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Abstract:Allograft rejection remains a significant concern after all solid organ transplants. Although qualitativemorphologic anal-
ysis with histologic grading of biopsy samples is the main tool employed for diagnosing allograft rejection, this standard has sig-
nificant limitations in precision and accuracy that affect patient care. The use of endomyocardial biopsy to diagnose cardiac
allograft rejection illustrates the significant shortcomings of current approaches for diagnosing allograft rejection. Despite disap-
pointing interobserver variability, concerns about discordance with clinical trajectories, attempts at revising the histologic criteria
and efforts to establish new diagnostic tools with imaging and gene expression profiling, no method has yet supplanted
endomyocardial biopsy as the diagnostic gold standard. In this context, automated approaches to complex data analysis
problems—often referred to as “machine learning”—represent promising strategies to improve overall diagnostic accuracy. By fo-
cusing on cardiac allograft rejection, where tissue sampling is relatively frequent, this review highlights the limitations of the current
approach to diagnosing allograft rejection, introduces the basic methodology behind machine learning and automated image fea-
ture detection, and highlights the initial successes of these approaches within cardiovascular medicine.

(Transplantation 2018;102: 1230–1239)
Cardiac allograft rejection (CAR) occurs in 30% to 40%of
transplant recipientswithin the first year posttransplant,1-3

and carries an increased risk of both acute graft failure and
reduced graft longevity. Because of the high morbidity of
CAR when diagnosed after symptoms develop, surveillance
endomyocardial biopsy (EMB) has been included in heart
transplantation guidelines since 1990.4,5 Although EMB is
the established gold standard for the diagnosis of CAR, the
clinical utility of EMB using standard hematoxylin and eosin
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(H&E) histologic analysis is limited by marked interobserver
variability and significant discordance between the histologic
grade and clinical impression of CAR severity. These limita-
tions result in undertreatment of important rejection events
as well as overtreatment of less clinically important rejection
events, both of which introduce a potential for patient harm.
Although these concerns are particularly well characterized
in cardiac allografts due to the frequency of EMB sam-
pling, they are relevant to all solid organ transplants that
periodically rely on tissue characterization to make
important diagnoses.
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Automated approaches to complex data analysis prob-
lems, often referred to as “machine learning,” (ML) represent
promising strategies to improve overall diagnostic accuracy
in solid organ transplants. To highlight the potential of ML
to improve the histologic analysis of allograft biopsies, we re-
view the limitations of the current diagnostic approach to
transplant rejection, introduce the basic methodology behind
ML and automated image feature detection, and highlight the
initial successes of these approaches within cardiovascular and
transplant medicine. Finally, this review discusses future applica-
tions for ML as a precision medicine tool to enable individual-
ized management of solid organ transplant recipients. Based on
all these considerations,we assert that applyingML technologies
to allograft rejection is an opportunity whose time has come.
THELIMITATIONSOFSTANDARDOFCAREEMBFOR
REJECTION SURVEILLANCE

Because of the frequency and morbidity of CAR, heart
transplant recipients are monitored with surveillance proto-
cols that typically result in 12 or more scheduled EMBs in
the first year posttransplant alone.4 This widespread use of
tissue sampling led to the development of the 1990 Interna-
tional Society for Heart and Lung Transplantation (ISHLT)
Working Formulation for the Standardization of Nomencla-
ture in Heart Transplant to formalize the histologic grading
of CAR in EMB samples.5 The histologic criteria outlined
in this landmark publication called for light microscopy with
H&E staining and relied on a qualitative examination for the
presence of inflammatory cell infiltrates, the extent of infiltrates,
and for signs of “myocyte damage” (Table 1). Although these
criteria succeeded in implementing an international standard
nomenclature and facilitating research, the qualitative and
subjective nature of the morphologic grading scheme resulted
in confusion and inconsistencies among users6-12 (Table 1).

Attempts to revise the criteria were made in 19959 and
20017 before new formal consensus criteria were established
in 2004. The ISHLT 2004 revised framework6 acknowledged
a need for “further characterization of the nature of the in-
flammatory infiltrate and a definition of myocyte damage,”
because there was widespread recognition that the vagaries
of the language used in the 1990 scheme was a major
TABLE 1.

1990 and 2004 Morphologic grading criteria for CAR

1990 Criteria

Grade 0 No rejection
Grade 1—mild

A—focal Focal perivascular and/or interstitial
infiltration without myocyte damage

B—diffuse Diffuse infiltration without damage
Grade 2—moderate (focal) One focus of infiltration with myocyte damage
Grade 3—moderate
A—focal Multifocal infiltration with myocyte damage
B—diffuse Diffuse infiltration with myocyte damage

Grade 4—severe Diffuse polymorphous infiltration with extensive
myocyte damage +/− edema +/−
hemorrhage +/− vasculitis

Adapted from Stewart et al.6
contributor to the poor reliability and accuracy of CAR grad-
ing. However, despite significant exposition in the revised
framework, qualitative and largely subjective language re-
mains the foundation of histologic grading for CAR. How
many inflammatory cells define an infiltrate? Is a larger infil-
trate more important than a small one? How many focal in-
filtrates, or how large a single focus, before a sample is
deemed “diffusely” infiltrated? How far away from a blood
vessel does an infiltrate have to extend before it is no longer
“perivascular”? What exactly is myocyte damage, and should
damage without necrosis be differentiated from frank necro-
sis? The answers to these (and many other) questions may
have important implications for the mechanism, severity, and
treatment of rejection, but are not clearly addressed in the cur-
rent rejection grading schema.

Poor Reliability and Diagnostic Accuracy
Because of the vagaries of the diagnostic criteria and the

inherent subjectivity of traditional histologic analysis, the
current diagnostic approach to CAR suffers from high inter-
observer variability and significant discordance between
histologic and clinical impressions of rejection severity. Inter-
observer variability has been a widely recognized limitation
of the morphologic assessment of CAR since the widespread
adaption of the EMB procedure.3,10-14 In a study by Angelini
et al,13 a combined κ statistic of 0.39 was calculated for
grades assigned by the 18 study pathologists using the 2004
ISHLT criteria. Although this represented a small improve-
ment over the 1990 criteria (κ = 0.31), this is still far from
the degree of reproducibility one would expect from a gold
standard test. In the Cardiac Allograft Rejection Gene Ex-
pression Observational II Study,10 concordance between a
panel of 4 independent pathologists and local pathologists
at study centers was examined. Although there was modest
agreement between the 2 groups at 71% overall, there was
a dismal agreement of 28.4% at the higher levels of rejection
(grade 2R and higher) which typically result in major alter-
ations of immunosuppression.

Issues with diagnostic accuracy have also plagued the cur-
rent histologic approach to CAR. It has long been recognized
that histologic rejection grade does not necessarily correlate
with clinical findings of rejection as assessed by history/
2004 Revised criteria

Grade 0R No rejection
Grade 1R—mild Interstitial and/or perivascular infiltration

with up to 1 focus of damage

Grade 2R—moderate 2 or more foci of infiltration with myocyte damage

Grade 3R—severe Diffuse infiltration with multifocal
myocyte damage +/− edema +/−
hemorrhage +/− vasculitis
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physical, echocardiography, and invasive hemodynamics. As
far back as 1985, Greenberg et al15 noted that patients with
and without biopsy evidence of rejection did not significantly
differ in hemodynamic parameters measured by right heart
catheterization. Larger studies by Frist et al16 in 1987 and
Bolling et al17 in 1991 noted similar findings. Although these
results were seen as supporting the continued use of EMB for
CAR surveillance under the theory that prevention of a po-
tential clinically important future rejection required early di-
agnosis histologically,12,17 one could also interpret these
results as evidence of the poor positive predictive value of
standard histologic grading when the disease of interest is
clinically important rejection. In line with the latter interpre-
tation, Klingenberg et al18 withheld treatment in a case series
of 17 grade 3A (ISHLT 2004 grade 2R) rejections, all of
whom experienced benign clinical courses with resolution
of histologic rejection on subsequent biopsies. In the IMAGE
trial, patients with 2R rejection based on retrospective review
by a panel of expert pathologists who received no treatment
(due to initial 1R grading) suffered no worse outcomes than
patients initially and accurately diagnosed with 2R rejection
who were treated per study protocol.19,20

Underdiagnosis due to poor negative predictive value also
plagues the current diagnostic framework. Dandel et al21 ex-
amined 364 biopsies in 190 transplant patients to examine
relationships between histologic EMB grades, clinical impres-
sion of rejection, and echocardiography data. There were 59
clinically important rejections in this study, and nearly half
(49%) had histologically mild rejection on EMB (grade 1 or
lower). Indeed, the concept of ‘biopsy negative rejection’ to
describe cases of clear clinical rejection in the absence of his-
tologic evidence of significant cellular rejection has been a
source of concern and investigation for years.12,14,22,23 Also,
although updates to ISHLT grading criteria in 2004 and the
subsequent addition of more refined antibody-mediated re-
jection criteria have helped reduce the burden of biopsy neg-
ative rejection cases, there remains a number of false-negative
EMBs in the setting of clinically important rejection.22,23 Al-
though each of these examples represents a small case series
of select patients, they suggest that the features currently used
to assess rejection severity may not be optimal, and that new
approaches to identifying other features might achieve better
diagnostic accuracy.

Despite updates and revisions, there remain significant
shortcomings with both the precision and accuracy of tradi-
tional EMB histologic analysis for diagnosing rejection. The
ISHLT rejection grading framework has been invaluable for
standardizing terminology, allowing for better study of heart
transplant rejection on a population level over the past sev-
eral decades. However, this same framework has clear limita-
tions on an individual level, and looks increasingly outdated
in a 21st century healthcare environment that is focused on
quantifiable data and the delivery of personalized precision
medicine. A new approach is needed to improve our ability
to accurately and reliably diagnose and predict CAR.
IMPROVED PREDICTION AND PRECISION WITH ML
Traditional prediction modeling is based on regression

analysis of a few selected clinical features that are thought
to represent the important risk factors for a given disease or
outcome. In the field of cardiovascular disease (CVD), risk
factors such as age, hypertension, hyperlipidemia, smoking,
and diabetes may be used, with the modeling process involv-
ing attempts to adjust the relative weights of these factors to
provide the best prediction formula possible for a given co-
hort. Although a longstanding and well-established ap-
proach, risk models generated this way are used relatively
sparingly in daily practice24 due to lack of external validation
in diverse cohorts, modest concordance statistics, and poor
performance on an individual patient level.25-28 For example,
nearly half of incident myocardial infarctions (MI) will occur
in patients who have 1 or no conventional risk factors and
are thus not deemed to be at high risk by standard risk assess-
ment tools.29,30 Findings like this highlight the significant
shortcomings of traditional modeling with regards tomaking
accurate predictions in complex biological disease processes.

The limitations underlying the classical approach to data
analysis and risk prediction arise from several sources. Tradi-
tional prediction models rely on hand-picked variables with
established independent strong risk associations and easily
recognizable etiologic associations. The statistical regression
modeling approaches that combine these few selected risk
factors then make an implicit assumption that each risk fac-
tor is related in a linear fashion to the outcome of interest.
Taken together, the traditional statistical approach oversim-
plifies the complex relationships present in many disease pro-
cesses, which include large numbers of stronger and weaker
risk factors, some with potentially unexpected and nonlinear
interactions.28,31,32 Moreover, the scale and structure of
complex modern data sets are not easily managed using tra-
ditional hands-on data analysis techniques. This results in a
pragmatic but methodologically flawed pruning of data sets
for easier human analysis, with a priori biases determining
which variables are important enough to include in themodel
set and which are not. Although often necessary for tradi-
tional statistical modeling, this process limits the exploration
and weighting of unexpected contributors to risk.

ML and Big Data
The term “big data” is frequently used to describe the

large, complex, and often unstructured or semistructured
data sets that arise in the digital age with widespread data
capture and storage. The wealth of big data available in
21st century healthcare originating from diverse sources in-
cluding the electronic health record, “omics” research, insur-
ance databases, and wearable technologies, has led to
increased interest in methods to better use data-rich resources
and extract the maximum amount of clinically important in-
formation from them. Machine learning approaches have
proven to be the most promising method of achieving this
goal. Machine learning is a core component of artificial in-
telligence, contributing to computer programs that autono-
mously learn through experience to generate predictions.
Over the past 2 decades, ML has progressed from a theoret-
ical discipline, at the fringes of computer science, statistics
and cognitive science, to a broadly applicable, widespread
and commercially important technology.ML programs have
diverse applications, ranging from weather prediction to
credit card fraud detection, and from speech recognition to
self-driving cars.

The advantages of advancedML approaches over conven-
tional data analysis and predictionmodeling are a function of
both the amount of data that can be processed and the

http://www.transplantjournal.com
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manner in which data are analyzed. Although fundamentally
any form of automated statistical modeling from basic linear
regression to advanced deep learning neural networks can be
described as a ML approach, advanced ML approaches are
those which leverage modern computer processing power
to perform more robust statistical analysis with a minimum
of human input (and consequently, aminimumof a priori hu-
man bias). This allows for efficient processing of “big data”
sources, exploiting the complex, nonlinear relationships that
frequently arise in data-intensive fields while doing so in a
comprehensive and unbiased fashion. In other words, ad-
vanced ML approaches assume less about the nature of the
data to discover more and predict better.

ML in CVD and Transplant Medicine
Machine learning approaches to data analysis can be de-

scribed generally as “supervised” or “unsupervised.” In su-
pervised learning, the outcome of interest for each case in a
data set is known and made available to the computer,
allowing for the generated algorithm to correlate variables
in the data set with the presence or absence of that outcome.
Supervised learning is used for prediction, using a training set
of manually labeled examples to train the algorithm (this is
the “supervision” in supervised ML), then moving on to an
unlabeled data set to validate predictive accuracy (Figure 1).
For example, if the outcome of interest is CAR, a supervised
ML approach would involve providing the algorithm with
a labeled data set of cases with confirmed ‘rejection’ or
confirmed ‘no rejection’ along with a number of potential
FIGURE 1. Supervised ML schematic. Training data set undergoes au
labeled outcomes are fed into the selected ML algorithm. Many potentia
put (regression for continuous outcomes, classification for categorical o
curacy of predictive model based on the manually labeled outcomes,
unlabeled data.
variables that may be related to this outcome. Because the
process of algorithm calibration is iterative, the algorithm
can independently adapt as new data are added. As it learns
from each consecutive case, a highly reliable and increasingly
accurate prediction model is created. The limitations of super-
vised learning are often related to the specific method/
algorithm used, with some prone to oversimplifications (eg,
linear and logistic regressions), whereas others are more
prone to overfitting (eg, decision trees and random forests),
and still others are limited by high demands on processing
power (eg, neural networks, support vector machines).
However, as a general rule, the quality of the classification
model generated with supervised learning is most dependent
on the quality of the data set with regard to completeness
and noise, as well as the accuracy and generalizability of the
human-labeled data set used for training (Figure 1).

Because of the availability of registry and electronic medical
record data, supervised ML approaches to large and complex
medical data sets have been the most widely implemented in
CVD. Weng et al31 used a registry of family practices in the
United Kingdom to analyze 30 variables of incident CVD
events in 378256 patients, with a neural network ML
method predicting 7.6%more cardiovascular events in this
cohort than the 2013 ACC/AHA risk model. Supervised
learning ML approaches have been implemented to com-
bine data from different sources, such as clinical data and
annotated imaging findings to refine prediction as well.
Motwani et al33 recently published the results of an ML algo-
rithm to predict 5-year mortality in a cohort of 10030 patients
tomated feature extraction, and this information along with manually
l ML methods can be applied to data, depending on the desired out-
utcomes). After iterative adjustment of feature weighting to refine ac-
the algorithm is considered “trained” and ready for analysis of new
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with suspected CAD who were referred for coronary CT an-
giogram based on 25 coronary CT angiogram parameters
and 44 clinical parameters from the CONFIRM international
registry. Their ML method using “boosted” decision trees re-
sulted in an area under the receiver-operator characteristic
curve (AUROC) of 0.79, which was far higher than the
AUROCs obtained by traditional clinical or radiographic
scores (Framingham Risk Score, 0.61; Segment Stenosis
Score, 0.64; Segment Involvement Score, 0.64; or Modified
Duke Index, 0.62). In transplant medicine, Yoo et al34 re-
cently used an ensemble of ML models to predict long-term
graft survival in a retrospective cohort of 3117 kidney trans-
plant recipients in South Korea. The combined ML model
using 33 patient-level variables achieved an index of concor-
dance of 0.80, significantly outperforming a conventional
Cox survival model using the same patient variables which
achieved an index of concordance of only 0.60.

Unsupervised ML identifies groups and clusters within
data rather than predicting an outcome from data. In unsu-
pervised learning, the data set is examined for hidden pat-
terns and groupings among the collected variables (Figure 2).
Returning to examples within CAR, in a data set of patients
with significant confirmed CAR containing a wide variety
of clinical variables, an unsupervised ML approach may
be able to identify distinct subgroups of CAR based on the
clustering of certain variables. Female patients with a prior
pregnancy and low ISHLT grades on EMB may form a
cluster (perhaps representing antibody-mediated rejection
cases?), or young patients longer than 1 year posttransplant
with low tacrolimus levels may form another (noncompliance
or lost insurance?). Through this process, groups for further
characterization and investigation can be identified from
FIGURE 2. Unsupervised ML schematic. As with supervised learning,
information being analyzed by the selected ML algorithm. Unlike supervis
prediction. Instead, data are analyzed for intrinsic patterns, and through
clusters within the data can be generated.
large, complex data sets. An unsupervised approach is useful in
heterogeneous populations and disease entities to identify
phenotypes within a broader syndrome, and is commonly
used in “omics” research. The limitations of unsupervised
learning methods are that they tend to be quite sensitive to
outliers and noisy data and that they inherently do not
provide “answers” in the form of a diagnosis or classification
or prediction. Shah et al35 effectively used an unsupervised
ML approach to identify pheno-group clusters within a cohort
of 397 patients with heart failure with preserved ejection
fraction. After identifying 3 strong clusters based on clinical,
demographic, and echocardiographic data, a supervised ML
approach was then used to compare different phenogroups
based on clinically important outcomes of interest such as
hospitalization (Figure 2).

The ability of ML approaches to perform unbiased analy-
sis of “big data,” to boost predictive power, and to identify
hidden structures in data have already begun to impact
CVD and transplant research. Also, with dozens of open
source ML frameworks available and major companies such
as Google, Amazon, IBM, and Microsoft offering profes-
sional consultative ML services, the role of ML methods in
research and patient care will continue to grow. With con-
current investments in medical informatics and precision
medicine, potential cost savings due to improved disease
forecasting with ML methods could be as high as US $300
billion in the United States alone according to a recent report
by the McKinsey Global Institute.36 However, massive data
set interrogation is only 1 aspect of ML, and even more
novel and exciting applications for computerized data anal-
ysis are likely to be realized as ever more complex ML
methods are introduced to medical practice and research.
a training data set undergoes automated feature extraction, with this
ed learning, there are nomanually labeled outputs to “train” and refine
iterative adjustment input data, increasingly refined cutoffs for distinct
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QUANTITATIVE IMAGE ANALYSIS, DEEP LEARNING,
AND NEURAL NETWORKS

Although the ML approaches discussed so far can identify
relationships in large data sets in a versatile and comprehen-
sivemanner, there remains a fundamental bias common to all
of them. This bias is a reliance on traditional data—those
pieces of transcribable information deliberately compiled for
the sake of future quantitative analysis. Constraining analysis
to only the categorical and continuous variables that were al-
ready recognized as data worth collecting imposes a funda-
mental limitation on the ability of computer algorithms to
identify truly novel relationships and predictors. Implementing
ML approaches on raw and nontraditional data therefore
opens up the possibility of discovering new quantifiable rela-
tionships, features, and patterns in places where humans typi-
cally do not think to look for them. This includes analysis of
diverse sources of raw, noisy, and unconventional information.

This field can be classified into 2 basic approaches—the
older handcrafted feature analysis and the newer deep learn-
ing feature analysis. In general, handcrafted feature analysis
refers to automated image segmentation and analysis that re-
lies on a base set of manually labeled features. This approach
has the potential to expand on the base feature set by quanti-
fying and uncovering intensity and positional relationships,
but is fundamentally defined by the human-labeled features
that serve as a primer. Deep learning, on the other hand, is
the latest development in the field, and through a neural net-
work approach turns the work of feature detection completely
over to the software that applies filters and transformations to
uncover quantifiable relationships within an image.

There are strengths and weaknesses to both approaches.
Handcrafted features provide transparency due to the human-
labeled features that serve as the basis of the method, and this
fact makes the features uncovered and predictions made more
readily interpretable and explainable due to a foundation built
upon things that the programmer already knows are relevant.
Of course, this basis on what the programming team chooses
to label introduces potential bias and may limit truly novel fea-
ture identification. This method is also labor intensive, because
manual image labeling takes significant upfront effort and time.
Moreover, if insufficient domain-specific information is known
about the images being analyzed, then it will constrain the abil-
ity to manually label features of relevance that serve as the basis
for a handcrafted approach. These limitations are the reason
deep learning approaches have undergone rapid development
and dissemination in recent years. Deep learning neural net-
works have their own limitations, requiring larger training
sets and often being described as a “black box” due to the
difficulty the programming team often has in understanding
exactly why the algorithm makes the predictions it makes.
However, the lack of upfront labor, as well as the removal
of a priori bias, results in algorithms that are incredibly pow-
erful and frequently provide more accurate predictions than
their handcrafted counterparts.

Deep Learning Neural Networks
Deep learning with convolutional neural networks (CNNs)

is the ML approach behind cutting edge applications, like
computer speech recognition, natural language processing,
and computer vision/image analysis, each of which represent
disciplines in which unconventional raw data (a sound, a
letter, or a pixel) comprise the input data of interest. For
example, in deep learning for image analysis, each pixel
that comprises a digital image is a quantifiable piece of input
data. Digital images are in actuality amatrix of numbers with
position within the matrix corresponding to position in space
and different numerical values corresponding to brightness/
color. In a CNN, this matrix of numbers is passed through
layers of interconnected artificial neurons (“nodes”) which
perform filtering operations (“convolutions”) and compressing/
aggregating operations (“pooling”) to identify the often obscure
fundamental features of importance (“primitives”) for pre-
dicting the desired output of interest. The weighting of these
computer-identified primitive image features is adjusted iter-
atively as more data are analyzed based on their relative
value in accurately classifying and predicting the outcome,
ultimately creating a comprehensive feature map that cap-
tures complex, nonlinear relationships in a way which max-
imizes predictive power (Figure 3). For a more detailed and
comprehensive review of deep learning and neural networks,
we refer readers to reviews by Janowczyk et al37 and Lecun
et al,38 whereas for a more rigorous technical overview, we
refer readers to Schmidhuber39 (Figure 3).

Quantitative Image Analysis in Medical Research
With an unparalleled ability to identify novel features of

predictive importance, quantitative image analysis has begun
to fulfill some of its potential as a translational technology in
the field of digital pathology. Although the human brain has
an undeniably powerful pattern recognition capacity, there
are inevitably unrecognized patterns and unquantified vari-
ables in histologic samples that make this discipline an ideal
place to use handcrafted feature analysis and, more recently,
deep learning neural networks.Work in this regard has made
the greatest headway in the tissue-rich field of oncology, in
particular in breast cancer research. Beck et al40 applied an
earlier method of digital image analysis and manually identi-
fied features along with anML classifier to analyze tissue mi-
croarrays of breast cancer biopsies. Using 248 local samples
for algorithm training before validating on an external set
of 328 samples, the “computerized pathologist (C-Path)” al-
gorithm identified 6642 uniquemorphologic features in these
microarrays, creating a predictive model based on these mor-
phologic features and the outcome of interest, 5-year sur-
vival. The ML-derived risk score was significantly associated
with 5-year survival independent of any other clinical, genetic
or molecular factor. Moreover, the C-path algorithmwas able
to accurately stratify risk of mortality within each conven-
tional morphologic tumor grade, identifying higher and lower
risk patients that would otherwise be homogeneously labeled.
When bootstrapping analysis was performed on the 6642
morphologic features that made up the C-path risk score, 11
strong and completely novel morphologic predictors of
mortality were identified. Interestingly, 3 of these features
pertained to the stroma rather than the neoplastic cellular
regions of the tissue, whereas an additional 7 were relational
features between neoplastic cells and stroma representing
larger-scale tissue architectural morphology. Unexpected find-
ings like these that have inspired the use of evenmore powerful
deep learning morphologic classifiers in the field of digital
medical image analysis.

Cruz-Roa et al41 recently performed a similar analysis
using a state-of-the-art deep learning CNN on 349 breast
cancer biopsies to determine the presence of invasive ductal



FIGURE 3. Deep learning schematic with a CNN, designed to classify an input image as either a dog or a cat. The initial digital image is an-
alyzed as a matrix of numerical values corresponding to position and color. This matrix is analyzed through a series of “convolutions” in which
filters are applied (sharpening, Gaussian blurring, edge detection etc.) to extract underlying features. Pooling steps compress the data, reducing
the features to their base components. After a user-determined number of convolutions and pooling steps have been performed, all of the iden-
tified features are combined in “fully connected” layers for final predictive model generation. By a process of “back propagation,” weights of
different features are iteratively adjusted to improve prediction when a supervised learning method is used.

1236 Transplantation ■ August 2018 ■ Volume 102 ■ Number 8 www.transplantjournal.com
adenocarcinoma. The CNN algorithm performed well at this
task, with the most notable finding being a true-negative rate
of 99.64% suggesting great potential for this technology to
be used as a decision support and screening tool to save pa-
thologists time on reading negative biopsies. Notably, while
the study by Beck et al in 2011 analyzed tissue microarrays
taken from biopsy samples due to limitations in computing
power, the study by Cruz-Roa et al performed nearly 5 years
later was able to perform whole-slide image analysis, reduc-
ing the risk of sampling bias which could be a critical limita-
tion when analyzing biopsy samples for evidence of invasive
carcinoma. Arevalo et al42 demonstrated an unsupervised
CNN algorithm with a 98.1% classification accuracy for
basal cell carcinoma from histopathology, significantly
outperforming other state-of-the-art methods for tumor iden-
tification. In similar experiments beyond oncology, Gulshan
et al43 used deep learning CNNs to analyze digitized images
to demonstrate an impressive AUROC of 0.99 for the diag-
nosis of diabetic retinopathy on a validation set of nearly
12000 funduscopic images. Taken together, these experi-
ments demonstrate the promise of deep feature ML methods
to analyze complex, raw, and unconventional digital image
data, generating not only robust prediction and discrimina-
tion tools, but also discovery tools with the ability to shed
new light on disease processes at the morphologic level.

FUTURE DIRECTIONS
Despite the progress and promise deep learning feature

identification has already shown this decade, these tech-
niques have yet to make an impact on CVD or transplant
medicine. Recently, a team of researchers from the University
of Pennsylvania and Case Western Reserve University pre-
sented a first-in-heart deep learning CNN for the classifica-
tion of failing versus nonfailing hearts based on histologic
samples from full thickness biopsies taken at the time of heart
explant or VAD placement44 (Figure 4). This deep learning
algorithm achieved a sensitivity of 99% and specificity of
94%, far exceeding the performance of 2 expert pathologists.
The highly accurate performance of this CNN not only serves
to support the theory that deep learning methods can be used
for cardiac tissue analysis, but also suggests that some of the
perceived limitations of morphometric analysis based on
random biopsies may be not be so important when a deep
learning approach is used. Fundamentally, biopsy procedures
are limited by the potential for sampling error. The classic
histologic lesion of ischemic cardiomyopathy—areas of
dense replacement fibrosis—should occur in some locations
and not others within the myocardium, and because of this
heterogeneity, should impose an intrinsic limitation on the
degree of diagnostic accuracy achievable when analyzing
random biopsies. And yet, the failing/nonfailing CNN classifier
described above performed at a very high sensitivity on a
cohort containing many ischemic cardiomyopathy patients,
suggesting that although the most recognizable histologic
feature of a disease process may be patchy, other more
homogenously distributed features are present that a deep
learning CNN can use to generate strong predictions.
Nevertheless, this work serves only as a proof of concept
highlighting the potential of the deep learning method in
cardiac tissue. To fulfill the translational promise of advanced
ML, for tissue analysis, what is needed is an important
diagnostic challenge with well-documented limitations
and a clear need for enhanced predictive accuracy. Ideally
this disease process will have plenty of raw, complex
primary data that has proved resistant to quantifiable
and reproducible analyses. In this context, the diagnosis
of allograft rejection appears to be an ideal candidate for
such research (Figure 4).45

The development of deep-learning algorithms within
transplant rejection should focus initially on those areas
where the current approach is most obviously falling short.
For example, high-throughput decision support systems
using deep-learning CNNs could be developed relatively eas-
ily to use the ISHLT grading framework in a way that adds
value to the standard pathologist interpretation. Given the
somewhat arbitrary nature of discrete rejection grade cutoffs
and the significant and well-documented inter-reader vari-
ability, a CNN that produces a discrete ISHLT grade is
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FIGURE 4. Deep learning workflow for classification of Fal and NF based on selected ROIs from heart tissue samples. Fal, failing; NF,
nonfailing; ROIs, regions of interest. Courtesy of Nirschl et al.45
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probably not the right approach. Instead, the CNN can pro-
vide a probability for each rejection grade from 0R to 3R
that complements the pathologist's interpretation. Not all
EMBs resulting in a common rejection grade look the same,
and it is likely that understanding the variability within each
grade has value. By providing probability outputs instead of
all-or-nothing classifications, this CNN would be able to
define a biopsy sample as, for example, having majority
1R character but also with a significant (albeit minority)
amount of 2R character. This information can be used to as-
sist the pathologist in labeling borderline cases andmay also
be useful to the transplant physicians in planning treatment
changes or follow-up biopsy schedules.

Alternatively, deep-learning CNNs could be developed
that leave the ISHLT grading framework behind, training
the CNN on EMB samples that are classified not by their
ISHLT grade but based on the clinical impression of rejection
severity. Through this approach, the CNN would identify
tissue-level features that correlate strongly with clinically im-
portant rejection. Such approaches would be more likely to
identify variant subtypes of allograft rejection: cellular,
antibody-mediated, and combined rejections. Here again,
outputs could be graded based on both severity and the de-
gree of diagnostic certainty.

In considering the role of deep learning neural networks in
CVD and rejection surveillance in particular, it is important
to recognize not only their power as predictors but also their
potential as tools of discovery. Although commonly referred
to as “black boxes” because of the perceived opacity of the
logic and dimensional reduction processes going on within
a neural network, the accuracy of this criticism is increasingly
being called into question as new approaches to validate and
interrogate the inner workings of these powerful algorithms
are developed. Recently, Sundararajan et al46 used a novel
“Integrated Gradients” method to uncover the features of
highest prognostic importance behind a series of deep learn-
ing image classifiers, including the Gulshan diabetic reti-
nopathy classifier discussed previously. With application
of the integrated gradients, an output image corresponding
to the input image but highlighting the specific patterns and
areas associated with the choice of diagnosis by the classi-
fier can be produced. This work suggests that it is possible
to have the best of both worlds—a fully unbiased, nonlin-
ear, automated deep-learning prediction system along with
the transparent feature identification for user reassurance
or hypothesis generation. Leveraging deep learning feature
identification to diagnose and predict episodes of CAR is
certainly a valuable pursuit, but from a transplant medicine
standpoint, prediction is only 1 part of a larger clinical
problem. If researchers can “see” inside of the machine
and apply domain-specific knowledge to the features dis-
covered through unbiased deep learning analysis, better
histopathologic grading schemes can be developed and
a better understanding of the mechanisms of rejection
achieved. This in turn could lead to earlier and better
targeted therapeutics to disrupt the rejection process. Addi-
tionally, some demonstration of biological plausibility, via
explicit identification of discrete features with a potential
etiologic role in CAR, will likely be necessary before wide-
spread adaption of CNN classifiers into clinical practice
can be expected.

Finally, it is important to recognize that the potential of
ML in rejection surveillance can extend beyond conventional
H&E analysis alone. Deep-learning image analysis has the
potential to provide additional value when paired with more
sophisticatedmicroscopy techniques, such as multiplex immu-
nostaining or electron microscopy.47-49 Moreover, because
not every important process and predictor of rejection is neces-
sarily evident onmorphologic analysis alone, there is great op-
portunity for synergy when ML techniques for analyzing
morphologic data are combined with techniques for analyzing
other forms of patient-level data. Whether incorporating broad
electronic medical record laboratory and demographic data
with deep learning analysis of morphologic samples,47 incor-
porating Allomap or Allosure results, or exploring deeper
histogenomic and histoproteomic relationships,50 combined
analytic approaches have the potential to offer more robust
prediction in the clinical realm andmore comprehensivemech-
anistic study in the research realm.
CONCLUSIONS
In this article, we have reviewed the well-studied andwidely

recognized limitations of conventional histologic analysis of
EMB samples for the diagnosis of CAR. These limitations in-
clude simplistic and vague feature identification criteria, signif-
icant interobserver variability, and a concerningly high rate of
potentially misleading “false” positive and negative histology
results. These limitations lead to confusion among providers
and potential patient harm through both undertreatment of
important rejection events and overtreatment of less clinically
significant rejection events. For more than 30 years, the



1238 Transplantation ■ August 2018 ■ Volume 102 ■ Number 8 www.transplantjournal.com
limitations of conventional EMB analysis for CAR have been
recognized, and despite multiple attempts at revising the
histologic criteria and a multitude of efforts to establish
new diagnostic tools with imaging51-53 and gene expression
profiling,20,54,55 no method has yet supplanted EMB as the
diagnostic gold standard. The failure of alternative ap-
proaches to make a major impact on rejection surveillance
is a complex issue and beyond the scope of this review, but
it bares mentioning that validating any new method in this
field will be inherently limited by the failings of the stan-
dard they attempt to compare themselves with. Proving
the worth of noninvasive rejection surveillance methods
through comparison to an established standard which suf-
fers from poor inter-rater agreement and questionable ac-
curacy is a setup for failure. Because these issues have
cemented tissue diagnosis as the diagnostic standard in re-
jection going forward (regardless of what complimentary
imaging and gene profiling techniques evolve to reduce
the frequency of tissue samples in the future), the onus is
on the transplant community to develop more advanced
morphologic analysis tools to bring the field up to the stan-
dards of 21st century precision medicine. Deep ML feature
identification could provide invaluable decision support to
pathologists in the diagnosis of CAR, ensuring a reliable stan-
dard output, improving diagnostic accuracy, and uncovering
previously unrecognized histologic patterns and features of
potential diagnostic or prognostic importance. By providing
a better standard of diagnosis, these methods can also reinvig-
orate research into complementary and alternative methods of
rejection surveillance. A significant investment in the develop-
ment of advanced computer-assisted morphologic classifiers
would be consistent with the innovative and pioneering re-
search spirit that has defined advanced heart failure and
transplant medicine and would keep the field at the leading
edge of this century's push toward technologically integrative
precision medicine.
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