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Abstract: Friction models are proposed for anisotropic and heterogeneous dry friction on boundaries
of polymer solids. Unit vectors and oriented angles of sliding velocities, radii of curvature and unit
normal vectors of sliding trajectories are taken as independent variables in constitutive equations
of anisotropic and heterogeneous friction. Heterogeneous dry friction of a polymer pin in pin-on-
disc tests is illustrated in the case of Archimedean spiral trajectory. Individual molecular chains
composing polymer materials can move inside the material with a high degree of friction anisotropy.
The resistance of macromolecule motion is considered with respect to micromechanical models of
macromolecules, their kinematics, and friction laws. Two approaches are applied for modeling of
anisotropic friction inside polymer materials: continuum-based models (anisotropic viscous friction)
and micromechanical models (anisotropic dry friction). Examples of macromolecule dry friction are
considered under conditions of spinning and sliding of a disc-like macromolecule and snake-like
sliding of a long macromolecule.

Keywords: anisotropy; heterogeneity; dry friction; Langevin equation; viscous friction

1. Introduction

This study is an extension of the research presented at 14th World Congress on
Computational Mechanics (WCCM) and European Community on Computational Methods
in Applied Sciences (ECCOMAS) Congress 2020, virtual congress: 11–15 January 2021 [1].

Polymers and polymer composites are materials of great importance in friction assem-
blies of machines and devices operating in unlubricated contact conditions (or in starved
lubrication conditions) because of their self-lubricating character e.g., dry sliding bear-
ings [2]. Polymer-based systems are applied in medicine e.g., prostheses of human joints [3].
Applications of polymers in technology stimulate development of specific constitutive
relations for friction including the material’s microstructure and its evolution. Descriptions
of polymer friction should consider friction anisotropy and heterogeneity i.e., a dependence
on sliding directions and positions on sliding trajectories.

There are various reasons of friction anisotropy and heterogeneity on boundaries of
polymer solids, e.g., in polymer composites, semicrystalline polymers, and self-assembled
and self-lubricating polymers. In composites consisting of components of different materi-
als, external boundaries have mosaic structures, since different components are exposed at
different points on the boundaries [4–6]. Polymers undergo morphological transformations,
and they can transform from an amorphous phase into a semicrystalline phase [7,8]. The
regular intrinsic structures (ordered individual chain segments) are in the semicrystalline
phase. This causes anisotropic friction on external boundaries of polymer semicrystals [9].
In self-assembled and self-lubricating polymers, the sliding motion and friction induce
microstructural changes in the surface and near-surface material [2,3]. Initially the macro-
molecules are randomly oriented, but under sliding and friction the molecular chains
can be aligned in one direction [10], so that the microstructure may be highly anisotropic
(Figure 1). This is responsible for significant changes of friction [3,11]. The sliding in-
duced self-organization effects in the near-surface region were observed in other materials
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e.g., dislocations in copper [12]. On boundaries of solids, dry friction is also dependent
on a surface roughness. An oriented surface roughness can be produced in the process
of material machining [13,14]. Asymmetric surface roughness causes asymmetric friction
e.g., smooth forward sliding and rough backward sliding.

Friction phenomena inside polymer materials are equally important as well as on
external boundaries of polymer solids. Macromolecular polymers are repeated combina-
tions of numerous simple chemical molecules (monomers) produced by a cyclic repetition
in the fabrication process. Usually randomly distributed macromolecules do not have a
specific orientation, but polymers are macromolecular materials with evolving properties.
The evolution of polymer microstructure can be induced by action of large external loads
(tension, shear) or high temperatures, and it has the following two forms: (a) unraveling of
the molecular chains constituting the polymeric network, (b) relative motion of the unrav-
eled chains or their segments through the surrounding moving macromolecules. In other
words, large deformations initiate the orientation process of macromolecules [15–17]. Total
macromolecules can be oriented along directions of the applied loads (or along streamlines
of the fluid), so that the microstructure may be anisotropic (Figure 2). The macromolecules
inside polymer materials move one against other, and a resistance to motion of macro-
molecules can be described with the aid of friction laws [18,19]. The motion resistance
(friction) with anisotropy effects inside materials occurs in polymer melts, gels, solutions
and liquid-crystals. The molecular chains move with highly anisotropic friction, i.e., with
low friction for motions parallel to the chain and high friction for transverse motions.

The purpose of this study is to include microstructure evolution effects in friction equa-
tions for polymers on external boundaries of solids and inside materials. This is realized
with the aid of anisotropic and nonhomogeneous friction models including useful addi-
tional independent variables. The paper is organized as follows: in a first step, friction on
boundaries of solids is investigated (Section 2); in a second step, friction inside the polymer
materials is analyzed (Section 3). Sections 2.1 and 2.2 report shortly author’s anisotropic and
nonhomogeneous dry friction models published in [20–25]. In Sections 2.3 and 2.4, an ex-
ample of anisotropic and heteogeneous dry friction is analyzed in the case of Archimedean
spiral trajectory of a polymer pin sliding on a disc. Sections 3.1 and 3.2 describe shortly
known micromechanical models of individual polymer macromolecules, their kinematics
inside materials and Langevin motion equation. Friction anisotropy inside the polymer
materials is considered with the aid of various friction laws, viscous (Section 3.3) and dry
(Sections 3.4 and 3.5). In Sections 3.4 and 3.5 two application examples of anisotropic
friction are considered: a disc-like macromolecule model under conditions of spinning
and sliding, a long macromolecule model under conditions of snake-like sliding. The
application examples show how author’s friction models can be used to derive equations
for friction forces in the given cases.

Figure 1. Schematic illustration of reorientation process of macromolecules on boundaries of certain
solid polymers induced by sliding and friction.
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Figure 2. Schematic illustration of transition from random (isotropic) microstructure to oriented
(anisotropic) microstructure inside polymer materials caused by large external loads (shear stresses).

2. Models of Polymer Friction on Boundaries of Solids
2.1. Dry Friction Models with Additional Variables

Models of friction on external boundaries of polymer solids describe friction of poly-
mers rubbing against another or against boundaries of different materials. In the literature,
the model of dry friction or its contemporary modifications are used [5,13]. The microstruc-
ture evolution on boundaries of solid polymers is not included in these models.

Macromolecular materials require specific constitutive relations for friction. Proposed
in this study constitutive models of dry friction on boundaries of polymer solids are based
on the phenomenological approach with additional variables that describe microstructural
effects. The similar research methodology is used in advanced models of plasticity with
internal (hidden) state variables [26]. The following quantities are taken as independent
variables of dry friction models: unit vectors and oriented angles of sliding velocities, radii
of curvature, and unit normal vectors of sliding trajectories (Figure 3).

Figure 3. Sliding trajectory (s) of a material point in a plane with friction, friction force vector (pt)

with tangent and normal components (p‖t , p⊥t ), the angle of inclination (β), and independent variables
of the friction force models; the tangent and normal unit vectors (v, n), the oriented angle of the
sliding velocity (αv), and the radius of curvature (ρ) of the trajectory.

2.1.1. Dependence of the Friction Force on the Sliding Direction

Dependence of the friction force on the sliding direction is described with the aid of
the unit vector v of the sliding velocity u̇t (Figure 3), i.e.,

v =
u̇t

| u̇t |
, | v |= 1 . (1)

Taking into account Coulomb friction law, the tangent component pt of the contact
force (the friction force vector) is defined as the function of the normal contact pressure pn
and the unit vector v
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pt = pt(pn, v) = − | pn | f (v) . (2)

The friction force vector is oppositely directed to the sliding velocity.
Anisotropic friction for any sliding direction v is described by: the anisotropic friction

coefficient µα and the angle of friction force inclination β, i.e.,

µα =
1
| pn |

| pt | , sinβ =
pt · n
| pt |

, (3)

where, β ∈ [−π/2, π/2], n is the unit vector normal to the sliding trajectory. Coefficients of
the friction force components collinear with the sliding direction, and normal to the sliding
direction (Figure 3) are given by

µ
‖
α = − 1

| pn |
pt · v , µ⊥α =

1
| pn |

pt · n . (4)

Tangent and normal components of the friction force vector pt are as follows

p‖t = −µ
‖
α | pn | v , p⊥t = µ⊥α | pn | n . (5)

With the aid of the unit vector v as the independent variable, we extend Equation (2)
including friction anisotropy [20]. The following single-term polynomial with respect to
the sliding velocity unit vector v is taken as the linear model of anisotropic fiction

pt = − | pn | C1v = pi
tki , (6)

C1 = Cijki ⊗ kj , i, j = 1, 2 (7)

where, Cij are coefficients of the second-order friction tensor C1, {k1, k2} is an orthog-
onal basis of unit vectors in the reference system (Figure 3). The friction anisotropy is
defined with the aid of the second-order tensor C1 with constant coefficients. The matrix
representation of the tensor C1 has four coefficients

[C1] =

[
C11 C12

C21 C22

]
. (8)

The linear Equation (6) describes the friction cones with circular and elliptical shapes
of cross-sections [20].

The following polynomial function of the sliding velocity unit vector v is the nonlinear
model of anisotropic friction

pt = − | pn | [C1v + C2(v⊗ v⊗ v) + . . .] , (9)

C2 = Cijklki ⊗ kj ⊗ kk ⊗ kl , i, j, k, l = 1, 2 (10)

where, C2 is the fourth-order friction tensor. The representation of the fourth-order tensor
C2 is given by 16 coefficients as follows

[C2] =


11 22 21 12

11 C1111 C1122 C1121 C1112

22 C2211 C2222 C2221 C2212

21 C2111 C2122 C2121 C2112

12 C1211 C1222 C1221 C1212

 . (11)

In the second term in Equation (9) as independent variable is taken the third-order
tensor composed by the tensor products of the unit vectors v. Other higher order friction
tensors can be included in Equation (9). The nonlinear Equation (9) describes the friction
cones with complex shapes of the cross-sections (not only circular and elliptical shapes) [20].
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2.1.2. Dependence of the Friction Force on the Oriented Angle

Asymmetric surface roughness causes asymmetry of friction, i.e., variations in friction
when one slides forward and then one slides backward (smooth and rough sliding). This is
the so-called directionally asymmetric friction. The asymmetric friction description must
include the sense of the sliding direction. Due to this we introduce the oriented angle
(Figure 3) as the independent variable in friction equations [21,22]. Therefore, the friction
tensors in the linear and nonlinear friction equations can depend on the oriented angle

Ci = Ci(αv) , αv ∈ [0, 2π] , i = 1, 2, 3 . . . , n (12)

where, αv is the measure of the oriented angle between the reference direction in the
contact surface (e.g., x-axis) and the sliding direction v (Figure 3). The friction tensors in
Equation (12) have nonconstant coefficients.

The friction tensors are assumed to be trigonometrical polynomials of the variable αv
as follows

Ci(αv) = Ci0 + Ci1cos(niαv) + Ci2sin(miαv) , ni, mi = 0, 1, 2, 3, . . . (13)

where, Cil (i = 1, 2, . . . , n; l = 0, 1, 2) are tensors with constant coefficients. If we restrict
Equation (13) to the second-order friction tensors, then the friction force vector has the
following form

pt = − | pn | [C10 + C11cos(n1αv) + C12sin(m1αv)]v . (14)

If the parameters n1, m1 are odd numbers, then Equation (14) describes non-cen-
trosymmetric anisotropic friction. The cross-section of the friction cone has no center of
symmetry in this type of friction [21,22]. The tensors C10, C11, C12 with constant coefficients
can be assumed to be arbitrary.

2.1.3. Dependence of the Friction Force on the Sliding Trajectory Curvature

Dependence of the friction force on the position in the sliding trajectory is described
with the aid of the radius of curvature ρ and the unit normal vector n (Figure 3). They
are the local parameters of the trajectory useful to define friction heterogeneity [23–25].
According to the Frenet–Serret first formula, the first derivative of the unit vector v with
respect to the parametrization s of the trajectory is given by

dv
ds

=
n
ρ

, (15)

where, s is the one-dimensional parameterization of the sliding trajectory, n is the unit
vector normal to the trajectory, n · v = 0, | n |= 1. Then, the friction force vector is defined
as the following function

pt = pt

(
pn, v,

n
ρ

)
= − | pn | f

(
v,

n
ρ

)
. (16)

The constitutive equation of the heterogenous friction force has two independent
variables, i.e., the sliding velocity unit vector v and its derivative dv/ds.

In the first-order formulation, the heterogeneous friction force vector is defined by the
sum of two single-term polynomials

pt = − | pn |
(

C1v + E1n
1
ρ

)
, (17)

E1 = Eijei ⊗ ej , {e1, e2} ≡ {v, n} , i, j,= 1, 2 (18)

Two second-order tensors C1 and E1 describe frictional anisotropy and heterogeneity
effects induced by the sliding motion and friction. The tensor E1 is defined with the aid



Materials 2021, 14, 6187 6 of 18

of the unit vectors tangent and normal to the sliding trajectory {v, n} at the given point of
the trajectory.

The contraction of the tensor E1 and the vector of the independent variable n/ρ
(Equation (17)) gives the following

E1
n
ρ
= (E11v⊗ v + E12v⊗ n + E21n⊗ v + E22n⊗ n)

n
ρ
=

E12

ρ
v +

E22

ρ
n . (19)

In Equation (19), we have two components depending on the sliding trajectory curvature:
(a) dissipative type component, i.e., the additional friction (E12/ρ), and (b) a gyroscopic
type component, i.e., the motion constraint (E22/ρ) normal to the trajectory. Therefore,
the tensor E1 describes constraints imposed on the motion in the directions tangent and
normal to the sliding trajectory. The constraints are functions of the first power of the radii
of curvature ρ of the sliding trajectory. The gyroscopic component can change essentially
the sliding trajectory of the material point moving in a base plane; see [27].

Other higher order friction tensors can be included in Equation (17), i.e., fourth-order
tensor C2 see Equation (10), and by analogy fourth-order tensor E2. In the case of E2, the
third-order tensor composed by the tensor products of the vectors v and n/ρ is taken as
the independent variable. Friction equation with fourth-order tensors contains the radii of
curvature ρ of the sliding trajectory raised to higher powers.

In the second-order formulation, the heterogeneous friction constitutive equation is
given by the following polynomial

pt = − | pn | {C1v + C2(v3) + E1n
1
ρ
+ E2[(v2, n)

1
ρ
+ . . . + (v, n2)

1
ρ2 + . . . + (n3)

1
ρ3 ]} . (20)

The notation of the components of the third-order tensor used in Equation (20) as the
independent variable of the friction force equation is as follows

(vp, nq)
1
ρq ≡ (v⊗ . . .⊗ v︸ ︷︷ ︸

p copies

⊗ n⊗ . . .⊗ n︸ ︷︷ ︸
q copies

)
1
ρq , (21)

p = 0, 1, 2, 3 , q = 0, 1, 2, 3 , (p + q) = 3 . (22)

Index 0 means—“zero copies” of the vectors v or n/ρ in the tensor products Equation (21).
The fourth-order tensor C2 defines friction anisotropy and heterogeneity. The contraction
of the tensor E2 and the third-order tensor as the independent variable in Equation (20)
gives the following

E2[(v⊗ v⊗ n)
1
ρ
+ . . . + (v⊗ n⊗ n)

1
ρ2 + . . . + (n⊗ n⊗ n)

1
ρ3 ] =

= [(E1112 + E1211 + E1121)
1
ρ
+ (E1122 + E1221 + E1212)

1
ρ2 + E1222 1

ρ3 ]v+

+ [(E2112 + E2211 + E2121)
1
ρ
+ (E2122 + E2221 + E2212)

1
ρ2 + E2222 1

ρ3 ]n . (23)

The tensor E2 describes the additional friction (the tangent component) and the motion
constraint (the normal component), they depend on first, second, and third powers of the
radii of curvature ρ of the sliding trajectory. By including second and third powers of ρ, we
have the possibility to control an increase degree of the additional friction with respect to
an increase of the radius of curvature. In other words, we have the possibility to control
the coefficient evolution in sliding along the trajectory.
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2.2. Thermodynamic Restrictions of the Friction Models

The proposed friction equations satisfy the axiom of objectivity. The material objec-
tivity means that the friction force Equation (16) of the scalar pn, the unit vector v and the
vector n/ρ must be form-invariant with respect to any orthogonal transformation from the
full orthogonal group O, i.e.,

pt(pn, Rv, R
n
ρ
) = Rpt(pn, v,

n
ρ
) , ∀R ∈ O . (24)

where, R is the tensor of the orthogonal transformation, R−1 = RT and detR = ±1.
From the Second Law of Thermodynamics, it follows that in every case of frictional

contact a power of the friction force (i.e., the scalar product of the friction force vector and
the sliding velocity vector) is nonpositive.

pt · u̇t ≤ 0 , ∀u̇t . (25)

The friction constitutive functions are assumed to satisfy the dissipation inequality (25)
for any sliding motion. The condition of the dissipated energy restricts constants (friction
tensors) in the friction constitutive equations.

2.3. Movements and Friction of the Polymer Pin in Pin-on-Disc Tests

Friction and wear of polytetrafluoroethylene (PTFE) and high density polyethylene
(HDPE) are sensitive to the orientation of the molecular chains with respect to sliding
directions [28–31]. In [28], the sliding trajectories of a polymer pin in the form of concentric
circles were investigated in pin-on-disc tests. An increase of the radii of concentric circular
trajectories, and the resulting increase of the reorientation of molecular chains in the pin
sliding surface (Figure 1), were responsible for changes of friction and wear [28].

With the aid of a multidirectional tribometer of the type pin-on-disc [3], friction and
wear were investigated in dependence on shapes and curvatures of sliding trajectories,
which the ultra-high-molecular-weight polyethylene (UHMWPE) pin drew on the disc. By
changing the shapes of the trajectories (line, circle, Archimedean spiral, double Fermat
spiral, lemniscate of Bernoulli), friction and wear were dependent on a polymer pin position
moving on the sliding trajectory for constant values of the normal pressure and the sliding
velocity. Kinematics of sliding and friction initiate reorientation of macromolecules in the
pin sliding surface (Figure 1), and they are responsible for the heterogeneity of friction and
wear [3].

As an illustrative example, we consider the sliding motion of a material point (the pin)
in a sliding base plane (the disc) with the given sliding trajectory. The motion of the point
in the reference system Cxy (Figure 4) is described by the following equation

mẍ = F + pt . (26)

where, m is the mass of the material point, x is the position vector of the material point
with respect to the reference system Cxy, pt is the friction force vector, F is the central force.
The motion Equation (26) transformed to the local basis defined by the unit vectors tangent
and normal to the sliding trajectory {v, n} (Figure 4) has the form as follows

m
dV
dt

= F‖ + p‖t , (27)

m
V2

ρ
= F⊥ + p⊥t . (28)

where, V is the magnitude of the sliding velocity of the material point. The acceleration vec-
tor ẍ in Equation (26) is replaced by tangent and centrifugal components. In Equations (27)
and (28) we need the tangent and normal components of the friction force vector with
respect to the given sliding trajectory
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pt = p‖t v + p⊥t n . (29)

2.4. Archimedean Spiral as the Sliding Trajectory of the Polymer Pin

We consider the pin moving on Archimedean spiral specified as the sliding trajectory
(Figure 4). Archimedean spiral in polar coordinates (R, ψ) is given by the radius R as the
linear function of the angle ψ

R(ψ) = aψ , ψ ∈ [0, ∞] , a = const (30)

The radius of curvature ρ of the Archimedean spiral is a monotonically increasing
function of the angle ψ as follows

ρ(ψ) =
a(ψ2 + 1)3/2

ψ2 + 2
. (31)

The radii of curvature change smoothly in a large range of values ρ ∈ [0, ∞]. With the
aid of Equation (31) we have the possibility to determine positions on the spiral.

Figure 4. Archimedean spiral as sliding trajectory of the polymer pin.

Let us consider heterogeneous friction in points on the Archimedan spiral taken
as the sliding trajectory. It means that the friction force has various values in various
points on Archimedean spiral. This refers to the microstructure evolving in sliding on
Archimedean spiral trajectory in the case of some polymers [3]. There are two privileged
sliding directions, i.e., along Archimedean spiral and along radii of curvature perpendicular
to the spiral at the given point. The sliding along the spiral can occur with the lowest
resistance to motion, and it can have the greatest resistance in the direction perpendicular
to the spiral.

We assume that unit vectors k1 and k2 used in the definitions of the friction tensors
are tangent and normal to Archimedean spiral respectively. Since the unit vectors {v, n}
describe the moving reference frame whose origin is located at the point P (Figure 4), they
replace unit vectors k1 and k2 in the definitions of friction tensors. Depending on the
position on Archimedean spiral, the unit vectors change their orientations with respect to
the reference system Cxy.

Taking into account the nonlinear friction equations, see Equations (9) and (20), we
propose the following isotropic second-order tensor C1 with one coefficient and orthotropic
fourth-order tensor C2 with two coefficients
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C1 = C11(k1 ⊗ k1 + k2 ⊗ k2) = C111 , (32)

C2 = C1111k1 ⊗ ki ⊗ k1 ⊗ ki + C2222k2 ⊗ ki ⊗ k2 ⊗ ki , i = 1, 2 (33)

{k1, k2} ≡ {v, n} . (34)

where 1 is the second-order unit tensor. The representation matrices of the isotropic friction
tensor C1 and orthotropic friction tensor C2 are as follows

[C1] =

[
C11 0
0 C11

]
, (35)

[C2] =


C1111 0 0 0

0 C2222 0 0
0 0 C2222 0
0 0 0 C1111

 . (36)

Let us consider the second-order formulation Equation (20) of the heterogeneous
friction force. We assume that the tensor E1 has one coefficient and the tensor E2 has two
coefficients. The tensors E1 and E2 and their matrix representations are defined by

E1 = E22n⊗ n , (37)

E2 = E2222n⊗ n⊗ n⊗ n + E1212v⊗ n⊗ v⊗ n , (38)

[E1] =

[
0 0
0 E22

]
, (39)

[E2] =


0 0 0 0
0 E2222 0 0
0 0 0 0
0 0 0 E1212

 . (40)

In the second-order formulation Equation (20), the heterogeneous friction force vector
pt for the sliding along Archimedean spiral has the tangent (dissipative) p‖t v and normal
(gyroscopic) p⊥t n components given by

pt(ρ) = − | pn |
[(

C11 + C1111 +
E1212

ρ2

)
v +

(
E22

ρ
+

E2222

ρ3

)
n
]
≡ p‖t v + p⊥t n. (41)

The coefficient of the dissipative friction force component µ
‖
α changes its value in

points on Archimedean spiral in accordance to the following relation

µ
‖
α(ρ) = C11 + C1111 +

E1212

ρ2 . (42)

The last term in Equation (42) defines the additional friction (positive or negative),
which depends on the second power of the spiral curvature (1/ρ2). By including the second
power of ρ we can control the coefficient evolution in sliding along the spiral, e.g., slow
increase of the additional friction with respect to the increase of the radius of curvature.

The coefficient of the gyroscopic friction force component is given by

µ⊥α (ρ) =
E22

ρ
+

E2222

ρ3 . (43)
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It depends on the radii of curvature ρ raised to powers 1 and 3.
The coefficients C11, C1111, E1212 and the radius of curvature ρ are restricted by the

Second Law of Thermodynamics [23–25].
The material parameters used in the friction equations can be determined directly

from experiments, since proposed dry friction models on boundaries of polymer solids are
based on the phenomenological approach.

2.5. Models of Elastomer Friction on Boundaries of Solids

Usually two independent components describe the energy dissipation during sliding
on the external boundaries of elastomer solids. So called two-component elastomer friction
models include adhesion and hysteresis effects [32–34]. From the mechanical point of
view, adhesion is the phenomenon that occurs when a normal tensile force must be done
to separate two surfaces from contact after being compressed together. Rabinowicz [35]
proposed such phenomenological model that normal and tangent components of the
adhesive force depend on the initially applied compressive force.

Very high hysteresis of bulk deformations takes place in elastomers [32–34]. The
hysteresis loop (force-displacement curve) is observed during cyclic loading and unloading.
From the molecular scale point of view, this is the internal energy dissipation process
due to friction between elastomer macromolecules inside the material. The hysteresis
effects are time dependent. A contribution to the friction force on the external boundary
of the elastomer solid due to the hysteresis of deformations can be estimated by the
friction relaxation. In accordance with this assumption, the hysteresis dependent friction
component can be described by a dependence between the friction force and time, e.g., this
friction force component can be exponentially time-dependent.

3. Models of Polymer Friction Inside Materials
3.1. Micromechanical Models of Polymer Macromolecules

Polymers are modeled as assemblies of great number of isolated individual micro-
elements composing the materials. In the frame of micromechanics various models of the
individual molecular chains are proposed in the literature, e.g., bead-spring, bead-rod,
elastic dumbbell model, reptation type tube, rod-like macromolecule, disc-like macro-
molecule (Figure 5). In the models, the individual macromolecules have idealized simple
shapes. Furthermore, the individual molecular segments have specific modes of motion,
e.g., sliding, rolling, and spinning.

Rouse model [36]—the macromolecule is represented by a chain of spherical beads
connected by springs (or rods). The springs (rods) simulate elastic properties of the
macromolecule. During the motion, the beads are affected by the surrounding molecules
and the resistance to motion (friction) arises. The friction forces are located at bead centers
since the beads have no volume.

De Gennes tube model [37]—the individual long macromolecule moves like a snake
within a long and narrow tube. The virtual tube is formed by the surrounding molecular
chains. The friction with anisotropy and asymmetry accompanies the snake-like motion.

Polymers in liquid crystal phase can form long rigid macromolecules similar to rods
and flat rigid macromolecules similar to discs. During motions of rod-like and disc-like
macromolecules the energy dissipation takes part since the resistance to motion between
these objects is present. Two particular cases of the resistance to motion (friction) can be
considered: (a) friction of rod-like macromolecules under rolling with and without slipping,
(b) friction of disc-like macromolecules under spinning and sliding. In both cases, friction
forces and friction couples are present.

From the mechanical point of view, polymers may have simultaneously viscous
properties typical in fluids and elastic properties as in solids. In the literature, constitutive
laws between stresses and strains in polymers are described with the aid of the following
two approaches. (a) Phenomenological modeling. The models are extensions of the
constitutive theories developed for metals and their alloys e.g., visco-elasiticity, visco-
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plasticity [26]. Melted polymers and polymer solutions are non-Newtonian complex fluids
e.g., visco-elastic fluids. (b) Modeling based on micro-observations. A transition from
micro level to the global behavior is formulated. Approaches based on micro-observations
of polymers are called kinetic theories.

In this study, we use the similar research methodology and the motion resistance
between molecular chains we describe: (a) in terms of an extension of constitutive ideas
from bulk polymer materials, i.e., continuum-based models of friction, and (b) taking into
account the micro-models and kinematics of the polymer chains, i.e., micromechanical
models of friction. The resistance to motion of the macromolecules is described with the
aid of friction laws [18,19].

The motion resistance of the moving molecular chains we consider with respect to
the individual molecular model and kinematical properties of the chains. We assume that
micromechanical models of polymer macromolecules are in contact with a hypothetical base
plane in the presence of anisotropic dry friction [18]. Kinematics and anisotropic friction
are taken into account in two illustrative examples: (a) spinning and sliding of the disc-like
macromolecule model, and (b) snake-like sliding of the long macromolecule model.

3.2. Macromolecule Dynamics including Friction Anisotropy

In the given conditions, the macromolecules in polymers are independent kinematical
elements. Usually large external loads (or high temperatures) can initiate the movements of
the molecular chains one with respect to other. The motion of the macromolecules consists
of translations and rotations. Due to this the macromolecule models have translational and
rotational degrees of freedom. Furthermore, the macromolecules can change shapes under
large external loads. Individual polymer macromolecules meet the resistance to motion
with very high degree of friction anisotropy [38].

The macromolecule motions are liquid-like and Brownian type. In stochastic dynam-
ics, Langevin equation of motion describes Brownian movements using Newton motion
equation with an additional term including external random excitations (stochastically
fluctuating forces) [16,18,19,38–40]. The viscous friction law and the anisotropic friction
tensor describe the resistance to motion of the polymer chains. Motion of the i-th bead
(i.e., the segment of the polymer macromolecule) follows the Langevin equation:

m
d2ri
dt2 = [B11k1 ⊗ k1 + B22(1− k1 ⊗ k1)]

dri
dt
− fi − Fi , (44)

1 = k1 ⊗ k1 + k2 ⊗ k2 + ñ⊗ ñ , B22 � B11 , (45)

where, m is the mass of the bead, ri(t) is the bead coordinate (i.e., the position vector in 3D
space), fi is the stochastically fluctuating force (Gaussian white noise), Fi is other external
force, k1 and k2 are the unit vectors tangent and normal to the particular chain segment in a
horizontal plane, ñ is the unit vector in the transverse direction, 1 is the unit tensor, B11, B22

are friction coefficients for motions tangent and normal to the particular chain segment
respectively (the lowest friction coefficient and the largest friction coefficient) [38,40]. The
Langevin motion equation is the ordinary differential equation. Brownian dynamics
simulations are used for study polymer macromolecule motions and for prediction of
polymer behaviors.

In computational mechanics various numerical techniques are used to predict the
behavior of polymers as molecular systems when subject to applied loads: Molecular
Dynamics (MD), Discrete Element Method (DEM), Finite Element Method (FEM). A precise
friction constitutive model is a key factor in numerical calculations.

Nanometer is the length scale of the polymer chain. Nanosecond is the time scale
in dynamics of polymer chains. Due to this, trial-and-error method can be a way of
identification of the material parameters used in the micromechanical models.
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3.3. Continuum-Based Models of Friction Inside Materials

In the literature, the models of anisotropic viscous friction are used as laws of the
motion resistance of the polymer macromolecules due to interactions with the neighboring
macromolecules [38,40]. In the models, the friction force acting on the molecular chain
depends on the velocity (the relative velocity at the point, since the macromolecules move
relative to one another), and friction anisotropy is represented by the viscous friction
tensor [15–17,19,39].

The anisotropic viscous friction in Equation (44) is described by the force of transla-
tional anisotropic viscous friction as follows

p = −Bu̇ , u̇ =
dri
dt

, (46)

where, u̇ is the translational relative velocity, B is the tensor of translational anisotropic
viscous friction

B = Bijki ⊗ kj , k3 ≡ ñ , i, j = 1, 2, 3 (47)

The vectors of the friction force p and the velocity u̇ have horizontal and transversal
components with respect to the flow direction

p = pt + pn , u̇ = u̇t + u̇n . (48)

The representation matrix of the anisotropic viscous friction tensor B in Equation (44)
has two coefficients as follows

[B] =

B11 0 0
0 B22 0
0 0 B22

 . (49)

This friction is orthotropic in the horizontal plane and isotropic in the transverse di-
rection.

In [40], rod-like microstrucures are modeled as Cosserat continuum, i.e., they have
rotational degrees of freedom [41]. In the case of Cosserat-like macromolecules, the resis-
tance to rotational motion is described with the aid of a moment of rotational anisotropic
viscous friction. An angular velocity vector is the independent variable in the rotational
friction equation [40].

3.4. The Macromolecule Disc-like Model under Combination of Spinning and Sliding

Spinning is the angular motion about the normal axis to the disc and to the base plane.
Spinning of the disc is described by the unit vector ω of the angular velocity ω

ω =
ω

| ω | = ωñ = ±1ñ . (50)

The axis of rotation is called the spin center or the spin pole or the center of gravity
(Figure 5). Let the position of the contact point P in the unit contact area dF with respect to
the center of spin is defined by the vector r = riki (i = 1,2). The scalar function pn(r) of the
vector variable r describes arbitrary distribution of the normal pressure at the contact area
F with arbitrary shape and dimensions. During spinning, the disc particles contacting with
the base plane have translational velocities. The unit vector v of the translational velocity
at an arbitrary point of contact is associated with the angular velocity unit vector ω and is
defined by the relation

v =
ω× r
| ω× r | = viki , i = 1, 2 (51)

v1 = − ωr2√
(r1)2 + (r2)2

, v2 =
ωr1√

(r1)2 + (r2)2
. (52)
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Figure 5. Combination of spinning and sliding of rigid disc on base plane in presence of anisotropic
dry friction.

Let the friction force at point P of the unit contact area dF be defined by the linear
equation of anisotropic friction Equation (6), i.e.,

pt(P) = − | pn(r) | C1v = pi
t(P)ki , i = 1, 2 (53)

with the second-order friction tensor C1 having four coefficients Equation (8). The compo-
nents of the friction force pt(P) at the spin contact have the following forms

pi
t(P) = − | pn(r) | Cikδkjvj = − | pn(r) | Hi

Pω , i, j, k = 1, 2 (54)

H1
P =

1√
(r1)2 + (r2)2

{−C11r2 + C12r1} , (55)

H2
P =

1√
(r1)2 + (r2)2

{−C21r2 + C22r1} . (56)

where, δkj is the Kronecker delta (operator). The moment of the friction force pt at point P
with respect to the center of the disc (Figure 5) is defined by the vector

MP = r× pt = − | pn(r) | H3
Pωñ , (57)

H3
P =

1√
(r1)2 + (r2)2

{C11(r2)2 + C22(r1)2 − (C12 + C21)r1r2} . (58)

Using the integration, the resultant friction force and the resultant friction moment
are calculated. The resultant vectors of friction forces at the spin contact with the area F,
and with arbitrary shape of the disc can be written as

pt =
∫
F

pt(P)dF = pi
tki , i = 1, 2 (59)

M =
∫
F

MPdF = Mñ , P ⊂ F (60)

where the components of the vectors are as follows
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pi
t =

∫
F

pi
t(P)dF = −ω

∫
F

| pn(r) | Hi
PdF = −ωHi , i = 1, 2 (61)

M =
∫
F

MPdF = −ω
∫
F

| pn(r) | H3
PdF = −ωH3 . (62)

The quantities defined by the formulas

Hl =
∫
F

| pn(r) | Hl
PdF , l = 1, 2, 3 (63)

are called the friction characteristics.
Let us assume that the normal pressure is distributed uniformly at all contact points,

i.e., pn(r) = pn = const. Such assumption is acceptable for the contact of rigid bodies.
The case of contacting deformable solids is very different. In technological applications
of contacting deformable bodies, the contact pressure is not uniformly distributed at the
contact area. Often in technology we have Hertz contact pressure distribution, i.e., the
pressure is semielipsoidally distributed over the circular or elliptical contact area. In the
case of uniform contact pressure the friction characteristics have the following forms

H1 =| pn | (−C11 A1 + C12 A2) , (64)

H2 =| pn | (−C21 A1 + C22 A2) , (65)

H3 =| pn | [C11 A3 + C22 A4 − (C12 + C21)A5] , (66)

A1 =
∫
F

r2

r
dF , A2 =

∫
F

r1

r
dF , A3 =

∫
F

(r2)2

r
dF , (67)

A4 =
∫
F

(r1)2

r
dF , A5 =

∫
F

r1r2

r
dF , r =

√
(r1)2 + (r2)2 . (68)

If the contact area F has two orthogonal axes of symmetry and the point of intersection
of the axes is the spin center, then A1 and A2 are equal to zero. Thus, the total friction force
pt in contact with the base plane during spinning about the spin center is equal to zero.

Let us consider two friction cases of the base plane: (a) with isotropic friction, (b) with
orthotropic friction, i.e.,

[C1] =

[
C11 0
0 C11

]
, (69)

[C1] =

[
C11 0
0 C22

]
. (70)

In these cases, the shape and dimensions of the contact area F are constant during
spinning. Then, the friction characteristics are defined by the following formulas for the
contact with isotropic friction Equation (69)

H1 = −C11 | pn | A1 , H2 = C11 | pn | A2 , (71)

H3 = C11 | pn | (A3 + A4) . (72)

For the contact with orthotropic friction Equation (70), the friction characteristics are
determined by Equations (64)–(66), where C12 = C21 = 0.
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We assume that the contact area F of the disc has the circular shape with the radius
a, and it rotates about the center of the disc; then, the quantities Ai (i = 1, 2, . . . , 5) are
as follows

A3 = A4 =
1
3

πa3 , (73)

A1 = A2 = A5 = 0 . (74)

The vectors of the friction forces and their moments for the contact of the disc and the
base plane with isotropic friction Equation (69) are given by

pt = 0 , M = −2
3

C11 | pn | πa3ω , (75)

and for the orthotropic friction Equation (70) of the base plane we have

pt = 0 , M = −1
3
(C11 + C22) | pn | πa3ω . (76)

We consider coupled kinematics when the disc-like macromolecule participate simul-
taneously in sliding and spinning motions (Figure 5). Translation with the velocity unit
vector v and spinning about the axis normal to the contact with velocity unit vector ω
describe the coupled motions of the disc. From the dynamical point of view, the disc is
considered as the system with three degrees of freedom, i.e., two degrees of freedom for
sliding movements and one degree of freedom for spinning. The friction force field at the
contact area F is described by the resultant vector pt of the friction forces and the resultant
vector M of the friction force moments with respect to the center of the disc. In accordance
with the friction models, the linear mapping L exists between the resultant vectors of the
friction forces and the unit vectors of the translational and spinning velocities, i.e.,p1

t
p2

t
M

 = [L]

v1

v2

ω

 . (77)

We consider the forms of the mapping L at the contact of the circular disc of the radius
a and the constant normal pressure. In the case of isotropic friction Equation (69), we have

[L] = − | pn |

πa2C11 0 0
0 πa2C11 0
0 0 2

3 πa3C11

 , (78)

and in the case of orthotropic friction Equation (70), we get

[L] = − | pn |

πa2C11 0 0
0 πa2C22 0
0 0 1

3 πa3(C11 + C22)

 . (79)

Dynamics of rigid discs having elliptical shapes in the presence of anisotropic and
asymmetric friction in the base sliding plane and under conditions of sliding and spinning
were studied in [42].

3.5. The Long Macromolecule Model under Snake-like Sliding

In De Gennes tube model [37], friction anisotropy and friction asymmetry manifest
as the snake-like motion of the long macromolecule. Due to this, one should include
directional differences in sliding friction typical for snakes (and snake-like robots) [43].
The snake skin covered with snake scales has anisotropic friction properties. Further-
more, asymmetric surface micro-structure of the snake skin causes asymmetry of friction,
i.e., higher friction for backward sliding, lower friction for forward sliding. The sliding in
the transverse direction has higher friction compared to friction in the forward sliding. The
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friction descriptions of the snake skin must include the sliding direction and the sense of
the sliding direction.

In this case, we use the noncentrosymmetric friction model Equation (14). The sliding
direction v and the oriented angle αv ∈ [0, 2π] are the independent variables in friction
equations [21,22]. Taking into account Equation (14), we assume the following friction
force equation in the snake-like sliding of the long macromolecule

pt = − | pn | [C10 + C11cos(n1αv)]v , (80)

[C10] =

[
C11

0 0
0 C22

0

]
, [C11] =

[
C11

1 0
0 C22

1

]
, n1 = 1 (81)

[v] = [v1 v2]T = [cosαv sinαv]
T (82)

This snake-like friction model has four coefficients.

4. Conclusions

The polymer friction models are considered in terms of specific material’s microstruc-
tures, specific friction mechanisms, various friction laws, and different scales on external
boundaries of solids and inside materials. Proposed models of polymer friction take into
account: sliding directions (friction anisotropy), positions on sliding trajectories (friction
heterogeneity), specific models of individual macromolecules, and their kinematics inside
the polymer materials.

Main advantages of the proposed friction models are as follows: they are simple
enough and they have a finite number of parameters (easy to determine in experiments),
and they can be extended to other types of frictional anisotropy and nonhomogeneity
important in polymers. Applied in this study, continuum mechanics principles are a
powerful tool in the modeling of polymer friction.

The friction models on external boundaries of solid polymers can be used to simulate,
predict, and improve the frictional behavior of polymeric component parts of mechanical
systems, e.g., dry sliding bearings, sliding seals, transmission belts, car tires, prostheses of
human joints, etc.

The friction models inside the polymer materials can be used in studies of macro-
molecule dynamics with friction effects, and they can have practical applications in simula-
tion and optimization of properties of polymer melts, gels, solutions, and liquid crystals in
fabrication processes of the chemical industry.
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