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Abstract

Doing large-scale genomics experiments can be expensive, and so experimenters want to get the most information out of
each experiment. To this end the Maximally Informative Next Experiment (MINE) criterion for experimental design was
developed. Here we explore this idea in a simplified context, the linear model. Four variations of the MINE method for the
linear model were created: MINE-like, MINE, MINE with random orthonormal basis, and MINE with random rotation. Each
method varies in how it maximizes the MINE criterion. Theorem 1 establishes sufficient conditions for the maximization of
the MINE criterion under the linear model. Theorem 2 establishes when the MINE criterion is equivalent to the classic design
criterion of D-optimality. By simulation under the linear model, we establish that the MINE with random orthonormal basis
and MINE with random rotation are faster to discover the true linear relation with p regression coefficients and n
observations when pwwn. We also establish in simulations with nv100, p~1000, s~0:01 and 1000 replicates that these
two variations of MINE also display a lower false positive rate than the MINE-like method and additionally, for a majority of
the experiments, for the MINE method.
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Introduction

The Problem: The researcher wishes to carry out model-guided

discovery about a system from a sequence of n experiments. The

challenge is that each of the n experiments performed is very

expensive, and so at each stage (nz1) it is desirable to design the

next experiment to be maximally informative. The approach in

which n experiments are to be done sequentially in such a way as

to capture the most information at each stage n about the

underlying model is called utilizing the Maximally Informative

Next Experiment (MINE) [1]. The method has been shown to be

consistent for one version of MINE [2]. To understand MINE we

will consider the linear model, Y~Xbz", where Y is a n|1
vector of dependent measurements, X is a n|p matrix of p

independent variables, each with n measurements, b is a p|1
parameter vector, and " is a n|1 vector of independently and

identically distributed normal N(0,s2) errors.

The problem has four features. First, there are many parameters

and limited data (nvvp) so there will be many more unknown

parameters than data. In this setting a large sample of variables (p)
is to be observed as it is not known in advance which ones are

relevant. In fact, typically n*100 while p*103{106. Second, the

X matrix is partitioned into two parts, X~(X 0,X 00), where X 0 is

an n|p0 matrix of independent variables that the experimentalist

can control and X 00 is an n|p00 matrix of independent variables

that cannot be controlled under the conditions p~p0zp00 [3]. The

X 0 matrix will be referred to as the design matrix. For simplicity,

we will assume the entire X matrix is made up of X 0. Third, the

next experiment encompasses stages nz1, . . . ,nzd , where d is

the dimension of the experiment. Experiments constitute batches

of d observations. The fourth and final feature of the experiment is

that each experiment of d observations is very costly, be it time,

materials and/or subjects, or financially such as 250,000 per

experiment [4]. So at each stage n in the overall study, there is a

high premium on choosing the best next experiment. The problem

is to discover with reasonably high probability the model b in as

few steps (n) as possible. We call this a problem in model discovery

because what we wish to know is what linear relation can be

discovered from the many variables (p) measured over the time

course of the study. Again the number of variables measured is

large because it is not known in advance which ones are relevant.

The process of discovering the model is cyclical as shown in

Figure 1.

This problem makes points of contact with several distinguished

problems in statistics and engineering. There are problems in

experimental design [5,6,7,8,9] leading to model refinement with

n.p, particularly for sequential designs [10]. There are problems

in control, as addressed by, for example, with response surfaces

[11]. The problem of model guided discovery, we will show, is

distinct from all of these because it is focused on discovery (in this

case the unknown linear relation).
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As an example problem for use in model-guided discovery,

suppose the researcher wishes to understand human longevity

[12]. The researcher may examine the characteristics of US

centenarians. Several thousand variables are measured including

genetics, diet, and lifestyle on each centenarian because it is

unknown which variable or variables have an effect on longevity.

Some of these variables can be controlled, such as diet and

lifestyle. Others, like the genes carried by the centenarian, cannot

be controlled. In model refinement, the goal is to select a design,

X 0 (diet and lifestyle), to reduce the error in the parameters b by

consideration of, for example, X
0T X [7] and its determinant (i.e.

D-optimality). In process control with the aid of response surfaces,

the goal might be to select a design X 0 to maximize the expected

longevity E(yi) (where E() denotes expectation and yi denotes the

longevity of the ith individual in the study) by manipulating diet

and lifestyle. Such an engineering approach to extending lifespan

has been implemented in the nematode [13]. In model-guided

discovery the goal is simply to choose a design X 0 at each stage to

discover the factors that determine longevity with as few

centenarians (n) as possible and using limited data, to discover

potentially many important variables.

Another example of this framework in systems biology can be

seen in the description of genetic networks at a steady state or

system in equilibrium [14]. In this setup a genetic network is

approximated to first order by the following linear system:

dx

dt
~Ax{y ð1Þ

Here the column vector x describes the concentration of

mRNAs of genes in a network, and the y vector describes external

perturbations. The A matrix captures the network relationships

among the genes, and
dx

dt
is the derivative with respect to time.

A steady state is assumed so that the dynamical system reduces

to:

y~Ax ð2Þ

The problem is to infer the network A. An experiment entails

measuring all mRNAs under a particular perturbation y, so several

perturbations are tested. This setup reduces to a linear regression

problem. Such design problems have been considered for

nonlinear genetic network models as well [4,8,15,16], but we will

not focus on these here.

Mathematical Results

Model Estimation by the Ensemble Method2
A standard approach to estimating the regression coefficients b

is the least squares method. This approach reduces to solving the

normal equations below for the least squares estimates of the

parameters b̂b:

X T X b̂b~X T Y ð3Þ

The challenge in our problem is that X T X will not often be of

full rank because of collinearity in the independent variables and

because there are so few data points relative to the number of

parameters (nvvp). While the normal equations in (3) could be

solved by use of a generalized inverse, there are likely to be many

solutions that are equally consistent with the data and not one best

least squares estimate b̂b of the parameters in the model. The key is

to not find one estimate, but rather an ensemble of estimates

consistent with the data Y .

To address this problem the likelihood is consulted at each

stage:

L(bjY )~(2ps2)
{n

2
e

{
Pn
i~1

½yi{
Pp
j~1

Xijbj �
2

2s2 ð4Þ

Since there are so many independent variables with so little

data, this surface resembles a golf course with its varied terrain of

many hills and sandpits than a mountain or mountain range.

However, we can reconstruct the entire likelihood function by

Markov Chain Monte Carlo methods (MCMC). By integrating

over a standardized L(b) with respect to b and using a particular

prior distribution, we can make predictions about the behavior of

the system even in the presence of such limited data [17]. So

instead of finding one best parameter b to represent the system,

instead we construct L(bjY ) or alternatively, the entire posterior

distribution with a different prior distribution. These are special

cases of the ensemble method, in which some figure of merit is

used to select a distribution of models fitting experimental data

[17], and as a special case the reconstruction of the standardized

L(bjY ) is referred to as the ensemble. In this paper the

standardized likelihood can be calculated exactly when the

variance (s2) is known, the case to be used here, and with a

Gaussian conjugate prior on b from Eqn (4) (see ref [18]):

Figure 1. Cycle of MINE discovery – Simplified Computing Life
Paradigm.
doi:10.1371/journal.pone.0110234.g001
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p(bjY )!(s2)
{

p
2e
½{(b{mn)T (XT XzL0)(b{mn)�

2s2 ð5Þ

The posterior mean mn is described as:

mn~(X T XzL0){1(X T X b̂bzL0m0) ð6Þ

The least squares estimate b̂b enters into the calculation of the

posterior mean mn. In the program description section below, we

replace X T Xb in (6) with X T Y from (3).

Here the precision matrix which determines the prior distribu-

tion in (5) is L0 and will be taken as b � I where b is a positive

constant and I is the p|p identity matrix. We also refer to this (5)

as an example of the ensemble p(bjY ). In the past we have used a

uniform prior over a finite interval [17], but the Gaussian prior

distribution insures that the integration can be done along all

components of the parameter vector (b) over the whole parameter

space and can approach that of a noninformative prior

distribution by letting diagonal elements of this matrix become

small.

Normally the moments of the ensemble would be calculated by

MCMC methods [17], but from (5) we can obtain the moments of

b directly and for example the linear model with known error

variance.

Eb(b)~mn ð6Þ

Var(b)~s2(X T XzL0){1~C~B{1 ð7Þ

These moments of the ensemble can be updated as each

observation is added.

Maximally Informative Next Experiment
At each stage n, we choose the next experiment X � by reference

to the ensemble p(bjY ) in (5) to infer the unknown but true

regression parameters b0. The new design matrix consists of d

rows, and after completion of the next experiment is used to

augment Xn to Xnzd or ~XX . The design of the new experiment is

captured in X � and the augmented/updated design for all

experiments in ~XX . For each member of the ensemble (b) we

make a prediction vector about the d outcomes ŶY � of the next

experiment, namely ŶY �~X �b, where b is drawn from the

ensemble of models in (5), ŶY � is the vector of d predictions for the

next experiment, and X � is the design of the next experiment. We

choose the new experiment X � such that we have maximum

discrimination between the alternatives in the ensemble. If two

random models of the ensemble should have correlated predicted

responses ŶY � for experiment X �, the choice of design would be

poor as this would not reveal as much information as when two

random members should have uncorrelated responses.

One MINE criterion for choice of X � was developed by use of a

microscope analogy [4]. The object in the microscope is b0. The

image under the microscope ŶY � is mapped onto the object b0 in

the field of the microscope, but the mapping is fuzzy and imperfect

with their being uncertainty in ŶY �. Let v0 be a volume in the

object space (i.e., the parameter space Rp) under the light

microscope where p is the number of parameters, and let vD be

Figure 2. Visual representation of the pathways for each MINE method.
doi:10.1371/journal.pone.0110234.g002
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the ‘‘image difference volume’’ swept out that is viewed. For a

microscope, the connection between the two volumes is the model

of physical optics. In our context here, the connection is the model

prediction ŶY �~X �b. Formally, the image difference volume vD is

swept out by the image difference vector DŶY �(b,b0,X �) for all

pairs of objects (b,b0) in (v0,v0) or

vD(v0,v00,X �)~DŶY (v0,v00,X �)~X �(b{b0) ð8Þ

The image difference volume is swept out by varying b and b0 in
(8).

The image difference volume depends explicitly on v0 and how

we ‘‘twiddle the dials’’ on the microscope though X �. The

maximally informative next experiment (MINE) criterion is based

on this idea that the more volume in vD(v0,X �), the more detail

discerned in v0. This is achieved by adjusting the data captured in

X �.
In order to take advantage of this MINE criterion, we must

make a selection of the object volume v0. The choice is improvised

but driven by computational practicality [4]; other choices are

possible [19]. We elect to define a ‘‘representative volume’’ vD

swept out by DŶY (b,b0,X �) when b and b0 are drawn randomly as

‘‘typical’’ or average values from the ensemble pair distribution

p(b,b0jY )~p(bjY )|p(b0jY ), the components given by (5). The

volume is constructed from the variance – covariance ellipsoid of

the image difference volume DŶY (b,b0,X �) and is dependent on the

choice of experiment X �. We define the ensemble distribution of

DŶY (b,b0,X �) as:

QD(W,X �) : ~

ð

b

ð

b0

d(W{DF (b,b0,X �))p(bjY )|p(b0jY ) ð9Þ

The quantity W is any point in the DŶY (b,b0,X �) volume and

d(:::) is the Dirac Delta Function. The ensemble distribution in (9)

specifies an effective difference volume vD(v0,X �) in the image

difference space DŶY (b,b0,X �) by way of the characteristic ellipsoid

of this space specified by:

Dik(X �)~COV (ŶY �i ,ŶY �k )~

ð

W

1

2
½WiWkpDŶY (W,X �)� ð10Þ

The variance – covariance ellipsoid is centered at the origin,

W~0 because pDŶY (W,X �) is an even function in W due to

DŶY (b,{b0,X �)~{DŶY (b,b0,X �). The variance – covariance

ellipsoid has the D-matrix eigenvalues and directions of the half-

axes given by the D-matrix eigenvectors. From (10) we can write

the covariance ellipsoid in terms of the moments of the ensemble:

COV (ŶY �i ,ŶY �k )~E(ŶY �i ŶY �k ){E(ŶY �i )E(ŶY �k ) ð11Þ

Normally these moments could be computed by MCMC

methods [17], but because of the explicit form in (5) we can

evaluate (11) directly from (5) as:

T
a
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Figure 3. Graph of the number of significant nonzero regression coefficients averaged over 1000 replicates for: (A) the MINE-like
method; (B) MINE method; (C) MINE method with random orthonormal basis; (D) MINE method with random rotation. Each graph
identifies the number of replicates (y-axis) with a varying number of the nonzero b0 components as significant as a function of the number of
experiments (x-axis). Blue corresponds to 70% correctly identified, red to 80%, green to 90% and purple to 100%.
doi:10.1371/journal.pone.0110234.g003

Figure 4. Posterior means of the first 20 regression coefficients as a function of the number of experiments for: (A) the MINE-like
method; (B) MINE method; (C) MINE method with random orthonormal basis; (D) MINE method with random rotation. Each panel is
averaged over all 1000 simulations with 10 zero (in blue) and 10 nonzero (in red). The first ten (red) are truly nonzero.
doi:10.1371/journal.pone.0110234.g004
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X �(X T XzL0){1s2X �T~X �B{1X �T~X �CX �T ð12Þ

The matrix C is defined to be B{1. A Hilbert Space (HS, i.e., a

complete inner product space) formalism is introduced to give a

compact form to the MINE criterion. The HS of functions consist

of functions defined on the model parameter space, fb : b"Rpg,
for which the covariance is the HS inner product. This inner

product is formally defined as:

(gjh)~E½g(:)h(:)�{E½g(:)�E½h(:)� ð13Þ

The components of the observation vector, ŶY �i , are represented

by:

fi(b) : ~f (b,ŶY �i ) for i~1,:::,d ð14Þ

We can write the covariances in terms of the inner product:

Dik~(fijfk) ð15Þ

The ensemble standard deviation of the prediction ŶY �i is

equivalent to the HS vector norm or length denoted by jjŶY �i jj. The

norm is defined by jjgjj : ~(gjg)
1
2

If the predictions ŶY �1 , . . . ,ŶY �d are linearly dependent, then the

HS prism is defined by the predictions collapses to a lower

dimensional one, and the determinant det (D) vanishes. If the

predictions are not linearly dependent, then predictions determine

an HS prism whose volume is simply given by the product of their

vector lengths, namely det (D)~(jjŶY �1 jj:::jjŶY �n jj)
2. In general the

predictions are correlated, and we have the Hadamard Inequality:

det (D)ƒ(jjŶY �1 jj:::jjŶY �n jj)2 ð16Þ

The ratio
det (D)

(jjŶY �1 jj:::jjŶY �n jj)
2

can be thought of as a composite

measure of the dependence of the predictions and is a function

only of the HS angles between predictions.

We are now in a position to introduce a MINE criterion first by

introducing the normalized predictions.

ẐZ�i ~
ŶY �i
jjŶY �i jj

, i~1,:::,n ð17Þ

The normalized covariance matrix or correlation matrix

denoted by R is defined by:

Rik(X �)~(ẐZ�i jẐZ�k)~
Dik(X �)

(jjŶY �i jj jjŶY �k jj)
ð18Þ

~E½ẐZ�(:,ŶY �i )ẐZ�(:,ŶY �k )�{E½ẐZ�(:,ŶY �i )�E½ẐZ�(:,ŶY �k )�

This is the correlation matrix among the predictions. We

propose the following MINE design criterion V (X �):

V (X �) : ~det(R(X �))~
det(D(X �))

(DDŶY �1 DD:::DDŶY �n DD)2
ð19Þ

This criterion is the squared volume of a prism spanned by the

normalized predictions ẐZ�1, . . . ,ẐZ�n . Such a criterion is advanta-

geous when the predictions are almost but not actually/completely

Figure 5. The number of false positives as a function of the number of experiments. These numbers are averaged over all 1000 simulations
for each method. Blue corresponds to MINE-like, red to MINE, green to MINE with random orthonormal basis, and purple to MINE with random
rotation. The final two overlap almost exactly which is why the green line is not visible.
doi:10.1371/journal.pone.0110234.g005
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linearly dependent. This is a situation that has been encountered

in practice [4]. This MINE criterion from (12) only depends on the

ensemble through its variance-covariance matrix and not its mean

in (6). The MINE criterion is also scale-free [4,20]. It clearly differs

from the usual model refinement criterion based on

X �T X � or X T X .

In practice the MINE criterion will behave better than X �T X �

for n*100 and p*1000 because its calculation through inverting

B is stabilized by L0 in (12), as in Ridge Regression [21] and will

potentially incorporate the data from prior experiments in (12)

through the B matrix. Its form also lends itself to optimization for

large problems as will be shown under Theorem 1 below and

under simulation results later (nvvp).

Maximizing the MINE Criterion
Ideally we would have a necessary and sufficient condition for

maximizing the MINE criterion. Here in Theorem 1 we only

present a sufficient condition for maximizing the MINE because

the necessary condition has not been found.

Theorem 1: If the rows X �i of the design matrix X � are chosen

to be wiC
{1=2, where wi, . . . ,wd is any orthonormal set, then the

MINE criterion det (X �CX �T ) is maximized.

Proof: V (X �) is maximized when V (X �)~1. This occurs if and

only if det (R)~1 which is only satisfied if and only if

(ŶY �i jŶY �k )~dikjjŶY �i jj
2

from (19), where dik is the Kroneker delta.

From (13) the inner product can be used to represent the

covariances as Dik~(ŶY �i jŶY �Tk ). The condition det (R)~1 is thus

equivalent to Dik~dikjjŶY �i jj
2

or equivalently X �i CX �Tk ~

dikjjŶY �i jj
2

(The X �i denotes the ith column of X �). We now need

to introduce two more equivalencies: wi~X �i C1=2 and

wT
k ~C1=2X �Tk . The fact that any positive semi-definite symmetric

matrix, such as C, has a square root gives us the liberty to create

such a wi. Since X �i CX �Tk ~dikjjŶY �i jj
2
, this leads to wiw

T
k ~

dikjjŶY �i jj
2
, which implies any orthonormal basis can be used for

w1, . . . ,wd .

In particular, the vectors X �1 , . . . ,X �n can be selected as the

eigenvectors of C once standardized by C{1=2. One efficient route

for maximizing the MINE criterion is then simply to compute the

eigenvectors and eigenvalues of C or equivalently, to maximize the

parallelpiped whose volume is det (R) [4] and then to normalize

them by C in wi~X �i C{1=2~X �i B1=2. The choice of normaliza-

tion still needs to be examined as a model-guided discovery tool.

See simulation results for examination of three choices of different

orthonormal bases, a (1) normalized eigenvector basis; (2) random

basis; (3) normalized eigenvector basis with random rotation.

Model Refinement
A traditional approach to choosing the design X � (in contrast to

MINE) is to choose X � to maximize some simple function of the

variance-covariance matrix of the parameter estimates (b) such as

the determinant, to create a D-optimal design [6,8]. Consider then

the augmented design matrix ~XX which is not only a function of the

current design X but includes the possible design of the new

experiment X �. This means:

~XX~(X T ,X �T )T~(X ,X �) ð20Þ

Under ordinary model refinement, we wish to minimize some

simple function of the variance-covariance matrix of b, such as:T
a

b
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det ( ~XX T ~XXzL0){1 or equivalently

maximize det ( ~XX T ~XXzL0)
ð21Þ

This can be written explicitly in terms of the new experiment

with the identity:

~XX T ~XX~X T XzX �T X � ð22Þ

The model refinement criterion is then to maximize det (A)
where:

A~X T XzL0zX �T X � ð23Þ

The derivative of det (A) with respect to each component of X �

can be computed from:

+ det (A)~tr(Adj(A))+A ð24Þ

Here the + is the gradient with respect to X �, tr() refers to the

trace and Adj() denotes the Adjoint. A necessary condition for

maximizing the det (A) is for + det (A)~0. This max determinant

(max det) problem is closely related to solutions to an affine

formulation of this max det problem, and the problem is most

closely related to the analytic centering problem [22]. These

authors cast the search for D-optimality in design as a convex

optimization problem with the max det problem linear in X � and

with linear inequality constraints [22]. The linearity in X � is

achieved by constructing X � from a set of rows (or designs) that

are known in advance. The optimization problem is then reduced

to determining how often each row (design) is used. Here we do

not know the rows in advance.

MINE can produce a D-optimal Design
Kiefer and Wolfowitz [23] established that D-optimal designs

are equivalent to mini-max designs, which minimize the maximum

of the expected loss associated with each possible design. It is

natural to ask whether or not there is any such relation between D-

optimal designs and MINE. While the model refinement

procedure appears to start from an entirely different criterion

than MINE, it is possible to establish a relation between these

different kinds of optimal designs by imposing the same constraints

on the respective optimization problems. When we do this, we can

establish:

Theorem 2 (Equivalence Theorem of D-optimality and
MINE): The MINE procedure in Theorem 1 is D-optimal in the

sense that X � maximizes det (A) subject to the constraint

X �j CX �Ti ~1 where A~X T XzL0zX �T X �.

Proof: In order for MINE and a D-optimal solution to be

directly comparable they need to be maximized subject to the

same constraints on X �. So we maximize det (A) subject to the

following constraint from (12):

Max det (A) subject to X �j CX �Ti ~1 ð25Þ

The constraint insures the columns of X � are an orthonormal

basis.

We can introduce a related criterion ~GG(X �) as:

det (BzX �T X �)

~ det (B1=2) det (B1=2) det (B{1=2(BzX �T X �)B{1=2)

~ det (B) det (IzB{1=2X �T X �B{1=2)

~ det (IzW T W )~~GG(X �) where W~X �B{1=2

Note that det (A)~~GG(X �)=det (B). So maximizing det (A) is

the same as maximizing ~GG(X �). The maximization problem in (25)

is equivalent to:

Max ~GG(X �)~ det (IzW T W ) subject to

wjwi~1 for j~1, . . . ,d
ð26Þ

The constant d is the number of observations in the new

experiment. We can think of the original optimization problem as

equivalent to determining the best set of normalized vectors wj .

From (26), the constraints imply that tr(W T W )~d where d is

the dimension of the next experiment (i.e., the number of

observations in the next experiment). We also have the trace

being the sum of the eigenvalues of W T W .

tr(W T W )~
Xd

v~1

lV tr(W T W )~
Xd

v~1

lv~d ð27Þ

Constraint (27) implies a constraint on the eigenvalues in (27),

but not the converse. To finish the proof we will first maximize

G(X �) subject only to (27) reminiscent of [22].

We will then show the solution of this max det problem can also

be chosen to satisfy all of the constraints in (26).

W T W~
Xd

j~1

wT
j wj where dvp ð28Þ

Since dvp, we can choose at least p{d orthonormal vectors uv

such that:

W T Wuv~0 v~p{dz1, . . . ,p ð29Þ

We choose these uv vectors also to be orthogonal to w1, . . . ,wd .

We will call this subspace of the parameter space as the

unexplored subspace. Note that while rank(W T W )ƒd, but

dimension (W T W )~p (that is, pwd here). This implies that

p{d eigenvalues are zero. (This implies that for p{d eigenvalues,

say for v~p{dz1, . . . ,p, are zero. As an example, if p~1000
and d~10, then the last 990 of the eigenvalues are zero. We have

that:
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lv~0 for v~p{dz1, . . . ,p ð30Þ

These degenerate eigenvalues in (30) are associated with the

unexplored subspace. This fact along with the determinant being

the product of the eigenvalues implies from (26):

G(X �)~P
d

v~1
(1zlv) ð31Þ

Now maximize G(X �) with respect to l1, . . . ,ld only subject to

constraint [27] using the method of Lagrange multipliers (with

multiplier W). We find that:

l1~l2~ � � �~ld~
G(X �)

W
{1 and

Xd

v~1

lv~d ð32Þ

These two imply that lv~1 for v~1, . . . ,d on the explored

subspace of the parameter subspace.

The result of maximizing with respect to the eigenvalues is that

W T W is diagonalized with only the first d diagonal elements

being 1. The maximum value of G(X �) is 2d from (31).

From here, if we choose w1, . . . ,wd to be an orthonormal set

such that wjw
T
k ~djk, then we have W T Wwj~wj for all

j~1, . . . ,d . Thus wj is an eigenvector of W T W with eigenvalue

li~1 for j~1, . . . ,d. All constraints in (26) are satisfied for the

solution to the max det problem with (27).

Choice of prior distribution
The choice for the prior mean vector is reasonably taken as

zero since most of the independent variables are not expected to

have an effect on the dependent variable y. The only question is

the choice of b specifying the precision matrix in B~ X T XzL0ð Þ
where L0~bI (and specifies the prior). Dumouchel and Jones [24]

provide one argument to select b with an idea to making the

design robust to violations of linear model assumptions. We will

suggest another approach.

Let XTX have eigenvalues li with corresponding orthonormal

eigenvectors ui. Then we can write XTX and B as:

X T X~
X

liuiu
T
i ð33Þ

B~
X

lizbð Þuiu
T
i ð34Þ

X T Xui~li ð35Þ

uT
i uj~dij ð36Þ

The eigenvalues of B are lizb and have the same eigenvectors

as X T X . We can now introduce a new variable:

pi : ~uT
i b ð37Þ

We can loosely think of the uncertainty or standard deviation of

the b-vectors (across the ensemble) in the ui direction as:

si : ~s(pi)~b
{1=2
i ~(lizb){1=2 ð38Þ

In the absence of any experimental data (li~0), the uncertainty

in the ui direction should reduce to:

si(prior)~b{1=2 ð39Þ

We would expect the uncertainty without experimental

constraints (of data) to exceed the uncertainties with data or that:

si(prior)ww min (si) equivalently bvv max (li) ð40Þ

The maximum eigenvalue of X T X provides an upper bound on

b. This one would be satisfied, for example, if b were chosen to be

equivalent to the weight of one observation in X 0X . The matrix

X 0X would quickly dominate. The next constraint is more

stringent, and so it is not necessary to check that (40) is satisfied.

Another constraint on b arises from the requirement that the

true regression coefficients not be too far out in the tails of the

prior distribution; otherwise the data through X T X will never find

the true regression coefficients. We can think of the prior

distribution as equivalent to a fishing-net. We want this net to

be well cast to catch the fish.

Introduce bmax~ max (jtruebkj)~ max (jE(bk)j) where the

expectation is taken over the ensemble. Then the b-value should

be chosen so that

si(prior)wwbmax ð41Þ

This is equivalent to requiring:

bvv

1

b2
max

ð42Þ

So with the prior data, X T X , and some idea of the magnitude

of the regression coefficients, there are constraints on the prior

distribution as specified by the precision matrix and hence b.

These constraints are satisfied in the simulations to follow. As an

example, if the largest magnitude of a regression coefficient were

50, then bvv

1

502
or bvv0:0004. Since we set all variables and

know the largest regression coefficient’s magnitude is 50, we set

b~0:0001. This is a tighter constraint than the first. We also do

not want b to be too small to allow C in (12) to still be inverted as

in ridge regression.
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Methods

Methods for simulating four versions of MINE under the
linear model

The program MINE to simulate the above procedures is written

in Java under version 1.6 and utilizes the version 5 of the Jama

library [25]. Details of the input and output of this software are

already reported [26]. The program is available in sourceforge.net

under the name linearminesimulations. There are four variants on

the MINE method described below in this section and summa-

rized in Figure 2.

Following the initialization of many variables (including but not

limited to the matrices and vectors to store the X matrix, Y matrix

and e, the number of variables (p) and the significance matrix) and

the set up of data from the input file, the main part of the

simulation program begins. Since the first experiment has no data

on which to base a design, this pilot experiment is randomly

generated. The simulation program is designed to handle a variety

of data. If the number of variables is over 50, then the first

experiment is selected to have 10 observations; otherwise, the first

experiment has between five and nine observations. The number

of pilot observations varies between 0 and 10 as determined by the

number of variables. Each value in the pilot is created by

generating a random number between 0 and 10 and then dividing

it by the p value. The set is not then normalized nor orthogonal.

After the pilot experiment is generated, the random number

generator is changed depending on which method is used in order

to allow for the same pilots but the rest of the numbers generated

being different. From here the first set of the dependent Y vector is

calculated along with the associated error vector ("). With the

initial data generated the real calculations can begin.

Each loop (in which a single observation is added) first consists

of calculating the posterior mean (6) and then calculating the

significance of the regression parameters in b with the cycle exiting

here if the number of loops reaches the target number of

experiments. The mean or mn is calculated by (6). Although in this

simulation we have the true values b0, we use X T Y in (6) rather

than using the real value or the previous mean. The significance

subroutine takes the most recently calculated mean mn and the

whole X matrix. It solves for the posterior variance-covariance

matrix of b with (7) with the whole X matrix and multiplies this by

s2. The z-value of each b is calculated with each individual mean

value divided by the square root of the diagonal of the above

matrix. The p-value is then calculated using this z-value. These p-

values are then sorted from largest to smallest. The resulting values

are checked using a Benjamini-Hochberg method [27] to decide

which components of b are significant. The calculation for p-value

is done using the algorithm from Press et al. [28] (on p. 221). From

here, depending on the specific method in Figure 2, the new

observations are calculated, and finally the new Y vector is

calculated by Y~X �bz" and the cycle repeats in Figure 1. The

error vector (") or error values are created by generating a

standard normal random variable value and multiplying it by s
(which was set by the input file).

MINE-like method. The simple naı̈ve MINE-like method takes the

ten eigenvectors of the C matrix in (7) associated with the ten

largest C-eigenvalues using a common subroutine to generate the

C matrix and simply uses these eigenvectors to generate the next

X �.

MINE Method. The MINE method simply uses the eigenvectors

associated with the C matrix as above with the ten largest

eigenvalues and multiplies the corresponding eigenvectors by the

square root of the B matrix to obtain the next X �.

MINE with Random Orthonormal Basis. In MINE with a random

orthonormal basis a set of ten random orthonormal vectors is

generated and then standardized by the square root of the B

matrix (B1=2). First, the ten vectors are created from using the

random orthonormal set subroutine. Then each individual vector

is multiplied by the square root of the B matrix to obtain the next

X �.

MINE with Random Rotation. The MINE with a random rotation

method first finds all the eigenvectors in the C matrix as above but

selects the set of all degenerate vectors instead of simply the ten

largest. Then the method creates a random orthonormal array of

Q|Q where Q is the number of degenerate eigenvectors to

multiply the degenerate matrix with. This is used to rotate the

degenerate eigenvector set. The first ten are then multiplied by the

square root of B matrix and used to obtain the next X �.

The randomly generated orthonormal set used in both the

MINE with a random orthonormal basis and MINE with random

rotation is done by first generating a single vector of random

Gaussian values. The vector is then normalized to a unit vector.

This vector is used as the basis for generating more vectors

generated in the same method and is made orthogonal using a

modified Gram-Schmidt (MGS) algorithm [29].

To obtain the square root of the B matrix, first C in (7) is

calculated. Then the square root of C is solved by using the

Singular Value Decomposition (VT DV ) where the V matrix here

is the eigenvectors in column form and the D matrix is a diagonal

matrix with the square root of the eigenvalues on the diagonals.

This is then inverted by the method in the Jama package [25] to

get the square root of B matrix.

With each of the four methods the same set of 1000 components

of the true b0 were used. This b0 only had ten components that

were truly nonzero. The order of the nonzero components was not

changed in the list of 1000 components. These were the first ten

values of b0 and were as follows: 11, 236, 226, 9, 33, 250, 245,

15, 3, and 17. The program was run with 1000 replicates for each
of the four methods. Each replicate had a unique pilot experiment

(consisting of ten observations), but these pilot experiments were

the same for each method, allowing for a stronger comparison of

the four methods. Each individual run had a unique random seed

so that the rest of the replicate run would be unique. The error s
in the linear model used was 0.01, and all of the prior mean values

(m0) were initialized to zero. A summary of the parameters in the

simulations is given in Table 1.

Results of Simulation

There are four variations on the MINE procedure examined

here and defined in the previous section. The similarities and

differences in the pathways of the four methods are summarized in

Figure 2. All four methods employ the same subroutines for the

majority of their implementation but differ in the way each

particular method chooses the next experiment or set of

observations to use, as described in the program description above.

The first method is called the naı̈ve MINE or MINE-like

method because this version does not incorporate the B matrix

used in Theorem 1. This simpler method only calculates the

eigenvectors of C and uses the eigenvectors with the ten largest

eigenvalues (according to the algorithm) to define the next

experiment X �. The second method, MINE, takes the MINE-

like method and simply multiplies the chosen eigenvectors by B1=2.

The comparison of the MINE and MINE-like method allows us to

assay the importance of the standardization in the MINE

procedure.

A MINE Alternative to D-Optimal Designs for the Linear Model

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e110234



The third method, called MINE with random orthonormal

basis, does not use calculated eigenvectors as suggested by

Theorem 1 from, for example, matrix C. Instead, the third

method creates a set of random orthonormal vectors and

standardizes this basis by B1=2. This method allows us to examine

the effect of choice of the orthonomal basis in Theorem 1 on the

performance of MINE. The final method tested is called MINE

with random rotation. This method combines the previous

methods by taking the chosen set derived in the MINE method

but rotates the set by a random orthonormal basis before

standardizing using a modified Gram-Schmidt Algorithm [29].

In contrast to the MINE method selecting an orthonormal basis,

which is a function of the machine precision in the calculation of

the eigenvectors and eigenvalues of C, the MINE with random

rotation removes this dependence on the machine precision as the

‘‘randomizer’’ and replaces the resulting choice of eigenvectors

(axes) with a random spin of the axes defined by the eigenvectors

of the C matrix.

There were a number of criteria considered for comparing the

MINE methods. These criteria include (1) identifying the nonzero

values of b0 by using a Benjamini-Hochberg multiple test

correction [27] at a 1% significance level, (2) identifying the

correct sign and value for the nonzero components of b0, and (3)

determining the number of false positives.

The first criterion discerns if the methods correctly identify the

nonzero values of b0 as being significant or successful discovery as

given by the test described above. A method is considered better or

more successful the fewer experiments are needed to discover the

truly nonzero regression coefficients. In Figure 3 there are four

graphs provided (A–D) to display this criterion, and all iterations

performed are shown.

The MINE-like method seems to perform the poorest in this

criterion (Figure 3A) in that successful discovery was very late.

However, being satisfied with a lower percentage of correctly

included independent variables (say 7 out of 10) allows for more

replicates meeting this criterion. The method began mostly (over

50% of the replicates) identifying 7 of 10 at the 87th experiment

and only at the 90th experiment did over 90% of the replicates

identify 7 of 10 of the true components of b0. For over 90% of the

replicates to identify all nonzero values of b0 at least 97

experiments were required.

The other three methods performed significantly better than the

MINE-like method. The MINE method performed almost twice

as fast in this criterion as the MINE-like method (Figure 3B). For

example, over 50% identified 7 of 10 at the 45th experiment and

over 90% at experiment 50. Only 63 experiments were required

for over 90% of the replicates to identify 9 of 10 experiments.

However, to get all nonzero values of b0 required much more

time. Sixty-six experiments were needed to get over 50% and 83

experiments before over 90% of the replicates considered

significant.

Both the MINE with random orthonormal basis and the MINE

with rotation performed almost identically (Figures 3C and 3D).

Both identify 90% of the nonzero values of b0 in over 900

replicates at the 47th experiment. However, attempting to identify

all ten nonzero components of b0 in all samples requires much

more data, similar to the MINE method. It takes more than 80

experiments for both of these methods to identify all nonzero

values of b0 in over 800 of the replicates.

The second criterion involved identifying the correct sign and

value for the nonzero beta values. This is evaluated by methods

described earlier. Figures 4A–4D depict an average value for the

first 20 values where the first ten are the nonzero coefficients and

the second ten are zero and are shown as a comparison. As

previously discussed, early detection is important.

As in the previous criteria the MINE-like method performed

poorly (Figure 4A). After the pilot experiment the nonzero b0

values have the correct sign identified and never change sign

though the full run of experiments; however, the experimental b0

values do not reflect the components of the true vector b0 until the

final experiment. Also interestingly the values increase slowly until

about experiment 85 when the absolute value of each b
component drastically increases towards the true value.

MINE performs similarly in pattern to the MINE-like method.

MINE does just as well at sign detection, with no real variable ever

offering the incorrect sign (Figure 4B). The pattern of the MINE is

less gradual than the MINE-like but features a slow growth then a

sudden spike and approaches the asymptote of the true value. The

MINE reaches the slope change between experiments 50–55 and

so it takes the remaining 45–50 experiments to arrive at the

plateau of the real value.

The other two methods also outperform the MINE-like method.

Again, in this criterion the MINE with random orthonormal basis

and the MINE with random rotation perform almost identically

(Figures 4C and 4D). Sign identification seems to be the easiest

criterion as these two also perform flawlessly here. Unlike the

previous two, these methods seem to have a very linear pattern in

the values of the b0 nonzero components.

The next criterion involves comparing the false positives of each

method (Figure 5). A false positive happens if any of the b0 that

are actually zero are considered significant. For comparison, the

average number of incorrectly identified values, averaged over all

simulations for each method, is shown.

Again, we see similar patterns where the MINE-like method

performs poorest. Initially, it looks like it is performing adequately,

since up until experiment 60 there are zero false positives. Since

we have to wait until experiment 85 for any reasonable amount of

success, we find that the false positives are beyond 400 and at some

of the highest peaks compared to the other three methods. The

only way this method could possibly be considered better is that it

drops off faster at the final observed experiment but since this

point is a worst case, this point should not be reached.

The MINE method has a similar pattern to the MINE-like,

again performing in a similar scaled manor. At the point where

information could be accepted for the nonzero values, around

experiment 55, the false positive rate is around 300 which would

allow for about 70% of the variables to be eliminated. If more

experiments are performed, the number identified peaks just

under 460 during experiments 73–84 afterwards it gradually

begins dropping.

The MINE with random orthonormal basis and MINE with

random rotation again display almost identical results. However,

in contrast to the MINE-like and MINE methods, these two have a

more linear growth of false positives, especially after the first 15

and before the last 15 experiments. Due to the data being

displayed on a single graph, the similarities are more observable

with the two lines eclipsing each other. During the most optimal

selection periods between experiments 20–45, the false positives do

not go over 225. This allows for a greater than 75% reduction in

variables. These two do however peak ever so slightly higher with

the average reaching just under 465 but a much later experiment

and are only lower during a 20–30 experiment window. All

simulation results in Figures 3–5 are summarized in an excel file

generated with the program MINE under the keyword linear-

minesimulations at sourceforge.net.

Having determined that the MINE with random rotation and

MINE with random orthonormal basis perform similarly and
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outperform the other two procedures, we conclude by examining

the properties of the MINE with random rotation, namely its

power and false positive rate, in a situation with increased noise in

Table 2. Not unexpectedly with more noise it takes a larger

number of experiments before the power to detect 7 out of 10 true

regression coefficients are significant is large as the noise

(measured by s) is increased. The false positive rate is controlled

when one stays below the number of experiments necessary to

obtain 7 out of 10 true regression coefficients most of the time. As

an example, for a s of 0.05 and a power of 98.3% in Table 2, the

false positive rate is only 0.94%.

Discussion

In 2008 a key problem in systems biology was solved as

identified by Kitano [30] with a new methodology called MINE

[4]. The MINE methodology is used to integrate several cycles of

modeling and experiments to yield discoveries about the under-

lying process being studied. The result of the application of the

MINE methodology was new insights into the relation of the clock

to ribosome biogenesis [1,4]. This new approach to model-guided

discovery has sparked a flurry of developments in MINE

methodology [19,31,32,33]. It is natural to ask how this new

experimental design methodology of MINE is related to classical

experimental design criteria and whether or not we can validate

MINE mathematically as a discovery tool when there are many

parameters and sparse, noisy data (pwwn). A natural place to

validate this new MINE tool is in the framework of the oldest and

mostly widely used statistical model, the linear model.

One of the consequences of the work here is to establish another

view of one MINE procedure. When the same constraints are

imposed on MINE and the D-optimality criterion, then the MINE

procedure discussed here is D-optimal under the linear model.

The effect of minimizing the determinant of the correlation matrix

of the predictions is equivalent to minimizing the determinant of

the variance-covariance matrix of the parameter estimates as

described in detail in the Equivalence Theorem 2 when the same

constraints are imposed on both problems. We suspected this

would be the case from the application of the MINE procedure in

systems biology, where the application of the MINE procedure

appeared to decrease the estimated error variance s2 over time

[4]. In the language of the microscopy analogy, maximizing the

volume observed under the microscope by choice of experiment is

equivalent to reducing the ellipsoid of variation in the optical field

of the parameter space. It is this key relation that Marvel and

Williams exploit to address Kitano’s problem [19].

Having shown the MINE procedure in practice is useful for

discovery [4], it is natural to ask how MINE performs in a simpler

setting of the linear model. We explored its performance under

four variations. In this simpler setting, where we can actually

calculate the ensemble directly without resorting to using Markov

Chain Monte Carlo as used in nonlinear systems [34], we can

solve the associated optimization problem of MINE in Theorem 1

in a way that may suggest new approaches to MINE in nonlinear

models. The result of Theorem 1 was the realization that the

maximization of the MINE criterion here is defined up to an

orthonormal basis of the data space. There are a variety of

different bases that could be selected. Theorem 1 also calls for a

standardization of the basis. This standardization does prove

important as we see upwards of a 50% improvement in some

criteria between the MINE-like and the MINE methods.

First, it was important to see the two more similar methods

(MINE with random orthonormal basis and MINE with random

rotation) performed similarly. Second, these two proved better in

all of the criteria in almost all experiments. These allowed for the

earliest detection, during which they provided the closest to true

values on all variables, and provided the fewest false positives for a

larger sample reduction. The only area at which these two

methods were out performed was in the number of experiments

needed for most of the simulations to identify the real values given

that initial detection had begun. The MINE method once 10% of

the simulations began detecting these values was able to reach

90% more quickly. Though this region was smaller for the MINE

method, the other two were not only able to reach or arrive at the

10% quicker but generally complete (get over 90%) quicker.

A third consequence of this work is to open up a new convex

programming problem that is closely tied to the max det problem

so thoroughly analyzed by Boyd and co-workers [22]. The

argument here in the max det problem is quadratic in the design

parameters with linear inequality constraints potentially as

opposed to an affine argument. An open question is whether or

not this new problem is a convex programming problem. If so,

then much of the machinery developed by Boyd and coworkers

could be developed for the problem here. We have illustrated the

use of the convex programming procedure in our discussions in

this work.

In conclusion, we feel that the MINE discovery tool has opened

up many exciting design problems that will transform the way

scientists now integrate theory and experiment in a number of

areas beyond systems biology [3,35,36].
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