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Abstract: Chemotherapy resistance of ovarian cancer, regarded as the most lethal malignant gyne-
cological disease, can be explained by several mechanisms, including increased activity of efflux
transporters leading to decreased intracellular drug accumulation, increased efflux of the therapeutic
agents from the cell by multidrug-resistance-associated protein (MRP1), enhanced DNA repair, altered
apoptotic pathways, silencing of a number of genes, as well as drug inactivation, especially by glu-
tathione transferase P1 (GSTP1). Indeed, GSTP1 has been recognized as the major enzyme responsible
for the conversion of drugs most commonly used to treat metastatic ovarian cancer into less effective
forms. Furthermore, GSTP1 may even be responsible for chemoresistance of non-GST substrate drugs
by mechanisms such as interaction with efflux transporters or different signaling molecules involved
in regulation of apoptosis. Recently, microRNAs (miRNAs) have been identified as important gene
regulators in ovarian cancer, which are able to target GST-mediated drug metabolism in order to
regulate drug resistance. So far, miR-186 and miR-133b have been associated with reduced ovarian
cancer drug resistance by silencing the expression of the drug-resistance-related proteins, GSTP1 and
MDR1. Unfortunately, sometimes miRNAs might even enhance the drug resistance in ovarian cancer,
as shown for miR-130b. Therefore, chemoresistance in ovarian cancer treatment represents a very
complex process, but strategies that influence GSTP1 expression in ovarian cancer as a therapeutic
target, as well as miRNAs affecting GSTP1 expression, seem to represent promising predictors of
chemotherapeutic response in ovarian cancer, while at the same time represent potential targets to
overcome chemoresistance in the future.

Keywords: ovarian cancer; chemoresistance; glutathione S transferase P1; microRNA; apoptosis

1. Introduction

Ovarian cancer (OC) is regarded as the most lethal malignant gynecological disease,
with overall survival in the range of 45–50% [1,2]. Ranked as the second most common
gynecological cancer, ovarian cancer is heterogeneous in nature and divided into three
major histopathological groups, of which the epithelial subgroup comprises approximately
90% of the cases worldwide [3]. According to statistics, it is estimated that annually
worldwide, 230,000 women will be diagnosed with this disease, with lethal outcomes in
approximately 150,000 [4]. A great deal of research has been performed towards elucidating
the malignant and silent nature of ovarian cancer, and both genetic and epigenetic factors
are shown to influence the progression of the disease. Indeed, approximately 10–15%
of familial OCs are consequential to BRCA1 and BRCA2 gene mutations [5], while the
presence of mutation in TP53 tumor-suppressor gene is found in 60–80% of both familial
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and sporadic OC cases [6]. The leading cause of survival rates below 50% are advanced-
stage disease at the time of diagnosis, chemoresistance, and lack of centralized care for
patients, especially in developing counties [7,8]. Regarding the time of diagnosis, detection
in the early stage is not satisfactory due to the fact that the most-used diagnostic tools for
OC screening, such as transvaginal ultrasound and blood test for CA125 tumor marker, are
not efficient enough [9]. Moreover, the major challenges associated with the development
of a clinically applicable screening strategy are, on one side, the low prevalence of ovarian
cancer and, on the other side, the lack of biomarkers with appropriate sensitivity and
specificity. When it comes to treatment, fundamental principles are based on radical surgery
combined with platinum-based chemotherapy (carboplatin or cisplatin) in combination
with taxane (paclitaxel and docetaxel), to which most patients are initially responsive but,
due to development of platinum resistance, a relapse occurs in approximately 80% of OC
patients [10]. In platinum-based chemotherapy-resistant ovarian carcinoma, the treatment
is based on usage of gemcitabine, doxorubicin, and bevacizumab [3]. Overall, primary
debulking surgery still represents a cornerstone therapy, whereas the tumor burden after
the surgery is considered the most important survival factor [11,12].

In recent years, great strides have been made in clarifying the molecular background
of ovarian cancer, as well as for understanding the mechanism of drug resistance in OC
patients. Well-conduced clinical trials have paved the way for the introduction of novel
target therapy, primarily antiangiogenic agents, followed by inhibitors against poly (ADP-
ribose) polymerase (PARP) molecules involved in the DNA damage repair processes [13,14].
Although the advanced level treatment options include targeted therapy, immunotherapy,
and hormone therapy, chemotherapy is still considered the most vital part of treatment in
metastatic ovarian cancer [15].

2. Chemotherapy Resistance of Ovarian Cancer

Regarded as a complex phenomenon, which leads to the development of tolerance and
failure in cellular response to treatment with one or multiple chemotherapeutic agents, drug
resistance or chemotherapy resistance represents a great concern in everyday clinical prac-
tice [16]. Moreover, apart from developing resistance to the applied chemotherapeutic agent,
cancer cells may even develop simultaneous cross-resistance to a wide range of drugs that
may even be functionally and structurally unrelated to the applied chemotherapeutics [17].

In general, mechanisms of chemoresistance are stratified into two basic categories,
including de novo or intrinsic and acquired or extrinsic chemoresistance [16,18]. As in
any other cancer, chemotherapy resistance of ovarian cancer can be explained by several
basic mechanisms, including increased activity of efflux transporters, leading to decreased
intracellular drug accumulation, increased efflux of the therapeutic agents from the cell
by multidrug-resistance-associated protein (MRP1) [19], enhanced DNA repair, altered
apoptotic pathways, silencing of a number of genes, as well as increased cellular levels
of glutathione (GSH) and glutathione transferases (GSTs), which are involved in drug
detoxification processes (platinum agents and taxol) and seem to play a very important
role in this phenomenon [3,16,20,21] (Figure 1).

Regarding the membrane transporters, both influx and efflux, they participate in the
chemoresistance mechanism, which is considered as the most prevalent one and which
is based on the reduced cellular accumulation of the applied chemotherapeutic [16,22].
The majority of efflux transporters considered responsible for transporting the drugs
outside the ovarian cancer cells, such as doxorubicin, vincristine, cisplatin, paclitaxel,
topotecan, and etopiside, belong to a protein superfamily of ATP-binding cassette or ABC
transporters [3,23]. Multidrug resistance (MDR)-associated proteins (MRPs), especially the
MRP1 (encoded by ABCC1) and MRP2 (encoded by ABCC2) genes, as well as the ATP-
dependent glycoprotein P-gp (encoded by ABCB1 gene) and breast cancer resistance protein
BCRP (encoded by ABCG2 gene) gained most attention in OC [3]. Increased expression of
any of these efflux transporters decreases intracellular concentration of the corresponding
drug in OC. Influx or uptake transporters, on the other hand, belong to a wide group of



Medicina 2022, 58, 1660 3 of 13

solute carriers (SLC) transporter families, among which organic-anion-transporting proteins
(OATPs), especially OATP1B3, is considered important in OC. Precisely, its expression is
associated with influx of cis-, cabo-, and oxaliplatin [24]. Additionally, folate receptor α
and the reduced folate carrier (RFC) may also be important as differential regulators for the
development and progression of ovarian cancer. Namely, in epithelial OC, folate receptor
α is highly expressed and increases with the stage of the disease [25–27].
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Regarding the detoxification pathways of platinum derivatives as well as paclitaxel,
as the drugs most commonly used to treat metastatic ovarian cancer patients, glutathione
transferases (GSTs) have been recognized as the major enzymes responsible for the con-
version of these drugs into less effective forms [28]. Glutathione transferases are a large
family of enzymes responsible for catalyzing the conjugation of xenobiotics, including
anticancer drugs, with glutathione [29,30]. Great inter-individual differences exist in the
GST isoenzyme profile, due to the fact that almost all members of cytosolic GSTs exhibit ge-
netic polymorphism [29,30]. As a consequence, complete lack or alteration in GST enzyme
activity might affect the capacity for biotransformation in certain individuals, making them
more prone to cancer development. Single nucleotide polymorphisms (SNPs) are mostly
responsible for variations identified within genes encoding for cytosolic GSTs and, further-
more, they were associated with numerous diseases, including cancer [29]. In the case of
GST pi (GSTP1), SNP leading to amino acid substitution from isoleucine (Ile) to valine (Val)
changes catalytic and regulatory properties of the GSTP1 enzyme. Regarding alpha class
GST (GSTA1), polymorphism is represented by three, apparently linked, SNPs: −567TOG,

https://biorender.com/
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−69COT, and −52GOA, which lead to differential expression with lower transcriptional
activation of the variant GSTA1*B (−567G, −69T, and −52A) than the common GSTA1*A
alleles (−567T, −69C, and −52G). One more SNP, precisely the substitution of Ala to Asp
at position 140, changes the deglutathionylase and thioltransferase activity of GST omega
class (GSTO1), while, similarly to GSTA1, single nucletide polymorhism (A to G), leading to
Asn to Asp substitution at position 142, is related to altered protein levels of GSTO2. On the
other hand, deletion polymorphisms of genes encoding for human cytosolic GSTM1 and
GSTT1 are rather common in human populations. Approximately half of the population
lacks GSTM1 enzyme activity, due to a homozygous deletion of the GSTM1 gene, while in
the case of GSTT1, gene homozygous deletion, with consequential lack of GSTT1 enzyme
activity, is present in approximately 20% of Caucasians (Table 1) [29,31–34].

Table 1. Distribution of common GST polymorphisms in humans.

Gene rs Genotype Distribution
in Caucasians (%)

GSTA1 rs3957357 GSTA1 AA
GSTA1 AB/BB (low-activity) 3

38
62

GSTP1 rs1695 GSTP1 Ile105Ile
GSTP1 Ile105Val/Val105Val (variant) 4

45
55

GSTO1 rs4925 GSTO1 Ala140Ala
GST01 Ala140Asp/Asp140Asp(variant) 4

44
56

GSTO2 rs156697 GSTO2 Asn142Asn
GSTO2 Asn142Asp/Asp142Asp(variant) 4

45
55

GSTT1 deletion GST1 active 1

GSTT1 null 2
70-80
20-30

GSTM1 deletion GSTM1 active
GSTM1 null

50
50

1 Active, if at least one active allele present; 2 Null, if no active alleles present; 3 Low activity, if at least one B allele
present; 4 and Variant, if at least one Val/Asp/Asp allele present.

Apart from platinum derivatives, GSTs are involved in the development of chemore-
sistance by detoxification of numerous other chemotherapeutics [31,35], including chlo-
rambucil, cyclophosphamide, melphalan, thiotepa, etc., which are recognized as substrates
for GSTs and can be directly inactivated through GST-dependent conjugation reactions
(Table 2) [31,36].

Furthermore, GSTs may even be responsible for chemoresistance of non-GST substrate
drugs by mechanisms such as interaction with efflux transporters or different signaling
molecules involved in regulation of apoptosis [31,37–39]. This especially refers to pi class
GST (GSTP1), since GSTP1 possesses binding activity toward small and macromolecules,
acts as a negative regulator of kinase-dependent apoptotic signaling pathways by forming
protein–protein complexes with regulatory mitogen-activated kinases such as JNK1 (c-Jun
NH2-terminal kinase), and, in addition to its role in detoxification of potential cancerogenic
substances, GSTP1 is capable of increasing drug efflux from the cell, thus contributing to
chemoresistance (Figure 2) [30,31,40]. Namely, through interaction with MRP-1, GSTP1
exhibits a synergistic effect on chemoresistance development to ethacrynic acid, chloram-
bucil, vincristine, and etoposide [41]. Other classes of GSTs, primarily GSTA1 and GSTM1,
can contribute to chemoresistance mechanisms as well. Due to the structural homology
between GSTA1 and GSTP1, GSTA1 may also suppress JNK1 signaling, while this class of
GSTs also contributes to chlorambucil chemoresistance [42]. Similarly, through synergism
of GSTM1 and MRP-1, cancer cells are protected from vincristine effects [43]. Further-
more, GSTM1 is capable of forming protein–protein interactions with either apoptosis
signal—regulating kinase (ASK1) or thioredoxin (Trx)—in that way contributing to cellular
redox-sensitive dynamic equilibrium [31]. Interestingly, by forming protein–protein inter-
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action with tumor necrosis factor receptor-associated factor 2 (TRAF2), GSTP1 prevents
ASK1:TRAF2 interaction and, consequently, ASK1 activation. Taken together, it might be
proposed that overexpressed glutathione transferases via their catalytic, regulatory, and/or
synergistic roles participate in several major mechanisms of chemoresistance.

Table 2. Substrate specificities of cytosolic GSTs regarding different chemotherapeutics.

GST Class Alleles Substrates

Alpha

GSTA1*A
GSTA1*B
GSTA2*A
GSTA2*B
GSTA2*C
GSTA2*D
GSTA2*E

melphalan, chlorambucil, thiotepa,
BCNU, brostallicin, and busulphan

Mu

GSTM1*0
GSTM1*A
GSTM1*B
GSTM3*A
GSTM3*B
GSTM4*A
GSTM4*B

brostallicin, BCNU, ethacrynic acid,
and thiopurines

Pi

GSTP1*A
GSTP1*B
GSTP1*C
GSTP1*D

cisplatin, brostallicin, chlorambucil,
doxorubicin, ethacrynic acid,

cyclophosphamide, and thiotepa

Theta

GSTT1*0
GSTT1*A
GSTT1*B
GSTT2*A
GSTT2*B

BCNU
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3. GSTP1 Expression in Ovarian Cancer

Since ovarian cancer is thought to result from an accumulation of genetic changes [44],
identification of inter-individual genetic variations, especially in genes encoding enzymes
involved in inactivation of genotoxic substances, gained much attention. Namely, it is be-
lieved that this might enable early detection of the disease, significant changes in long-term
survival, as well as personalized individual treatment in patients with ovarian cancer [45].
For that reason, the cytosolic classes M1, T1, and especially P1 gained most attention in
ovarian cancer [28,46,47].

As mentioned, GSTP1 single nucleotide polymorphism (SNP) rs1695, results in amino
acid substitution from isoleucine (Ile) to valine (Val) [48] and can affect both its catalytic
and non-catalytic activity [31]. Although the carriers of the GSTP1*Ile105 allele have
a higher catalytic efficiency for standard GST substrate (1-chloro-2,4-dinitrobenzene) than
the carriers of *Val105 variant [49], the latter seems to confer higher catalytic efficiency in
detoxification of polycyclic aromatic hydrocarbon (PAH) diol epoxide, present in tobacco
smoke [50]. Since, GSTP1 also participates in the regulation of stress signaling and apoptosis
via its non-catalytic activity [38], the substitution of amino acid isoleucine (Ile) with valine
(Val) at position 105 can alter the GSTP1-mediated inhibitory effect of JNK activity. On the
basis of the results on increased ovarian cancer risk in GSTP1*Ile (referent) allele carriers, it
might be speculated that the stronger GSTP1:JNK interaction, which includes participation
of GSTP1-risk associated allele, could prevent activation of apoptosis of ovarian cancer cells
in these women, further affecting the progression of disease [51]. Furthermore, the data on 6-
fold-increased ovarian cancer risk in women carriers of combined “risk” genotypes (GSTT1-
active/GSTP1*Ile) suggest a high probability of their synergetic risk effect on carcinogenesis
in these women [51].

It is important to note that GST polymorphisms can also affect the prognosis and the
efficacy of chemotherapy in ovarian cancer patients. Namely, Khrunin et al. showed that
GSTP1* Ile105Val polymorphism was strongly associated with progression-free survival in
OC [52]. Precisely, homozygous carriers of Ile/Ile genotype had an increased progression-
free survival compared with those with one or two Val alleles. Moreover, it has been shown
that the GSTP1*B allele is also involved in the development of drug resistance and, as
suggested in the study of Ghalia et al., high GSTP1 levels may be useful for monitoring
during chemotherapy [53]. In this field, there are recent data on the beneficial effect of
Hsp90 inhibitors in reversing cisplatin resistance of human ovarian cancer cell line (SKOV3),
which was mediated by modifying the expression of multidrug-resistance-related genes,
especially GSTP1, p53, Bcl-2, survivin, BRCA1, and BRCA2 [54,55].

Therefore, both catalytic and regulatory roles of GSTs might be regarded as important
contributing factors in at least three major chemoresistance mechanisms. The fact that
various cancer cells possess different and unique GST signature enables them to be suitable
targets for the development of inhibitor drugs or prodrugs (Table 3) [31,36,54,56–62]. For
that reason, the expression of GSTs at various levels has been studied in ovarian cancer for
more than three decades. The data obtained have unambiguously shown that the level of
GSTP1 especially is increased in ovarian cancerogenesis and related to chemoresistance
of these tumors [46], which is demonstrated in both in vivo and in vitro settings. Indeed,
development of cisplatin resistance in ovary adenocarcinoma (SKOV-3) is associated with
significant increase in hGSTP1 expression [54,63]. Aiming to study the association between
the GSTP1 and chemosensitivity of ovarian cancer, Sawers et al. introduced ovarian tumor
cell line models [46]. They demonstrated that GSTP1 has an important role in cisplatin
and carboplatin metabolism in ovarian cancer cells and that inter-tumor differences in
GSTP1 expression directly influence response to platinum-based chemotherapy in ovarian
cancer patients [64,65]. Therefore, stratification of ovarian cancer patients who might
benefit from novel first-line therapies, depending on their detoxification capacity and the
ability to simultaneously increase benefits and decrease toxicity of applied antitumor drugs,
is of high importance. Namely, GSTP1 knockdown selectively influenced cisplatin and
carboplatin chemosensitivity (2.3- and 4.83-fold change in IC50, respectively), and this
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effect was mediated by significant reduction in cell invasion and migration, while cell cycle
progression was unaffected [46,66]. Furthermore, the same group identified several novel
GSTP1 target genes and candidate platinum chemotherapy response biomarkers [46].

Table 3. Differential expression of GSTs in cancer.

Type of Cancer
GST Class

Alpha Mu Pi Theta

Ovarian decreased
expression

increased
expression

Lung increased
expression

increased
expression

Colorectal decreased
expression

decreased
expression

increased
expression

Urinary bladder increased
expression

increased
expression

increased
expression

Liver decreased
expression

increased
expression

Renal decreased
expression

increased
expression

increased
expression

Prostate decreased
expression

Glioma increased
expression

Breast increased
expression

increased
expression

The expression of GSTP1 in ovarian cancer tissue is studied mostly in association
with other resistance proteins, especially MRP1 or lung-related protein [57]. In their recent
well-designed study which enrolled 121 ovarian cancer patients, Tong et al. demonstrated
that the expression levels of GSTP1 was lower in the chemotherapy-sensitive group than in
the chemotherapy-resistant group of patients. Moreover, patients with high expression of
GSTP1, MDRP1, and GSK3β mRNA had a much lower 3-year survival rate than patients
with low expression of these genes, suggesting its importance as a prognostic factor [57].
Another clinical study aimed to investigate the role of GSTP1 in primary epithelial ovarian
cancer. Conducted multivariate logistic regression indicated that the expression level of
lung resistance protein (LRP) and GSTP1 genes was a risk factor for primary epithelial
ovarian cancer prognosis. Furthermore, the expression of LRP and GSTP1 in the negative-
group survival curves was higher compared with the positive group [19].

4. Strategies That Influence GSTP1 Expression in Ovarian Cancer as
Therapeutic Target

Glutathione transferase P1 is considered a promising therapeutic target in ovarian
cancer based on application of various strategies that affect either its expression or its
detoxifying and signaling roles [31]. Thus, it has been shown that suppressing glucose-6-
phosphate dehydrogenase (G6PD) using shRNA or an inhibitor, either as single agents or in
combination, sensitized paclitaxel-resistant cancer cells to paclitaxel treatment and thereby
improved its therapeutic efficacy via regulation of the GSTP1 expression [28]. Additionally,
it seems that increased expression of GSTP1 in ovarian cancer is associated with non-coding
RNA LINC00152 (LINC00152). Silencing of LINC00152 increased the apoptotic rates and
enhanced the chemosensitivity of CoC1 and CoC1/DDP cells to cisplatin. Since LINC00152
silencing decreased the expression of MDRP1 as well as GSTP1, it is proposed as a potential
novel therapeutic target related to downregulation of GSTP1 expression and ovarian cancer
chemosensitising [67].

Another way to modulate GST expression and activity has recently been suggested by
Sirota et al. [68]. Namely, caffeic acid, a non-toxic polyphenol which is abundant in many
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foods, seems to modulate GST and glutathione reductase (GSR) activity, both involved
in resistance of cancer cells towards cisplatin [68]. Caffeic acid induces the nuclear factor
(erythroid-derived 2)-like2 (Nrf2) pathway and can also inhibit the activity of GST and
GSR. Importantly, GSTP1 is among Nrf2 target genes, while GSTP1 has a potential to form
a GSTP1/Nrf2 protein complex, affecting Nrf2 stabilization and its further actions [40].
Sirota et al. demonstrated that the co-treatment of cancer cells with cisplatin and caffeic
acid can enhance cisplatin cytotoxicity and increases the amount of platinum bound to
nuclear DNA, while 6 h of pre-incubation with caffeic acid prior to cisplatin treatment
led to acquired resistance to cisplatin and reduced DNA binding. These results suggested
that the enzyme inhibitory action of caffeic acid is dominant when the two agents are co-
administered leading to increased cytotoxicity, and the Nrf2 induction is dominant when
the cells are treated with caffeic acid prior to cisplatin treatment leading to resistance [68].

Small non-coding RNAs or microRNAs (miRNAs) have also recently been identified as
a novel class of gene regulators, playing an important role in various malignancies including
ovarian cancer [69] (Figure 3). Since they participate in various biological processes, as well
as post-transcriptional gene regulation, it has been shown that their dysregulation either
via genetic or epigenetic modifications might contribute to cancer development [70,71].
Available data suggest that they might be regarded either as oncogenes or tumor-suppressor
genes, depending on their specific role (e.g., cell survival, apoptosis, cell senescence,
DNA damage repair, or p53-related network) and level of expression (upregulated or
downregulated), and they also participate in chemoresistance development [16,72,73].
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duction of new technologies, as well as innovative targeted therapies, enables novel 
mechanisms to overcome development of chemoresistance in this cancer, which exhibits 
high level of molecular heterogeneity. Among promising candidates that might be 
helpful in the development of personalized therapies which are based on anticipation of 
cellular response to applied chemotherapeutics in ovarian cancer cells are miRNAs. Due 
to their extensive gene regulatory roles, it seems that they are able to regulate nearly all 
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Figure 3. The mechanisms contributing to the development of multidrug resistance in ovarian cancer
comprise decreased drug intake, increased drug metabolism, altered drug targets, and impaired
apoptotic pathways, all potentially modulated by microRNAs; SLC: solute carriers transporter family;
MRP1: multidrug-resistance-associated protein; GSTP1: glutathione transferase P1; JNK: c-Jun
NH2-terminal kinase; ASK1: apoptosis signal-regulating kinase; and TRAF2: tumor necrosis factor
receptor-associated factor 2.
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Numerous miRNAs have been investigated due to their potential involvement in ovar-
ian cancer chemoresistance, including micro-RNA 9, miRNA-21, miRNA-21-3p, miRNA-27a,
miRNA-29, miRNA-30a, miRNA-31, miRNA-93, miRNA-125a, miRNA-130a, miRNA-133b,
miRNA-136, miRNA-145, miRNA-149, miRNA-150, miRNA-182, miRNA-185, miRNA-186,
miRNA-200 family, miRNA-214, miRNA-376c, miRNA-513a-3p, and many others [16,72–74].

Among microRNAs investigated in ovarian cancer, which are shown to regulate GSTP1
gene expression, is miR-186. Data indicate that mRNA and protein expression levels of
MDR1 and GSTP1 were downregulated after transfection with miR-186, while upregulated
following anti-miR-186 transfection, which demonstrates that this miRNA might sensitize
ovarian cancer cells to paclitaxel and cisplatin by targeting both MDR1 and modulating the
expression of GSTP1 [75].

MicroRNA-133b also targets GSTP1 expression to increase ovarian cancer cell sen-
sitivity to chemotherapy drugs. Namely, the expression of miR-133b was significantly
lower in primary resistant ovarian carcinomas than in the chemotherapy-sensitive carci-
nomas, which was also confirmed in primary resistant ovarian cell lines (A2780/Taxol
and A2780/DDP) [76]. However, after miR-133b transfection, cell lines showed increased
sensitivity to paclitaxel and cisplatin, while anti-miR-133b transfection reduced cell sensi-
tivity to paclitaxel and cisplatin. Interestingly, dual-luciferase reporter assay showed that
miR-133b interacted with the 3’-untranslated region of GSTP1, which explains why mRNA
and protein levels of MDR1 and GSTP1 were downregulated after miR-133b transfection
and, vice versa, upregulated after anti-miR-133b transfection. This led to the conclusion that
this is one more microRNA that might reduce ovarian cancer drug resistance by silencing
the expression of the drug-resistance-related proteins, GSTP1 and MDR1 [69,76].

These data are in line with several studies in other types of cancer, which have shown
that miRNAs are able to target GST-mediated drug metabolism in order to regulate drug
resistance. Indeed, in lung carcinoma cells A549, Zhang et al. reported that miRNA-513a-
3p could negatively regulate GSTP1 gene expression, suggesting that overexpression of
miR-513a-3p resensitized cisplatin-resistant cancer cells [77].

In contrast to these studies which promote miRNAs as chemosensitising agents, it
seems that sometimes they may even enhance the drug resistance, as in case of miR-
130b. Namely, when human ovarian carcinoma cell line A2780 and paclitaxel-resistant
A2780/Taxol cells were exposed to cisplatin or paclitaxel in the presence or absence of trans-
fected miR-130b, higher expression levels of miR-130b were found in A2780/Taxol cells
than in A2780 cells, which surprisingly decreased sensitivity to paclitaxel and cisplatin com-
pared with mock-transfected and negative control cancer cells. However, mRNA expression
levels of MDR1 and GSTP1 and the protein expression levels of MDR1 and GSTP1 were
downregulated following miR-130b transfection, which still suggested that miRNA-130b
may be involved in the development of drug resistance in ovarian cancer cells [78].

Taken together, chemoresistance in ovarian cancer treatment is a very complex multi-
factorial process which includes many different underlying mechanisms. Introduction
of new technologies, as well as innovative targeted therapies, enables novel mechanisms
to overcome development of chemoresistance in this cancer, which exhibits high level of
molecular heterogeneity. Among promising candidates that might be helpful in the devel-
opment of personalized therapies which are based on anticipation of cellular response to
applied chemotherapeutics in ovarian cancer cells are miRNAs. Due to their extensive gene
regulatory roles, it seems that they are able to regulate nearly all mechanisms underlying
drug resistance in OC, including GSTP1 and MDR1. Therefore, apart from significant role
of GSTP1 in drug metabolism and membrane transport, miRNAs affecting its expression
could represent promising predictors of chemotherapeutic response in ovarian cancer,
while at the same time, represent potential targets to overcome chemoresistance in the
future. Importantly, apart from focusing on the chemoresistance phenomenon in standard
therapeutic approaches based on platinum and paclitaxel, research interest should be di-
rected toward understanding the resistance mechanisms of novel chemotherapeutics used
in ovarian cancer treatment.
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