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Abstract: Machine-generated data expansion is a global phenomenon in recent Internet services.
The proliferation of mobile communication and smart devices has increased the utilization of
machine-generated data significantly. One of the most promising applications of machine-generated
data is the estimation of the location of smart devices. The motion sensors integrated into smart
devices generate continuous data that can be used to estimate the location of pedestrians in an indoor
environment. We focus on the estimation of the accurate location of smart devices by determining
the landmarks appropriately for location error calibration. In the motion sensor-based location
estimation, the proposed threshold control method determines valid landmarks in real time to avoid
the accumulation of errors. A statistical method analyzes the acquired motion sensor data and
proposes a valid landmark for every movement of the smart devices. Motion sensor data used in
the testbed are collected from the actual measurements taken throughout a commercial building to
demonstrate the practical usefulness of the proposed method.
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1. Introduction

A location-based service (LBS) improves the economic and emotional utility of services in various
user applications. LBSs are usually offered by cellular radio providers. In today’s LBSs, the typical
cell-based location estimation takes advantage of various techniques: the global navigation satellite
system (GNSS), Wi-Fi based fingerprint/triangulation, magnetic field fingerprints, and other complicated
techniques for the sensitive measuring of the geographical location of a device. The LBS includes much
useful information about specific locations in the user’s neighborhood. Maps and navigation are the
essential service capabilities that permit the fundamental location management. Map and navigation
services have sufficient expandability to provide asset tracking, autonomous driving and context aware
services. Augmented reality (AR) is a prospective LBS service. An accurate geographical location enhances
AR applications. More geographically appropriate information or context can be added to the display of a
mobile device. The additional context, which is highly related to locations, provides vast opportunities
in gaming, advertising, and social applications. The strong usability offered by the LBSs provides huge
market expansion. In addition to popular map/navigation services, food delivery, car sharing, and
many other Internet of Thing applications are prevailing among the masses. However, the popularity
of LBS is generally focused on the outdoor environment. Indoor spaces require high location precision
because the environmental contexts change with a much finer spatial granularity. Just a five-meter
difference may indicate just two different aisles in a general grocery store. Many research trials have
been implemented to achieve affordable location accuracy. Image-based location tracking is a promising
approach. Guoyu et al. [1,2] proved that the high location accuracy can be achieved by using captured
video for indoor environments. Hongbo et al. [3,4] developed an advanced Wi-Fi fingerprint location
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estimation method using peer assistance. Moreover, Yuanchao et al. [5] enhanced the Wi-Fi fingerprint
method by adopting a gradient for each Wi-Fi fingerprint to eliminate biased measurements. Probabilistic
fingerprint location estimation methods are also proposed. The studies of Seco et al. [6], Roos et al. [7],
and Youssef et al. [8] estimated the probability distribution of the measured fingerprints given the user
locations. Coverage estimation models were developed by Muller et al. [9] and Koski et al. [10]. They
estimated the probabilistic coverage of Wi-Fi access points and then picked the user locations using
probabilistic intersections of access point coverages. As recent approaches, machine learning algorithms
were applied to enhance fingerprint location estimation. Feng et al. [11] suggested a support vector
machine model and an interpolation method to reduce estimation errors. Sanchez-Rodriguez et al. [12]
proposed a multiple weighted decision tree model for indoor location estimation.

The fingerprint location estimation is not restricted to Wi-Fi signals. Magnetic field fingerprints use
magnetic field distributions inside buildings. The metal structure of the indoor environment cause magnetic
field disturbances [13,14]. The results of previous studies have provided relatively stable location estimation
methods [15–17]. The study of Torres-Sospedra et al. [18] presented stable continuous estimation using
small mobile devices. However, Gozick et al. [15] showed the the magnetic field fingerprint restrictions
caused by limited measuring features: the direction of the magnetic field is restricted in two dimensions in
many real life scenarios. Another challenge if using a magnetic field for location estimation with mobile
devices is significant variability of the magnetic field [17]. Recent studies have tried to address these
challenges. Wang et al. [19] applied a weighted particle filter to reduce the irregular fluctuation of magnetic
fields. Madson and Rahanani [20] suggested an adaptive dipole model for error compensation.

Sensor-based location estimation is another general approach for indoor spaces. An inertial
measurement unit (IMU) that is embodied in every smart device measures the velocity, orientation,
and acceleration of the device. Using the IMU, we can estimate the movement of objects. This
estimation method is named dead reckoning [21–25]. By using the pedestrian working model, we can
estimate the movement or orientation of a device without any infrastructure. Fuchs et al. identified
the common requirements of indoor tracking in mission critical scenarios and introduced the basic
techniques for IMU location estimation [26]. Beauregard et al. proposed a combined approach of
pedestrian dead reckoning and GPS location estimation [27]. An accelerometer provides signals
and a neural network predicts the step length for relative indoor positioning. Jiménez et al. used
a low-performance micro-electro-mechanical sensor (MEMS) attached to the foot of a person [28].
This sensor has a triaxial accelerometer, a gyroscope, and a magnetometer. They implemented and
compared most relevant techniques for user movement such as step detection, stride estimation, etc.

A single use of the IMU-based dead reckoning has a characteristic error generation
pattern—accumulation of error. The dead-reckoned tracking is accurate in the beginning, however,
the errors from the truth accumulate over time because of the noise in the mobile sensors. Periodic
error calibrations are necessary to maintain the quality of estimation. Figure 1 illustrates the error
generation characteristics of an IMU after appropriate calibration.
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within a certain limit by calibrating the IMU. The red circle in Figure 1 shows the natural error of a
calibration method. By using an appropriate calibration method, we can achieve an acceptable limit of
the estimation quality.

A popular calibration method uses a Wi-Fi system [29,30]. Affordable precision is attainable
using a pervasive Wi-Fi system with meticulous signal calibration. However, Wi-Fi signal patterns
are usually unstable. The unstable pattern comes at a high cost caused by frequent re-establishment
of calibration points. This tradeoff between the calibration overhead and the accuracy has been an
important challenge to deploying Wi-Fi calibration for indoor location estimation. If one could identify
other appropriate means of calibration, the IMU-based dead reckoning could be sufficiently applicable,
even in indoor environments.

Activity recognition and environment sensing demonstrate the ability to recognize the user
behavior and spatial significance. For instance, the IMU can detect user activities such as walking,
turning a corner, and stepping up and down stairs, whereas magnetometers can detect significant
magnetic signals. If these sensory signatures are used for context awareness, they can be referred to
as location estimation as well. These signatures can be used as landmarks to calibrate IMU-based
dead reckoning [31]. The essential point of localizing the signatures (i.e., finding landmarks) is the
more accurate detection of sensory signatures that have concrete uniqueness around the neighboring
spatial field. To be a landmark the sensory signature of a location should be statistically differentiated.
In this article, we propose a structural design of indoor spaces and a statistical procedure to identify
significant landmarks for indoor dead reckoning. First, we analyze and understand the extensive
sensory signatures of natural landmarks. Then, we propose an autonomous procedure for landmark
identification. The autonomous procedure is especially reinforced by an arbitrary but large number of
mobile devices. They identify the landmarks repeatedly, which can enhance the quality of landmark
identification. The proposed statistical process of autonomous procedure improves the localization
accuracy over time.

2. Materials and Methods

2.1. Structural Landmark Identification

A user performs a predictable motion when passing through a specific structure, such as a flight of
stairs, elevator, entrance, or escalator, in an indoor space. The predictable motion can be converted to a
sensory signature by mobile devices: a multi-dimensional combination of sensory data postulates that
signatures are likely to emerge for specific structures. For instance, the fluctuations in the gyroscope
and magnetometer measurements are mapped to their corresponding physical locations such as
an escalator. These spatial sensory signatures determine the “structural” landmarks. To recognize
an elevator landmark, we can monitor the fluctuation variance on every axis of the magnetometer.
The specific magnetometer fluctuations are observed for every stop over an elevator movement
(see Figure 2).
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Similar to an elevator landmark, we can categorize other types of typical structural landmarks:
corridors, corners, stairs, and escalators. Table 1 lists the observation and visualization of the measured
sensory signatures for each structural landmark.

Table 1. Determinants and visualization of sensory signature.

Structural Landmark Observation Visualization

Corridor Typical vibration/fluctuation on the
z-axis of the accelerometer
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To confirm each sensory signature as a valid structural landmark, we propose a validity test using
the landmark confirming criteria. The landmark confirming criteria listed in Table 2 are obtained
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by conducting extensive empirical tests in indoor spaces. We develop a custom sensory signature
collecting application for three types of mobile devices: a Samsung Galaxy S7 (Samsung Electronics,
Seoul, Korea), a Sony Xperia XZ (Sony Corporation, Tokyo, Japan), and an LG G5 (LG Electronics, Seoul,
Korea). The raw sensor data measured by the embodied IMU and magnetometer are transformed into
sensory signature values for each measurement time interval (usually 100 ms). The gathered sensory
signatures are transferred to a Microsoft Excel program for visualization after the whole signature
gathering process. The tested indoor space is the second floor of a college building that includes
15 corridors, 10 corners, three sets of stairs, two escalators, and three elevators. We collect sensory
signatures at least 20 times for each structure. An experimenter holds mobile devices with a handheld
pose (generally, when a person looks for a way using navigation application in an indoor space, he or
she holds a mobile device in hands and looks at the screen with his or her eyes).

By using the statistical analytics (i.e., one-way ANOVA), we define the key criteria to identify
the valid structural landmarks. The key criteria (e.g., z-axis accelerometer for corridors or stairs) are
identified within a significance level of 5%. If an observed average sensory signature for the key
criteria is within the confidence interval (i.e., average± z0.025×

√
variance, z0.025 = 1.96), the observed

signature can be considered a structural landmark under a statistical confidence of 95%.

Table 2. Central values for landmark confirming criteria.

Signature Key Criteria Mean Maximum Minimum Variance

Stationary z-axis accelerometer (m/s2) 8.973 9.32 8.707 0.009
Corridor z-axis accelerometer 9.1099 14.9578 5.9023 2.3549
Corner z-axis gyroscope (rad/s) 0.0151 2.0107 −1.603 0.1741

Stair z-axis accelerometer 8.7039 19.6085 2.6965 4.0408
Escalator z-axis gyroscope 0.0298 3.0201 −2.703 0.2132
Elevator z-axis magnetometer (µT) −10.5621 −5.1028 −21.8373 7.721

Notes: (1) A sensory signature for stationary state is included for comparison. (2) The z-axis accelerometer value is
generally less than 1 G (9.8 m/s2) because an experimenter holds mobile devices with a slightly tilted handheld
pose. (3) The significant change of gyroscope value is caused by a turning movement. To prevent confusion caused
by changing direction (left turn or right turn), we use absolute gyroscope measurement values.

Structural landmarks provide effective calibration points for indoor location estimation. However,
the number of structural landmarks is often not sufficient to sustain the desirable accuracy of location
estimation. The increasing density of landmarks will reduce the location estimation error by frequent
calibration. Thus, we focus on another type of landmark—spontaneous landmarks.

2.2. Spontaneous Landmark Identification

Indoor spaces offer ambient sensory signatures across multiple sensors. For instance, the metallic
objects in a certain location may generate unique and reproducible patterns on a magnetometer. These
ambient sensory signatures generally may not be recognized a priori. A different indoor space will have
a different distribution of signatures. Although there is no theoretical proof, empirical observations
indicate that an indoor space has sufficient ambient signatures from sound, light, magnetic field,
temperature, and radio signals. An effective method to identify the ambient signatures is definitely
useful for frequent calibrations. The identified ambient signatures can be used to determine the
“spontaneous” landmarks that supplement the limited amount of structural landmarks.

Recognizing distinct sensory signatures is essential for discovering spontaneous landmarks.
Sensory signatures are characterized by the mean, max, min, and variance similar to structural
landmarks. Our objective is to identify distinct signatures that have less similarity to the signatures of
neighboring locations. Distinct signatures are generally identified using a sensory signature gathering
process. A sensory signature gathering application installed in smart devices collects sensory signatures
continuously according to the walking path of a pedestrian. A similarity test is applied to two
time-consecutively collected sensory signatures: one signature at time interval t and the other at t − 1.
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If the correlation between the two consecutive signatures is greater than a similarity threshold, we
consider the signature at time interval t as statistically distinct, and the location of the distinct signature
is considered as the candidate for a spontaneous landmark.

The sensory signatures measured at time interval t are described using a vector form that has
three tuples. The first tuple comprises the signatures of an accelerometer as expressed by (1):

f t
accelerometer = (at

x−mean, at
x−min, at

x−max, at
x−variance, at

y−mean, at
x−min, at

y−max, at
y−variance,

at
z−mean, at

z−min, at
z−max, at

z−variance)
(1)

where at
x−mean denotes the mean value of the x-axis accelerometer at time interval t and the other three

elements of the x-axis accelerometer denote the min, max, and variance. Similarly, the elements for
y-axis and z-axis accelerometers are contained in the first tuple, f t

accelerometer. The tuples for gyroscope
and magnetometer are defined as shown in (2) and (3):

f t
gryoscope = (gt

x−mean, gt
x−min, gt

x−max, gt
x−variance, gt

y−mean, gt
x−min, gt

y−max, gt
y−variance,

gt
z−mean, gt

z−min, gt
z−max, gt

z−variance)
(2)

f t
magnetometer = (mt

x−mean, mt
x−min, mt

x−max, mt
x−variance, mt

y−mean, mt
x−min, mt

y−max, mt
y−variance,

mt
z−mean, mt

z−min, mt
z−max, mt

z−variance)
(3)

A typical sensory signature is a combination of three tuples: st = { f t
accelerometer, f t

gryoscope, f t
magnetometer}.

The proposed similarity test is conducted with two sensory signatures at consecutive time intervals.
Each time interval holds separated portion on the time axis. The two consecutive time intervals are not
overlapped. The square of the Euclidean distance (i.e., d2(st−1, st) given by (4)) of the two time-consecutive
signatures (st−1, st) presents the statistical difference of the two sensory signatures:

d2(st−1, st) = (st−1 − st)
2

(4)

Each element of a sensory signature has a normally distributed measurement error. The central
limit theorem [32] guarantees the normal distribution of relatively large number (usually, more than 20)
of independent sensor measurements. Thus, each element of sensory signature follows a normal
distribution. Then, the vector difference of two signatures (st−1− st) also follows a normal distribution.
Each element of vector st−1− st follows a normal distribution. Then, d2(st−1, st), the square summation
of elements of vector st−1 − st follows chi-squared distribution [33] with degrees of freedom m, where
m is the number of independent elements of a vector (i.e., d2(st−1, st) ∼ χ2(m), mean of χ2(m) is
m and variance is 2m). The chi-square distribution with m degrees of freedom is the distribution
of a sum of the squares of m independent normal random variables. By the statistical finding of
Fisher [34],

√
2d2(st−1, st) follows approximate normal distribution with mean

√
2m− 1 and a unit

variance. The significant difference between two sensory signatures can be determined by its statistical
characteristics. When a value of

√
2d2(st−1, st) is over the given threshold, the two sensory signatures,

st−1 and st, are considered significantly different. Note that, the time interval is usually 100 ms. Because
of the highly sensing frequency of embodied IMU and magnetometer (100 Hz–400 Hz for usual mobile
devices), 100 ms time interval provides 10–40 sensing opportunities for single time interval. It is the
sufficient number to obtain valid sensory signatures for every time intervals.

For obtaining the spontaneous landmarks, we subject the sensory signatures to the continuous
process of a similarity test. Once the similarity test has approved, each of the resulting distinct sensory
signatures is expected to contain a unique location. We detect the unique sensory signatures and record
their ground truths to localize the spontaneous landmarks. We build an entire map of landmarks
by the combining both the structural and spontaneous landmarks. Figure 3 shows an example of
landmarks. The illustrated floor plan is obtained from a commercial departmental store in Incheon,
Korea. We detected 11 structural landmarks and 10 spontaneous ones.
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Figure 3. Example of landmarks detection.

The ground truths that are used to localize the spontaneous landmarks are collected by voluntary
activities. A simple sensory signature gathering application generates an alarm whenever distinct
sensory signatures are detected. A user can record the geographical ground truths for the detected
signatures by pinpointing over the floor plan. In addition, the ground truth can be estimated by the
autonomous actions of a sensory signature gathering application. The sensory signature gathering
application automatically records the current location obtained by dead reckoning for a detected
signature. The autonomous recording has a relatively large error compared to voluntary pinpointing.
For the estimation of a location by dead reckoning, repetitive collection and averaging can reduce the
error of the ground truth estimation. Figure 4 illustrates the entire process of landmark identification
and location estimation. The identified landmarks are continuously used for recalibration. Periodic
recalibration can achieve an acceptable upper bound of location errors.
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The floor plan with the entire landmark information is downloaded when a user reaches an
indoor space. We can dead reckon our indoor locations with frequent recalibration (see Figure 5).
The recalibration is activated by both the structural and spontaneous landmarks.
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3. Results

To demonstrate the practical usability of the proposed landmark calibration method, we identified
the structural and spontaneous landmarks for two different types of buildings. A large area cannot
be appropriate to test and enhance the applicability of the landmark identifying process. Thus, we
first apply the developed similarity test in a relatively small area. The test area is the second floor of a
college building. Figure 6 illustrates the details of the floor. The bottom-left point is the origin of the
coordinates. The distances from the origin are represented in centimeters. To identify the landmarks,
we repeatedly wander around the test floor. After the determination of landmarks, we measure the
location estimation error for total seven paths. Each path has ten location measuring points.
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The similarity test processes on two time-consecutive sensory signatures (one signature is
measured at time t and the other is measured at t − 1). The difference of two signatures
(i.e.,

√
2d2(st−1, st) in Section 2.2) is normally distributed with mean

√
2m− 1 and unit variance
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(i.e., σ = 1). Then, we apply
√

2m− 1+ k as a useful threshold value. The constant value, k, determines
the strictness of the similarity test. Suppose that k is equal to 1, the two sensory signatures are
determined to be statistically different only when they have a difference belonging to the upper 15.8%
of the difference distribution. In the cases of k = 1.5 and k = 2, we consider the upper 6.7% and
2.2% of the total difference distribution as the similarity threshold, respectively. In this experiment,
we indicate the results corresponding to k = 1, 1.5, and 2 to demonstrate the usefulness of the similarity
test. A mobile application tool is developed for the test. The application obtains the landmarks, sets up
a test path, and performs dead reckoning with calibration as shown in Figure 7.
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Figure 8 illustrates the difference corresponding to different k values: k = 1 has the largest number
of spontaneous landmarks and k = 2 has the least number of spontaneous landmarks. The actual
footprints of users are illustrated using the green dots. The black lines show the average traces for
multiple experiments per single path.
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The location errors for each k value are listed in Table 3. The number of spontaneous landmarks
increases with a decrease in k values, whereas the number of structural landmarks is constant.
The location estimation errors are not minimized when the number of landmarks is the largest.
However, the location errors are minimized at the median of k.

Table 3. Error distribution according to landmark density (unit: cm).

k = 2 k = 1.5 k = 1

Error
Number of Landmarks

Error
Number of Landmarks

Error
Number of Landmarks

Structural Spontaneous Structural Spontaneous Structural Spontaneous

Path1 127.69 3 5 80.33 3 7 127.24 3 10
Path2 126.66 3 4 94.71 3 7 106.93 3 9
Path3 131.16 4 6 97.94 4 7 111.71 4 9
Path4 84.29 4 7 64.38 4 8 98.05 4 11
Path5 78.47 5 7 71.15 5 9 84.04 5 13
Path6 127.69 5 8 116.28 5 10 129.73 5 14
Path7 86.95 7 10 59.17 7 13 132.32 7 16

Figure 9 illustrates the patterns of location errors for each experimental path. Location errors
are minimized at the median of k. We expand the k value into {1, 1.2, 1.4, 1.6, 1.8, 2} to enhance the
visibility of the trends. If k = 1.2, we consider the upper 11.5% of the total difference distribution as the
similarity threshold. Similarly, upper 8.1% when k = 1.4, 5.5% when k = 1.6, and 3.6% when k = 1.8
are considered to similarity thresholds.

Next, we extended the landmark calibration method to a commercial department store located in
Incheon, Korea. The floor area of the target floor is 9428 m2. Three escalators and four elevators are
included in the target floor. In addition, the corners are included over the seventy places in the target
floor (see Figure 3).Sensors 2017, 17, 1952 11 of 15 
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We listed the results of three representative similarity thresholds: k = 1, 1.5, and 2. Table 4 lists
the number of structural and spontaneous landmarks, recalibration, and errors of location estimation
for ten paths.

Figure 10 illustrates the number of recalibrations for each experimental path. The number of
recalibrations increases with decreasing k values.
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Table 4. Error distribution according to recalibrations for large area (unit: cm).

k = 2 k = 1.5 k = 1

Error Number of
Recalibration Error Number of

Recalibration Error Number of
Recalibration

Path1 121.31 11 106.31 14 114.31 16
Path2 98.24 15 86.24 19 94.24 21
Path3 135.12 16 119.12 21 130.12 22
Path4 75.87 18 62.87 20 89.87 22
Path5 96.19 18 82.19 21 94.19 22
Path6 119.56 20 102.56 22 118.56 24
Path7 131.29 20 112.29 24 140.29 26
Path8 67.31 23 48.31 27 84.31 29
Path9 71.49 22 53.49 28 57.49 31

Path10 114.35 25 102.35 29 105.35 34
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However, frequent recalibration does not guarantee the quality of location estimation. The location
errors are minimized under the median of recalibrations (see Figure 11). We also expand the k value
into {1, 1.2, 1.4, 1.6, 1.8, 2} to indicate a more explicit trend of recalibration.
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Figure 11 illustrates the patterns of location errors for each experimental path. The median of
k minimizes the location errors. The results of the calibration method using a Wi-Fi system [29,30]
are illustrated in Figure 12 to show the excellence of the proposed method. The number of Wi-Fi
recalibrations are slightly different for each test path: the maximum number of recalibration is 27 times
for path 10 and the minimum is 11 times for path 1. Figure 12 shows the performance comparisons of
Wi-Fi calibration and the proposed autonomous landmark calibration (k = 1.4 and k = 1.6). The proposed
method illustrates the superior results for average 17.8% enhancement.
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To concretely determine a landmark in the extended department store experiment, we apply
collective intelligence by voluntary activities. Repeated detections of same signature on the same
location is needed to be a landmark. In addition, when we detect a landmark signature during
navigation, we check the stored ground truth of the landmark. If the ground truth of the detected
landmark is far from the current location of the devices, we determine the detected landmark as an
improper one. Then, we inactivate the calibration process.

4. Discussion

The proliferation of mobile communication and smart devices has drawn significant attention
to Location-Based Services. Accurate location estimation is one of the most essential components
for the usability of LBSs. Especially in an indoor environment, the traditional location estimation
methods such as pure dead reckoning have the limitation of error accumulation over time. Moreover,
solution providers do not share significant technical advances publicly. The dead reckoning with
frequent recalibration is a beneficial technique for expanding the LBS capability. The landmark points,
structural or spontaneous, activate recalibration. The corner points, stairs, escalators, and elevators
are representative structural landmarks. The usefulness of structural landmarks can stimulate the
expansion of spontaneous landmarks. A statistical similarity test identifies various spontaneous
landmarks. The sensory signatures of geographical locations are represented using a vector form.
The difference between the two sensory signature vectors can be evaluated by conducting a similarity
test. This autonomous landmark finding procedure is used to reduce cost while keeping a affordable
estimation quality. The theoretical achievement of statistical analysis strengthens the advantage of LBS
application especially for indoor location estimation. In addition, the proposed landmark calibration
can be tightly coupled to traditional Wi-Fi calibration. The well-trained Wi-Fi calibration points can be
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added as important landmarks in our proposed method. All the sensory signatures were acquired
through the actual measurements, which validates the practicality of the proposed method.

Acknowledgments: This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2016-0-00160, Versatile Network System
Architecture for Multi-Dimensional Diversity).

Author Contributions: Jae-Hoon Kim and Byoung-Seop Kim developed the proposed method and designed the
experiments; Byoung-Seop Kim performed the experiments; Jae-Hoon Kim analyzed the experimental results and
wrote the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lu, G.; Yan, Y.; Kolagunda, A.; Kambhamettu, C. A Fast 3D Indoor-Localization Approach Based on
Video Queries. In Proceedings of the International Conference on Multimedia Modeling, Miami, FL, USA,
4–6 January 2016; pp. 218–230.

2. Lu, G.; Yan, Y.; Sebe, N.; Kambhamettu, C. Knowing Where I Am: Exploiting Multi-Task Learning for
Multi-View Indoor Image-Based Localization. In Proceedings of the British Machine Vision Conference,
Nottingham, UK, 1–5 September 2014; pp. 1–12.

3. Liu, H.; Gan, Y.; Yang, J.; Sidhom, S.; Wang, Y.; Chen, Y.; Ye, F. Push the Limit of WiFi Based Localization
for Smartphone. In Proceedings of the 18th Annual International Conference on Mobile Computing and
Networking (MobiCom’12), Istanbul, Turkey, 22–26 August 2012; pp. 305–316.

4. Liu, H.; Yang, J.; Sidhom, S.; Wang, Y.; Chen, Y.; Ye, F. Accurate WiFi Based Localization for Smartphones
Using Peer Assistance. IEEE Trans. Mob. Comput. 2014, 13, 2199–2214. [CrossRef]

5. Shu, Y.; Huang, Y.; Zhang, J.; Coué, P.; Cheng, P.; Chen, J.; Shin, K.G. Gradient-Based Fingerprinting for
Indoor Localization and Tracking. IEEE Trans. Ind. Electron. 2016, 63, 2424–2433. [CrossRef]

6. Seco, E.; Jimenez, A.R.; Prieto, C.; Roa, J.; Koutsou, K. A survey of mathematical methods for indoor
localization. In Proceedings of the IEEE International Symposium on Intelligent Signal Processing, Budapest,
Hungary, 26–28 August 2009; pp. 9–14.

7. Roos, T.; Myllymäki, P.; Tirri, H.; Misikangas, P.; Sievänen, J. A probabilistic approach to WLAN user location
estimation. Int. J. Wirel. Inf. Netw. 2002, 9, 155–164. [CrossRef]

8. Youssef, M.; Agrawala, A. The Horus WLAN location determination system. In Proceedings of the
3rd International Conference on Mobile System Application Services, Seattle, WA, USA, 6–8 June 2005;
pp. 205–218.

9. Müller, P.; Raitoharju, M.; Piché, R. A field test of parametric WLAN-fingerprint-positioning methods.
In Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain, 7–10 July
2014; pp. 1–8.

10. Koski, L.; Piché, R.; Kaseva, V.; Ali-Löytty, S.; Hännikäinen, M. Positioning with coverage area estimates
generated from location fingerprints. In Proceedings of the 7th Workshop on Positioning Navigation
Communication, Dresden, Germany, 11–12 March 2010; pp. 99–106.

11. Feng., Y.; Minghua, J.; Jing, L.; Xiao, Q.; Ming, H.; Tao, P.; Xinrong, H. An improved indoor localization of
WiFi based on support vector machines. Int. J. Future Gener. Commun. Netw. 2014, 7, 191–206.

12. Sánchez-Rodríguez, D.; Hernández-Morera, P.; Quinteiro, J.M.; Alonso-González, I. A low complexity system
based on multiple weighted decision trees for indoor localization. Sensors 2015, 15, 14809–14829. [CrossRef]
[PubMed]

13. Haverinen, J.; Kemppainen, A. Global indoor self-localization based on the ambient magnetic field.
Robot. Auton. Syst. 2009, 57, 1028–1035. [CrossRef]

14. Berkovich, G. Accurate and reliable real-time indoor positioning on commercial smartphone. In Proceedings
of the International Conference on Indoor Positioning and Indoor Navigation, Busan, Korea, 27–30 October
2014; pp. 670–677.

15. Gozick, B.; Subbu, K.P.; Dantu, R.; Maeshiro, T. Magnetic maps for indoor navigation. IEEE Trans. Instrum.
Meas. 2011, 60, 3883–3891. [CrossRef]

http://dx.doi.org/10.1109/TMC.2013.140
http://dx.doi.org/10.1109/TIE.2015.2509917
http://dx.doi.org/10.1023/A:1016003126882
http://dx.doi.org/10.3390/s150614809
http://www.ncbi.nlm.nih.gov/pubmed/26110413
http://dx.doi.org/10.1016/j.robot.2009.07.018
http://dx.doi.org/10.1109/TIM.2011.2147690


Sensors 2017, 17, 1952 14 of 14

16. Abadi, M.J.; Luceri, L.; Hassan, M.; Chou, C.T.; Nicoli, M. A collaborative approach to heading estimation
for smartphone-based PDR indoor localization. In Proceedings of the International Conference on Indoor
Positioning and Indoor Navigation, Busan, Korea, 27–30 October 2014; pp. 554–563.

17. Shu, Y.; Bo, C.; Shen, G.; Zhao, C.; Li, L.; Zhao, F. Magicol: Indoor localization using pervasive magnetic field
and opportunistic WiFi sensing. IEEE J. Sel. Areas Commun. 2015, 33, 1443–1457. [CrossRef]

18. Torres-Sospedra, J.; Montoliu, R.; Mendoza-Sinva, G.M.; Belmonte, O.; Rambla, D.; Huerata, J. Providing
databases for different indoor positioning technologies: Pros and cons of magnetic field and Wi-Fi based
positioning. Mob. Inf. Syst. 2016, 2016, 1–22. [CrossRef]

19. Wang, X.; Zhang, C.; Liu, F.; Dong, Y.; Xu, X. Exponentially Weighted Particle Filter for Simultaneous
Localization and Mapping Based on Magnetic Field Measurements. IEEE Trans. Instrum. Meas. 2017, 66,
1658–1667. [CrossRef]

20. Madson, R.; Rajamani, R. Adaptive Dipole Model Based Disturbance Compensation in Nonlinear Magnetic
Position Systems. IEEE/ASME Trans. Mechatron. 2017, 22, 794–803. [CrossRef]

21. Renaudin, V.; Combettes, C.; Peyret, F. Quaternion based heading estimation with handheld MEMS in indoor
environments. In Proceedings of the IEEE/ION on Position Location Navigation Symposium, Monterey, CA,
USA, 5–8 May 2014; pp. 645–656.

22. Combettes, C.; Renaudin, V. Comparison of misalignment estimation techniques between handheld device
and walking directions. In Proceedings of the International Conference on Indoor Positioning and Indoor
Navigation, Banff, AB, Canada, 13–16 October 2015; pp. 1–8.

23. Harle, R. A survey of indoor inertial positioning systems for pedestrians. IEEE Commun. Surv. Tutor. 2013,
15, 1281–1293. [CrossRef]

24. Gu, Y.; Lo, A.; Niemegeers, I. A Survey of Indoor Positioning Systems for Wireless Personal Networks.
IEEE Commun. Surv. Tutor. 2009, 11, 13–32. [CrossRef]

25. Turetzky, G. Indoor Positioning with SiRFusion for Next Generation E-911. Available online: https:
//transition.fcc.gov/bureaus/pshs/docs/summits/911%20Location%20Acuracy/Greg_Turetzky.pdf
(accessed on 24 August 2017).

26. Fuchs, C.; Aschenbruck, N.; Martini, P.; Wieneke, M. Indoor tracking for mission critical scenarios: A survey.
Pervasive Mob. Comput. 2011, 7, 1–15. [CrossRef]

27. Beauregard, S.; Haas, H. Pedestrian Dead Reckoning: A Basis for Personal Positioning. In Proceedings of the
3rd workshop on positioning, navigation and communication, Hannover, Germany, 16 March 2006.

28. Jim’enez, A.R.; Seco, F.; Prieto, C.; Guevara, J. A Comparison of Pedestrian Dead-Reckoning Algorithms
Using a Low-Cost MEMS IMU. In Proceedings of the IEEE International Symposium on Intelligent Signal
Processing, Budapest, Hungary, 26–28 August 2009.

29. Wang, H.; Lenz, H.; Szabo, A.; Bamberger, J.; Hanebeck, U.D. WLAN-based pedestrian tracking using
particle filters and low-cost MEMS sensors. In Proceedings of the Workshop on Positioning, Navigation and
Communication, Hannover, Germany, 22 March 2007; pp. 1–7.

30. Korbinian, F. Development and evaluation of a combined WLAN & inertial indoor pedestrian positioning
system. In Proceedings of the 4th International Symposium on Location and Context Awareness, Savannah,
GA, USA, 22–25 September 2009.

31. Wang, H.; Sen, S.; Elgohary, A.; Farid, M.; Youssef, M.; Choudhury, R.R. Unsupervised Indoor Localization.
In Proceedings of the International Conference on Mobile Systems, Applications, and Services, Low Wood
Bay, UK, 25–29 June 2012; pp. 499–500.

32. Wikipedia. Central Limit Theorem. Available online: https://en.wikipedia.org/wiki/Central_limit_theorem
(accessed on 21 July 2017).

33. Wikipedia. Chi-Square Distribution. Available online: https://en.wikipedia.org/wiki/Chi-squared_
distribution (accessed on 21 July 2017).

34. Fisher, R.A. Statistical Methods for Research Workers; Springer: New York, NY, USA, 1954.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSAC.2015.2430274
http://dx.doi.org/10.1155/2016/6092618
http://dx.doi.org/10.1109/TIM.2017.2664538
http://dx.doi.org/10.1109/TMECH.2017.2654865
http://dx.doi.org/10.1109/SURV.2012.121912.00075
http://dx.doi.org/10.1109/SURV.2009.090103
https://transition.fcc.gov/bureaus/pshs/docs/summits/911%20Location%20Acuracy/Greg_Turetzky.pdf
https://transition.fcc.gov/bureaus/pshs/docs/summits/911%20Location%20Acuracy/Greg_Turetzky.pdf
http://dx.doi.org/10.1016/j.pmcj.2010.07.001
https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Structural Landmark Identification 
	Spontaneous Landmark Identification 

	Results 
	Discussion 

