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The airway epithelium is the first place, where a defense 
mechanism is initiated against environmental stimuli. 
Mucociliary transport (MCT), which is the defense mechanism 
of the airway and the role of airway epithelium as mechanical 
barriers are essential in innate immunity. To maintain normal 
physiologic function, normal oxygenation is critical for the 
production of energy for optimal cellular functions. Several 
pathologic conditions are associated with a decrease in 
oxygen tension in airway epithelium and chronic sinusitis is 
one of the airway diseases, which is associated with the 
hypoxic condition, a potent inflammatory stimulant. We have 
observed the overexpression of the hypoxia-inducible factor 1 
(HIF-1), an essential factor for oxygen homeostasis, in the 
epithelium of sinus mucosa in sinusitis patients. In a series of 
previous reports, we have found hypoxia-induced mucus 
hyperproduction, especially by MUC5AC hyperproduction, 
disruption of epithelial barrier function by the production of 
VEGF, and down-regulation of junctional proteins such as 
ZO-1 and E-cadherin. Furthermore, hypoxia-induced inflam-
mation by HMGB1 translocation into the cytoplasm results in 
the release of IL-8 through a ROS-dependent mechanism in 
upper airway epithelium. In this mini-review, we briefly 
introduce and summarize current progress in the pathogenesis 
of sinusitis related to hypoxia. The investigation of 
hypoxia-related pathophysiology in airway epithelium will 
suggest new insights on airway inflammatory diseases, such as 
rhinosinusitis for clinical application and drug development. 
[BMB Reports 2018; 51(2): 59-64]

INTRODUCTION

The airway epithelium constitutes the first line of defense 
against environmental stimuli, in innate immunity by serving 

as mechanical barriers along with the mucociliary transport 
(MCT), which is the defense mechanism of the airway (1). 
Preserving this physiologic role requires sustaining energy 
production, which is supplied by appropriate oxygenation (2). 
Several pathologic conditions may lead to decrease in oxygen 
level in the airway epithelium. In chronic airway diseases such 
as sinusitis, allergic rhinitis, asthma, and chronic obstructive 
pulmonary disease, decrease in oxygen tension can occur due 
to pathologic changes in the microvascular structures or 
increase in metabolic demands (3). Such diseases commonly 
represent pathologic characteristics such as infiltration of 
inflammatory cells, tissue remodeling or mucus hypersecretion 
(4). 

In the upper airway, chronic sinusitis is one of the 
hypoxia-related diseases. The sinus mucosa is composed of 
ciliated columnar epithelium intermixed with goblet cells. The 
cilia of epithelial cells have an essential role in transporting 
mucus outside of sinus through sinus ostium and maintaining 
a normal physiologic condition in the paranasal sinuses. 
Normal mucociliary transport is essentialfor the maintenance 
of the airway innate defense, and a decrease of mucociliary 
transport has been proved in rhinosinusitis. The defect in 
normal mucociliary transport can develop due to changes in 
mucus viscosity or any toxicity (5). Hypoxia is another 
potential factor for sinusitis and we have reviewed the 
pathogenesis of hypoxia-related sinusitis.

HIF-1α-MEDIATED MUCUS HYPERSECRETION BY 
HYPOXIA

The mechanical obstruction of the sinus natural opening 
reduces oxygen tension within the sinus resulting in sinusitis 
(6). Goblet cell hyperplasia is one of the major histopathologic 
changes in chronic rhinosinusitis (7). In hypoxic conditions, 
the hypoxia-inducible factor 1 (HIF-1) is essential for 
oxygen-related pathophysiology for transcriptional expression 
of erythropoietin (8), vascular endothelial growth factor (VEGF) 
(9), heme oxygenase-1 (10), and transferrin (11). HIF-1 is 
composed of a heterodimer, α and β subunits (12), and HIF-1α 
activation conducts the extracellular signal-regulated kinase 
signaling pathway (13). Although hypoxia is an effective 
inflammatory stimulant (4), the influence of hypoxia on mucus 
overproduction and its related-mechanism has not been 
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clearly suggested. The hypoxia-response element (HRE) is 
commonly present at the proximal promoter and includes one 
or more HIF-1-binding sites (14). The mutation in the HRE 
location inactivates the transcriptional response to hypoxia 
(15, 16). The promoter region of the MUC5AC gene includes a 
similar sequence to the HRE (17, 18). Therefore, we 
investigated the promoter region of the MUC5AC gene to 
understand the mechanism of hypoxia-induced MUC5AC gene 
in airway epithelium. We have mainly utilized primary human 
nasal epithelial (HNE) cells, which were cultured and 
differentiated in the condition of the air-liquid interface 
system, for in vitro experiments (19). Under hypoxic 
condition, HNE cells induced the expression of MUC5AC 
mRNA and protein (20). The elevation of HIF-1α expression in 
HNE cell by hypoxia was also identified and its loss- or 
gain-of-function experiment confirmed the role of HIF-1α in 
MUC5AC expression under hypoxic environment. To identify 
the DNA binding activity of HIF-1αto the MUC5AC 
promoter under hypoxia, we performed chromatin immuno-
precipitation (ChIP) assays and the regulatory HRE region of 
the MUC5AC promoter was identified to be important in 
increasing the transcriptional activity of MUC5AC caused by 
hypoxia (20). Immunohistochemical staining proved strong 
expression of MUC5AC and HIF-1α in the epithelium in 
sinusitis mucosa. These data suggest that hypoxic condition in 
the sinus is associated with sinusitis in terms of MUC5AC 
overproduction via the HIF-1α-mediated mechanism.

EPITHELIAL BARRIER BY HYPOXIA: VEGF 
MEDIATED-MECHANISM

The pathophysiology of epithelial disruption have been 
studied based on several aspects. It was demonstrated that 
hypoxia contributed to the breakdown of epithelial barrier via 
VEGFR-1 in retinal epithelium (21). The IL-13 led to disruption 
of tight junction in bronchial epithelium (22). Rhinovirus 
infection is a fundamental predisposing factor for subsequent 
bacterial invasion by dissociating zona occludens-1 (23). To 
the best of our knowledge, this is the first report to elucidate 
the role of the hypoxia–HIF–VEGF axis in the regulation of 
epithelial paracellular permeability in airway epithelium.

VEGF is a protein associated with vascular permeability as 
well as angiogenesis in endothelial cells and induces 
fenestrations or caveolae in the endothelial cytoplasm, which 
result in a vascular leak of plasma protein and tissue edema 
(24). There exist several reports on hypoxia-induced VEGF 
secretion (25-27). Furthermore, VEGF overexpression has been 
reported in several chronic airway inflammatory diseases, such 
as bronchial asthma, sinusitis, and allergic rhinitis (28-31). 
Therefore, it would be interesting to understand the role of 
VEGF in the pathogenesis of sinusitis under hypoxia. We 
hypothesized that HIF-1α and VEGF might be associated with 
the pathogenesis of sinusitis by augmenting paracellular 
permeability in the sinus epithelium. In human airway 

epithelial cells, the elevation in VEGF mRNA and protein was 
identified by hypoxic stimulation; overexpression of HIF-1α 
under normoxic condition also induced VEGF expression (32). 
Knockdown of HIF-1α resulted in downregulation of VEGF 
mRNA and protein level under hypoxic condition. These 
results imply that VEGF expression under the hypoxic 
condition is mediated through HIF-1α signaling pathway. The 
functional assay of the epithelial barrier can be measured by 
transepithelial electrical resistance (TEER). TEER decreases 
under the hypoxic condition and can be rescued by the 
knockdown of HIF-1α or bevacizumab, a monoclonal 
antibody against VEGF. However, we have not yet confirmed 
the expression of VEGFR-1 or -2 in primary nasal epithelial 
cells and further investigations are required to elucidate the 
signaling pathway including identification of VEGFR. 

Disruption of epithelial barrier function is an important 
histological change resulting in clinical significance. This fact 
provides a possibility of the development of novel therapeutic 
agents to improve epithelial barrier function for various airway 
diseases. Vulnerability to adherence or invasion of pathogens 
can be increased through the leaky epithelial barrier. We also 
confirmed higher bacterial passage of nasal epithelium under 
hypoxic condition compared to normoxia. 

EPITHELIAL BARRIER BY HYPOXIA: JUNCTIONAL 
PROTEINS MEDIATED-MECHANISM

The epithelial barrier function is maintained by tight and 
adherence junctions. The tight junctions are the most apical 
complex and disconnect the apical lumen from the basolateral 
side. ZO-1 is a tight junction component that is present in the 
upper part of epithelium (33). Adherence junctions are also 
important for the intercellular adhesion as they provide a 
docking site for signaling molecules (34, 35). The main 
component of adherence junction is E-cadherin, a trans-
membrane protein that forms calcium-dependent hemophilic 
intercellular adhesions between epithelial cells (36). In the 
human nasal mucosa, viral infection leads to loss of junctional 
complexes, especially ZO-1 with resultant augmentation of 
intranasal bacterial inoculation in mice (23). In allergic nasal 
mucosa, the reduction of ZO-1 mRNA has been reported (37). 
The reduction of ZO-1 but the elevation of E-cadherin was 
observed in the epithelium of nasal polyp (38). Therefore, the 
alterations in the levels of ZO-1 or E-cadherin can cause the 
disruption of the epithelial barrier under various pathological 
conditions (39).

To prove the effect of hypoxia on barrier function, we 
investigated the effects of hypoxia on ZO-1 and E-cadherin 
expression level (40). Hypoxia decreased the expression of 
ZO-1 and E-cadherin significantly after 8 hours of exposure. 
The disruption of the epithelial barrier was also proven 
functionally based on the measurement of TEER. The 
decreased expression pattern of ZO-1 and E-cadherin was also 
confirmed in the sinus epithelium of chronic sinusitis which is 
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Fig. 1. Hypoxia-induced pathophysiology of upper airway inflammation. Under hypoxic condition, HIF-1α serves as an essential factor 
mediating MUC5AC overproduction. Hypoxia stimulates HIF-1α-dependent overexpression of VEGF leading to disruption of epithelial 
barrier function and alteration in adherence (E-cadherin) or junctional (ZO-1) protein. Furthermore, hypoxia induces HMGB1 translocation 
into the cytoplasm and release of IL-8 through a ROS-dependent mechanism in the airway epithelium.

a hypoxia-conditioned nasal mucosa. Overall, the exposure to 
hypoxic conditions cause down-regulation of junction 
complex molecules and increasing TEER implying the 
disruption of normal barrier function of nasal epithelia.

HMGB1-MEDIATED INFLAMMATION BY HYPOXIA

High-mobility group box 1 (HMGB1) is a small sized protein, 
which acts as a DNA chaperone. HMGB1 is secreted into the 
extracellular space either actively or passively. Release 
following pro-inflammatory stimulation is an active process 
and release following apoptosis and necrosis is a passive 
process. The HMGB1, which is released into the extracellular 
space, binds to Toll-like receptor (TLR) 2 or TLR 4, and the 
receptor for advanced glycation end products (RAGE) resulting 
in activation of proinflammatory signaling pathways (41-43). 
The HMGB1, which is translocated from the nucleus into the 
cytoplasm, can be dependent on the posttranslational 
modifications such as phosphorylation, acetylation, and 
oxidation; reactive oxygen species (ROS) play important role 
in this process (41, 42, 44, 45). Recently, we reported the 
detection of elevated levels of HMGB1 in the nasal lavage 
fluid collected from chronic rhinosinusitis patients (46). Under 
hypoxic condition, there exists the possibility that HMGB1 can 
be translocated from the nucleus into the cytoplasm and 
released into the extracellular space, thus serving as a 

characteristic molecule for hypoxia-associated tissue damage 
(47, 48). Therefore, we investigated the role of HMGB1 in the 
progression of upper airway inflammatory diseases under 
hypoxic condition. Hypoxia induces translocation of HMGB1 
from the nucleus into the extracellular area in RPMI 2650 cells 
and HNE cells. Immunofluorescence assay (ELISA and western 
blotting) revealed augmentation of cytoplasmic HMGB1 under 
the hypoxic condition and increased the level of HMGB1 
protein in supernatants from HNE cells (49). Hypoxia increases 
the redox potential of local environment due to alterations in 
the production of ROS (50). ROS production can be 
dependent on the oxygen tension because the mild degree of 
hypoxia induces ROS production, but severe hypoxia 
decreases ROS production (50). The variations in oxygen 
concentration differentially affect the redox potential of the 
HMGB1 structure thus altering the functions of HMGB1. In 
our experimental setting, hypoxia increased the ROS levels 
significantly, which was confirmed by the pretreatment of the 
ROS scavenger, N-acetyl cysteine (NAC) with resultant 
suppression of hypoxia-induced ROS levels. Immunofluorescence 
assay revealed a reduction in cytoplasmic translocation of 
HMGB1, implying the association of HMGB1 with the 
increase in ROS.

Extracellular secretion of HMGB1 was also determined and 
pretreatment with NAC decreased the HMGB1 protein level 
from collected apical supernatants by ELISA and western 
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blotting (49). NADPH oxidase enzymes can generate ROS and 
dual oxidase (DUOX) 1 and 2. The subtypes of NADPH 
oxidase enzymes play an important role in the production of 
ROS in airway inflammation (51). Knockdown of DUOX 2 
gene using short hairpin RNA showed (shDUOX2) decreased 
ROS production in HNE cells but no changes were reported in 
knockdown of DUOX 1 gene. The shDUOX2-transfected HNE 
cells also showed a reduction in HMGB1 secretion under 
hypoxic condition (49). Taken together, it is apparent that 
DUOX2 but not DUOX1 is essential in hypoxia-induced 
HMGB1 secretion and DUOX2 can lead to ROS-mediated 
activation of TLR2 and TLR4 in the upper airway epithelium 
(51). 

The nasal secretions of chronic rhinosinusitis patients may 
contain mast cell tryptase, neutrophil elastase, eosinophil 
cationic protein, nitric oxide metabolites, IL-1, IL-5, or IL-8 
suggesting that these molecules are involved in the 
development of chronic inflammation in the upper airway 
(52-55). HMGB1 binds to several specific cell surface 
receptors, such as the RAGE, TLR, and act as a cytokine-like 
protein inducing chemotaxis and cytokine release. We 
determined HMGB1, TNF-α, IL-1β, and IL-8 in the nasal 
secretions of chronic rhinosinusitis patients and performed 
correlation analysis with the Lund-Mackay score, which is a 
scoring system indicating the severity of sinonasal symptoms. 
TNF-α was detected in only 21% and IL-1β was detected in 
44% of patients with no correlation with symptom severity 
(46). However, both HMGB1 and IL-8 were detected in all 
nasal lavage samples from patients and significant correlation 
was observed with the severity of Lund-Mackay score. 
Interestingly, the level of HMGB1 was significantly correlated 
with the level of IL-8 (46). Therefore, we investigated IL-8 in 
HNE cells under hypoxia and found that IL-8 secretion was 
increased by hypoxia and suppressed by NAC pretreatment. 
This finding implies that IL-8 secretion can be dependent on 
ROS signaling pathway. Furthermore, the treatment of 
HMGB1 using mammalian recombinant HMGB1 (rHMGB1) 
induced IL-8 secretion in apical culture supernatants. During 
the course of employment of anti-HMGB1 blocking antibody 
to inhibit the function of the secreted HMGB1 protein, IL-8 
production was abrogated (49). This observation is very 
interesting because HMGB1 may be associated with specific 
cytokines such as IL-6, IL-8, and IL-33 in the nasal epithelium 
(56, 57). HMGB1 also induces the release of IL-1α, IL-1β, IL-6, 
IL-8, and TNF-α in macrophages and TNF-α, IL-1β, and IL-8 in 
neutrophils (58). In endothelial cells, HMGB1 can increase the 
production of tissue factor, an initial protein involved in the 
coagulation cascade and regulation of fibrinolysis (59, 60). 

CONCLUSION

Analysis of the results of previously reported studies indicated 
that hypoxia plays an important role in the pathogenesis of 
upper airway inflammation, especially in the chronic 

rhinosinusitis (Fig. 1). HIF-1α is an essential factor for oxygen 
homeostasis in the epithelium and mediates MUC5AC 
overproduction. HIF-1α mediated VEGF overexpression and 
alteration of junctional proteins such as ZO-1 and E-cadherin 
are also important aspects leading to the disruption of the 
epithelial barrier under hypoxic condition. Furthermore, 
hypoxia induces HMGB1 translocation into the cytoplasm and 
release of IL-8 through a ROS-dependent mechanism in the 
airway epithelium. It is hypothesized that the investigation of 
hypoxia-related pathophysiology in airway epithelium will 
suggest a novel therapeutic target for upper airway inflam-
matory diseases.
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