stage, which was analyzed using multivariate Cox regression
adjusted by tumor purity (Fig. 4f, g). These results revealed that
pyroptotic factors played a vital role in the prognosis and
progression of SKCM.

The PAGs role in SKCM molecular classification was further
determined. We classified SKCM patients into three groups using
the consensus clustering approach based on the expression
profiles of the 17 PAGs (Supplementary Fig. 7a, b). Interestingly,
we found that SKCM patients in the cluster1 subgroup showed
better overall survival than those in the other two subgroups
(Supplementary Fig. 7c). Moreover, we found that clinical
characteristics of tumor size and stage status were significantly
correlated with three cluster types (p < 0.05, Supplementary
Table 7, Supplementary Fig. 7d). These results suggested that

Fig. 4 The prognostic value of the pyroptosis-associated genes (PAGs) in the skin cutaneous melanoma (SKCM) cohort. a The Kaplan–Meier survival
plots of patients grouped by the global expression pattern of PAGs in the SKCM cohort. b The distribution of the hazards ratios of the 17 PAGs. c The
pyroptosis score model (PSM) for the prediction of the survival of SKCM patients. d The survival plots of patients were grouped based on the global
expression pattern of the risk score in the SKCM cohort. e The heatmap of pyroptotic factor expression and clinical characteristics in the SKCM cohort.
f, g Univariate (f) and Multivariate (g) cox regression analysis of PSM and clinical characteristics of the SKCM cohort. P values were calculated using
Fisher’s exact test or Cox test (*P < 0.05; **P < 0.01; ***P < 0.001).
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the elevated level of pyroptosis indicated a better survival and was
strongly correlated with clinicopathological features, which could
probably be used for the molecular classification of tumors.

The predictive role of pyroptosis in response to anti-PD-1
immunotherapy in SKCM. Recently, immune-checkpoint inhi-
bitors, such as PD-1/PD-L1 antibodies, have significantly
improved the survival of partial patients with melanoma35. To
further identify the predictive role of pyroptosis in immu-
notherapy, we determined the protein levels of PAGs in 51
melanoma patients treated with anti-PD-1 therapy from the study
conducted by Harel et al.36. Based on the impact of the treatment,
patients were categorized as responders (n= 30) and non-
responders (n= 21). The responders showed a better prognosis,
compared with non-responders (Supplementary Fig. 8). Then, we
accessed the proteomic data of melanoma response to immu-
notherapy to explore potential biomarkers of pyroptosis36

(Fig. 5a). Not surprisingly, we found that the protein levels of
CASP1, PYCARD, and CASP4 in the responder group were
significantly higher than that of the non-responder group
(Fig. 5b–d). Interestingly, higher protein level expression of
CASP1 and PYCARD indicated better progression-free survival
(Fig. 5e, f). Evidence reported that PD-1 overexpression increased
the efficacy of anti-PD-1 therapy for human melanoma37.
Therefore, we overexpressed PD-1 in the A375 cell line to
establish PD-1 immunotherapy-sensitive melanoma cell lines.
Consistently, CASP1, CASP4 and PYCARD, were increased in
overexpressed PD-1 of A375 cells by western blot assay (Fig. 5g
and Supplementary Fig. 9). The above data proved that CASP1,
CASP4 and PYCARD might act as potential biomarkers to pre-
dict the effectiveness of anti-PD-1 immunotherapy for melanoma
patients. However, more in-depth clinical studies are needed to
verify in the future.

Discussion
This study investigated the expression levels and genetic altera-
tions of 17 PAGs and explored their correlations between pyr-
optosis and anti-tumor immunity across 30 cancer types. Our
results indicated that elevated pyroptosis was shown in cancers
with high-immune activity, but reduced in low-immune activity
tumor patients. Pyroptosis could distinguish between tumor and
normal tissues. Pyroptosis was also positively correlated with
immune infiltration and biomarkers of ICB therapy, such as
TMB, MSI, and PD-L1 expression. In SKCM, the risk model was
established on the PAGs expression profile and showed a strong
performance in predicting their prognosis. Moreover, the protein
levels of pyroptotic factors could act as potential prognostic
biomarkers for cancer immunotherapy. In conclusion, we deter-
mined the pan-cancer effect of PAGs and provide broad insights
into the clinical application of pyroptosis for anti-tumor
immunotherapy.

At present, the specific mechanism of pyroptosis in tumors is
still controversial. Hence, we comprehensively analyzed the
expression and gene variation of pyroptosis-related factors in 33
types of cancer, which provided a theoretical basis for exploring
the mechanism of pyroptosis in tumors. Importantly, the immune
status of the tumors, indicated as “hot” or “cold” cancers, was
significantly related to the expression levels of the PAGs, which
also complemented the current mechanism of pyroptosis and
immunity research26–28. Moreover, as fully described in this
study, we fortunately found that the AUC of NESPAGs showed a
great correlation with tumor diagnosis in some types of “hot
cancers”. However, many factors cause the occurrence or
enhancement of pyroptosis, such as pathogen infection or
inflammation, etc. Interestingly, the composition of the

microbiome varies with tumor type, which is related to the
clinical outcome of patients treated with immune checkpoint
inhibitors38. These results suggest that pyroptosis may be at least
partly responsible for anti-tumor immunity.

Moreover, the gasdermin family includes GSDMA, GSDMB,
GSDMC, GSDMD, and GSDME. GSDMB and GSDME, which
have been reported to be associated with anti-tumor immunity in
human cancer26,28,27. In addition, meta-analysis has shown that
the inflammatory response activated by gasdermin could enhance
the favorable outcome of ICB therapy by increasing the number
of infiltrated lymphocytes39. In our study, “hot cancers” such as
KIRC, ESCA, HNSC and KIRP, indicated high expression levels
of the gasdermin family members in tumors, compared with
normal tissue. On the contrary, PRAD, COAD, and READ of
“cold cancers” showed opposite expression trends. Our findings
pointed out the correlation between pyroptosis and anti-tumor
immunity based on bioinformatical analysis and experiments
in vitro. Overall, pyroptosis is a promising target in tumor
immunotherapy, and more experiments in the animal model and
clinical trials are needed to be carried out. There is a long way to
go before the clinical application of pyroptosis for anti-tumor
immunotherapy. These findings may guide the development of a
novel class of therapeutics for the treatment of low immuno-
competence patients.

Melanoma is one of the most common malignancies with a
high level of metastasis in clinical settings and patients with an
advanced stage are relatively sensitive to immunotherapy40. Our
results indicated that the majority of the PAGs significantly
affected the prognosis of patients with melanoma and are strongly
associated with the clinical stage and tumor size. Therefore, the
induction of pyroptosis in tumor cells may be used as a potential
alternative therapy26. Emran et al. reported that low levels of
expression of inflammasome components prompted the poor
prognosis of melanoma41. It shows a dual role in melanoma,
indicating that it could accelerate melanoma growth by activating
inflammasomes and by suppressing apoptosis42. The results may
be explained by the dominant function of the pyroptosis executor
in melanoma. Interestingly, ASC showed a stage-dependent dual
role in primary and metastatic melanoma. Compared with pri-
mary tumors, the inhibitory effect of ASC in metastatic mela-
noma was gradually converted into a tumorigenic role through
the improvement of NF-κB pathways and the secretion of
inflammasome-medicated IL-1β43. Therefore, pyroptosis could
play a dual role in early and advanced tumors. During the early
stage, pyroptosis could provide an appropriate immune micro-
environment through its proinflammatory effect. As the tumor
progresses, its anti-tumor immunity plays a dominant role in the
advanced stage. However, a more systematic and theoretical
analysis is urgently required to confirm the mechanism of pyr-
optosis in tumors.

At present, immune checkpoint inhibitors (such as anti-PD-1/
PD-L1) are recognized as the most prominent clinical successes in
melanoma. Anti-PD-1 antibodies can suppress tumor immune
escape by targeting PD-L1 ligands, activating cytotoxic T cells,
and triggering anti-tumor responses44. TMB, MSI, and PD-L1 are
common clinical biomarkers that can predict the treatment effi-
cacy of PD-1/PD-L1 checkpoint inhibitors45–47. A recent pan-
cancer analysis showed that GSDM family expression, which are
the executors of pyroptosis related to MSI and TMB in some
specific types of cancers (BRCA, COAD, READ, GBM, THCA,
THYM, and LUSC)48. Interestingly, GSDMB, GSDMD, and
GSDME were included in the NESPAGs, as a pyroptosis signature
established in our study. The NESPAGs had a stronger correla-
tion with immune activation, MSI, and TMB across pan-cancer.
Moreover, we also found this correlation was mostly present in
“cold cancers” such as BRCA, COAD, and READ. Therefore,
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NESPAGs could better represent the change of the pyroptosis-
related pathway. Activation of the NESPAGs might be a hopeful
way to improve the efficacy of immunotherapy. Hence, we
speculated that pyroptosis may be involved in predicting the
treatment efficacy of immune checkpoint inhibitors. In our
bioinformatics and experiment data proved that CASP4 and
PYCARD might act as potential biomarkers to predict the
effectiveness of anti-PD-1 immunotherapy for melanoma
patients. This also provides a method for screening melanoma
patients with good immunotherapy efficacy.

In summary, our analysis demonstrated that pyroptosis is
involved in tumor development, prognosis and response to ICB
therapy through its interaction with tumor immune activity.

Methods
Gene list collection. To achieve a comprehensive understanding of pyroptosis, 17
PAGs were divided into four groups that “Inflammasomes” (NLRP3, NLRP1,
PYCARD, NEK7, NLRC4, MEFV, and AIM2), “Inflammatory Caspases” (CASP1,
CASP3, CASP4, CASP5, and CASP8), “Gasdermin Family” (GSDMB, GSDMD, and
GSDME) and “Proinflammatory Cytokines” (IL-18 and IL-1β)14.

Fig. 5 The fold-changes of the pyroptosis-associated protein in the anti-PD-1 immunotherapy cohort. a The heatmap of pyroptotic factor protein
expression between non-responders and responders in the anti-PD-1 immunotherapy cohort. b–d The protein expression levels of pyroptotic factors CASP1
(b), PYCARD (c), and CASP4 (d) between responders and non-responders. e, f The protein expression levels of pyroptotic factors CASP1 (e) and PYCARD
(f) in patients with a disease progression-free survival value of <6.73 and >=6.73. The median duration of disease progression-free survival was
6.73 months. g Western blot analysis for protein expression in A375 cells after transfection of PD1. GAPDH was used as a normalized control. Data was
mean ± Standard Deviation (SD). P values were calculated using the Student’s t-tests after the assessment of normality (*P < 0.05; **P < 0.01; ***P < 0.001.
n= 7/group).
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Datasets and preprocessing. The genomic, transcriptomic, and clinical data of 33
cancer types were downloaded from the University of California Santa Cruz
(UCSC) Xena browser (http://xena.ucsc.edu/) and the case numbers of data were
shown in Supplementary Table 8. The RNA-seq data across all tumors and their
control samples was normalized as log2(FPKM+ 1). 17 cancer types were sorted
for the differential gene expression between cancer and normal, excluding the
normal samples less than 10. We firstly obtained the mean expression values of the
individual 17 PAGs in tumor and normal samples respectively, then calculated the
differential expression by log2 fold-change in each cancer (Supplementary Table 1).
The frequency of copy number variation (CNV) and mutation for 17 PAGs was
summarized in Supplementary Tables 3–5. We also referenced an article with
proteomics data36, in which missing values were imputed using the nearest
neighbor averaging method in the impute R package49.

Single sample gene set enrichment analysis. To calculate the normalized
enrichment score of 28 immune-related signatures in the tumor microenviron-
ment, the single-sample gene set enrichment analysis (ssGSEA) was used and
conducted with the GSVA R package (version1.32.0)50. Moreover, ssGSEA was also
used to calculate the normalized enrichment score of the pyroptosis-associated
genes (NESPAGs) of the whole 17 PAGs expression. The spearman analysis was
performed between the NESPAGs and normalized enrichment score of 28
immune-related signatures with tumor purity adjusted.

Identification of differentially NESPAGs. To identify differentially NESPAGs in
each cancer type, we used Wilcox’s rank-sum test to identify NESPAGs. The p
values were adjusted by the FDR method. NESPAGs with adjusted p values <0.05
were identified as differentially NESPAGs in each cancer type.

The correlation of the individual 17 PAGs. The Spearman correlation analysis
between 17 PAGs was performed in 17 cancer types, and the results were visualized
using the corrplot package (https://github.com/taiyun/corrplot).

Hierarchical clustering analysis. The hierarchical clustering analysis was used to
classify into “hot cancer” and “cold cancer” based on programmed death-ligand 1
(PD-L1) expression and the normalized proportion of tumor-infiltrating lympho-
cytes (TILs) in 30 types of cancer using the “hclust” function51,52. Since the high
proportion of immune cells of Acute Myeloid Leukemia (LAML), Lymphoid
Neoplasm Diffuse Large B-cell Lymphoma (DLBC), and Thymoma (THYM), these
cancers were excluded for clustering analysis. It was also applied to calculate the
immune activity in both SKCM and KIRP cohorts according to the NES of 28
immune-related signatures.

Estimation of immune-cell type fractions. CIBERSORT is a deconvolution
algorithm that can be used to characterize the cell composition of complex tissues
based on normalized gene expression profiles (GEPs)53. In this study, the default
set (LM22) was used to quantify the relative proportions of immune-infiltrating
cells in 30 cancer types. Normalized gene expression data was analyzed using the
CIBERSORT algorithm by running 100 permutations. The spearman analysis was
performed between the NESPAGs and immune-infiltrating cells.

Estimation of the proportion of tumor-infiltrating cells. ESTIMATE is a package
used to predict tumor purity, as well as the presence of stromal and immune cells in
tumor tissues using gene expression data. ESTIMATE (version1.0.13) was applied
to determine the proportion of immune cells and stromal cells in the tumor
microenvironment (https://R-Forge.R-project.org/projects/estimate/). Spearman
correlation analysis was performed to calculate the coefficient between the estimate
scores and NESPAGs.

Microsatellite instability (MSI) and tumor mutational burden (TMB) esti-
mation in pan-cancer. TMB was defined as the total number of somatic mutations
for every one million bases54. Here, TMB was calculated for each sample via Perl
scripts. MSI was determined based on the number of insertion or deletion events in
tumor samples compared with normal ones55. Spearman correlation analysis was
performed to calculate the coefficient of NESPAGs with TMB, MSI, and PD-L1 for
individual cancer, which is shown by radar maps.

Consensus clustering approach. A consensus clustering approach was performed
for the molecular classification of SKCM patients using the ConsensusClusterPlus
package56,57. In our study, a k value of 3 was considered as the optimal number of
groups using the expression signature of the 17 PAGs.

The pyroptosis score model (PSM) for SKCM. Univariate analysis was first used
to determine the prognostic value of the PAGs. The least absolute shrinkage and
selection operator (LASSO) regression was performed to identify the most efficient
components that contribute to survival prediction using the “glmnet” package. The
PSM was established for the prediction of prognosis after the optimal number of
feature variables was determined.

Cell lines and cell culture. The A375 and A549 cell lines were purchased from the
National Infrastructure of Cell Line Resources in China (Beijing, China). Cells were
cultured in DMEM or RPMI-1640 medium with 10% FBS (Thermo Fisher Sci-
entific, Inc.) and incubated at 37 ˚C with 5% CO2.

Plasmids and transfection. The sequence of GSDMD-NT from HEK293 cell line
was cloned into the pCMV vector to construct recombinant plasmids named
pCMV-GSDMD-NT. The sequence of PDCD1 from human lymphocyte was
cloned into the pCMV vector to construct recombinant plasmids named pCMV-
PD1. Cells were transfected with plasmids using Lipofectamine 3000 (Invitrogen)
according to the manufacturer’s instructions.

Western Blot. Western blotting was performed using the standard procedures as
we previously reported58,59. Proteins were extracted from cells or tissues using
RIPA lysis buffer (Solarbio). Equal volumes of lysates were loaded and separated on
10% SDS-PAGE gels and blotted on polyvinylidene difluoride membrane. After
being blocked with 5% skim milk for 2 h at room temperature, the membranes
were incubated with primary antibodies overnight at 4 ˚C. The primary antibody
used in western blot analysis included Anti-ASC (1:1000; ab155970; Abcam); anti-
caspase-1 (1:1000; ab207802; Abcam); anti-caspase-4 (1:1000; ab238124; Abcam);
anti-GSDMD (1:1000; 66387-1-Ig; Proteintech); anti-PD1 (1:1000; ab52587;
Abcam) and anti-GAPDH (1:500; ab8245; Abcam;). Anti-rabbit-HRP (1:5000;
#7074, Cell Signaling Technology) and anti-mouse-HRP (1:5000; #7076, Cell Sig-
naling Technology) were used as secondary antibodies and incubated at room
temperature for 1 h. The blots were detected using a chemiluminescence kit (cat.
no. 34577; Thermo Fisher Scientific, Inc.) and imaged using MiniChemi 610 system
(Sage Creation Science, Co., Ltd.).

RNA extraction and RT-qPCR. Total RNA was extracted from cultured cell lines
using TRIzol reagent (Thermo Fisher Scientific, Inc.) according to the manu-
facturer’s instructions as we previously reported60,61. cDNA was synthesized with
PrimeScript™ IV 1st strand cDNA Synthesis Mix (Takara, China). qPCR analysis
was performed using the Taq Pro Universal SYBR qPCR Master Mix (Vazyme
Biotech Co., Ltd.), and GAPDH was used as an internal control. Each assay was
carried out in triplicates in a Light Cycler 480 Instrument (Roche). The primers for
RT-qPCR are shown in Supplementary Table 9.

Statistics and reproducibility. All experiments were performed in at least bio-
logical triplicate with similar results and compared using Student’s t-tests or
Wilcoxon tests in the Graphpad Prism software. Statistical analyses were per-
formed using R software (version 3.6.2, www.r-project.org). Continuous variables
were expressed as mean ± standard deviation and analyzed using Student’s t-tests
or Wilcoxon tests. Categorical variables were compared by the Chi-square test or
Fisher’s exact test. Correlation analysis used the Spearman method, which was
performed using the “cor.test” function. Survival analysis was performed using the
Kaplan–Meier method and compared through log-rank tests using the “survival”
and “survminer” packages. Multivariate Cox regression models were trained using
the “coxph” function of the “survival” package. All tests were two-sided and
p < 0.05, unless specifically stated, was considered to indicate statistical significance.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The genomic, transcriptomic, and clinical data of 33 cancer types were downloaded from
the UCSC Xena browser (http://xena.ucsc.edu/). Source data for graphs is available in
Supplementary Data 1. Uncropped blot/gel images are available as Supplementary Fig. 4
and 9. Software and resources used for the analyses are described in each method section.
Plasmids for pCMV-GSDMD-NT and pCMV-PD1 expression are deposited at Addgene
(Accession numbers 188239 and 188240).
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