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�-Catenin is the primary link between the cadherin�catenin
complex and the actin cytoskeleton. Mammalian �E-catenin is
allosterically regulated: the monomer binds the �-catenin�

cadherin complex, whereas the homodimer does not bind
�-catenin but interacts with F-actin. As part of the
cadherin�catenin complex, �E-catenin requires force to bind
F-actin strongly. It is not known whether these properties are
conserved across the mammalian �-catenin family. Here we
show that �T (testes)-catenin, a protein unique to amniotes that
is expressed predominantly in the heart, is a constitutive actin-
binding �-catenin. We demonstrate that �T-catenin is primar-
ily a monomer in solution and that �T-catenin monomer binds
F-actin in cosedimentation assays as strongly as �E-catenin
homodimer. The �-catenin��T-catenin heterocomplex also
binds F-actin with high affinity unlike the �-catenin��E-catenin
complex, indicating that �T-catenin can directly link the
cadherin�catenin complex to the actin cytoskeleton. Finally, we
show that a mutation in �T-catenin linked to arrhythmogenic
right ventricular cardiomyopathy, V94D, promotes homodi-
merization, blocks �-catenin binding, and in cardiomyocytes
disrupts localization at cell-cell contacts. Together, our data
demonstrate that �T-catenin is a constitutively active actin-
binding protein that can physically couple the cadherin�catenin
complex to F-actin in the absence of tension. We speculate that
these properties are optimized to meet the demands of car-
diomyocyte adhesion.

The adherens junction (AJ)2 mechanically couples the
actin cytoskeletons of adjacent cells to establish and main-
tain intercellular adhesion (1–3). The core of the AJ is the
cadherin�catenin complex (4). Classical cadherins are single

pass transmembrane proteins with an extracellular domain that
mediates calcium-dependent homotypic interactions (5). The
adhesive properties of classical cadherins are driven by the
recruitment of cytosolic catenin proteins to the cadherin tail:
p120-catenin binds to the juxtamembrane domain, and
�-catenin binds to the distal part of the tail (6). �-Catenin, in
turn, recruits �-catenin to the cadherin�catenin complex (7, 8).
�-Catenin is a filamentous actin (F-actin)-binding protein and
the primary link between the AJ and the actin cytoskeleton
(9 –12).

In mammals, �E (epithelial)-catenin is allosterically regulat-
ed: the monomer binds the �-catenin�cadherin complex,
whereas the homodimer does not bind �-catenin but interacts
with F-actin (9, 10). �-Catenin binding to �E-catenin sterically
hinders F-actin binding (8, 13), explaining how �E-catenin as
part of the cadherin�catenin complex has a weak affinity for
F-actin. More recently, it was shown that the cadherin�catenin
complex binds strongly to F-actin under force, indicating that
the �E-catenin-actin interface is dynamically regulated by ten-
sion (12). In addition, evidence suggests that tension can regu-
late �E-catenin conformation: actomyosin-generated force
stretches the middle (M) domain to reveal binding sites for
cytoskeletal proteins such as vinculin (14 –18). Thus, �E-
catenin is a dynamic and multifunctional protein regulated by
tension.

�-Catenin functions in adhesion and mechanical signaling
must be integrated in all tissues. In cardiomyocytes, the AJ
functions with the desmosome to physically link opposing cells
in a specialized adhesive structure called the intercalated disc
(ICD) (19). Contractile forces place physical demands on heart
junctional complexes: not only must they withstand repeated
cycles of force, but tension-sensing proteins within these com-
plexes must be “tuned” to regulate signaling and maintain
homeostasis (20). Two �-catenin proteins are expressed in the
mammalian heart, �E-catenin and �T (testes)-catenin (21–23).
In contrast to the widely studied and well defined mammalian
�E-catenin, little is known about �T-catenin, a protein unique
to amniotes that is expressed predominantly in the heart and
testes (22, 24). �T-Catenin is expressed in cardiomyocytes
where it localizes to the ICD, and genetic ablation of
�T-catenin in mice causes dilated cardiomyopathy (22, 23, 25).
Notably, two mutations in �T-catenin have been linked to
arrhythmogenic right ventricular cardiomyopathy (ARVC): an
amino acid (aa) change in the N terminus (valine to aspartic
acid, V94D) and deletion of one aa in the C-terminal ABD (loss
of a leucine, L765del) (26). However, the molecular properties
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of �T-catenin are undefined, and how these mutations affect
�T-catenin function in cardiomyocytes remains unclear.

Here we show that �T-catenin is a constitutive actin-binding
�-catenin that can directly couple the AJ to the actin cytoskel-
eton. Our data also reveal that the V94D mutation linked to
ARVC alters �T-catenin dimerization potential to disrupt
�-catenin binding and cellular localization. We postulate that
�T-catenin protein conformation and ligand binding proper-

ties are tuned to meet the specific demands of cardiomyocyte
adhesion.

Results

�T-Catenin Domain Stability Differs from �E-Catenin—
Structural studies of �E-catenin have revealed that the protein
is a series of helical bundles (7, 8, 13, 27, 28). The N-terminal (N)
domain consists of two four-helix bundles (Fig. 1A, N1 and N2),
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FIGURE 1. �T-Catenin domain organization. A, �E-catenin is composed of five four-helix bundles, a linker region, and a five-helix bundle tail. Domain amino
acid boundaries are marked. The two N-terminal four-helix bundles (N1 and N2) bind �-catenin and mediate homodimerization (the protease-resistant region
is underlined). The middle region contains three four-helix bundles (M1–M3; the protease-resistant M fragment is underlined). The C-terminal domain binds
F-actin (ABD). �T-Catenin possesses a similar domain organization based on sequence homology. Trypsin-resistant fragments (from D) are shown as color-
coded lines below �T-catenin. B, percent identity (blue) and percent similarity (orange) among M. musculus �E-catenin (�Ecat), �N-catenin (�Ncat), �T-catenin
(�Tcat), and vinculin (Vinc). C, percent identity (%Iden) (blue) and percent similarity (%Sim) (orange) between M. musculus �E-catenin and �T-catenin domains.
D, limited proteolysis of recombinant �T-catenin (left) and �E-catenin monomer (right). A Coomassie-stained SDS-polyacrylamide gel is shown for proteins
incubated for 0, 2.5, 5, 15, 30, 60, and 120 min at room temperature in 0.05 mg/ml trypsin. M-fragment (M; aa 385– 651) and �-catenin/dimerization (�/D;
aa 82–287) fragments in �E-catenin are marked with black arrows. Stable �T-catenin fragments of 30 (yellow), 25 (blue), and 18 kDa (orange) are noted
with colored arrows. E, Edman sequencing results of limited proteolysis fragments. Protein fragments are mapped on the full-length sequence (A) as
color-coded lines.
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binds �-catenin, and mediates homodimerization (7). The M
region is composed of three four-helix bundles (Fig. 1A,
M1–M3) and binds vinculin in response to mechanical force
(14 –17, 29, 30). A small linker region connects the C-terminal
five-helix actin-binding domain (ABD) to the M region (Fig.
1A). We compared the amino acid sequence of Mus musculus
�T-catenin with M. musculus �E-catenin and M. musculus
�N-catenin. �T-Catenin is 58% identical and 77% similar
to �E-catenin; likewise, it is 59% identical and 77% similar to
�N-catenin (Fig. 1B). �E-Catenin and �N-catenin are 81%
identical and 91% similar, making �T-catenin the most diver-
gent of the mammalian family. We then analyzed sequence ho-
mology across domains between �T-catenin and �E-catenin
(Fig. 1C). The region with the lowest degree of homology is N2
(39% identical and 61% similar), whereas the region with the
highest degree of homology is M2 (62% identical and 92%
similar).

We then questioned whether sequence differences affected
domain organization in �T-catenin. We purified recombinant
M. musculus �T-catenin and M. musculus �E-catenin from
Escherichia coli and used limited trypsin proteolysis to examine
domain organization. As shown previously (31, 32), tryptic
digestion of �E-catenin monomer revealed two stable frag-
ments: the modulation domain (aa 385– 651) and the
�-catenin-binding/homodimerization domain (aa 82–287)
(Fig. 1D). Tryptic digestion of �T-catenin revealed three stable
fragments at 30, 25, and 18 kDa (Fig. 1D). N-terminal sequenc-
ing revealed that the 30-kDa fragment started at aa 379 and
contained bundles M2 and M3 (Fig. 1D). The entire M2-
M3 region forms a protease-resistant fragment in mouse
�E-catenin (Fig. 1D) (10, 31, 33) and fish �E-catenin (32). Nota-
bly, the 18-kDa fragment started at aa 485, near the end of
domain M2, and contained the entire M3 domain. This sug-
gests that, unlike �E-catenin, the �T-catenin M2-M3 region
exists in a more open, protease-sensitive state. Finally, the
25-kDa fragment started at aa 108, similar to the dimerization/
�-catenin-binding domain in �E-catenin (aa 82–287), although
this fragment, similar to M2-M3, was markedly less protease-
resistant than in �E-catenin. We conclude that the conforma-
tion of �T-catenin is similar to �E-catenin but with differences
in the stability of both N-terminal and middle domains that
could impact function.

�T-Catenin Is a Monomer in Solution—We assessed the olig-
omerization state of �T-catenin by chromatography. Recombi-
nant �T-catenin protein prepared from E. coli was first purified
by Mono Q ion exchange chromatography (Fig. 2A). Two peaks
were routinely observed during elution off a Mono Q column
(Fig. 2A, top chromatogram), and SDS-PAGE analysis of peak
fractions revealed they both contained full-length �T-catenin
(Fig. 2A, bottom gel). A similar ion exchange chromatography
profile is observed with M. musculus �E-catenin (data not
shown), and the two peaks correspond to the monomer (peak 1)
and homodimer (peak 2) species. Both �T-catenin peak frac-
tions were subsequently purified over a Superdex 200 (S200)
size exclusion chromatography (SEC) column. The Mono Q
peak 1 fraction eluted in a single, discrete peak (Fig. 2B, purple
line), consistent with it being a single, likely monomeric, spe-
cies. The S200 elution profile of Mono Q peak 2 was similar to

peak 1, although a second, small peak was sometimes observed
where a dimer species would be expected to elute (Fig. 2B, red
line).

We then compared the primary S200 peak (elution volume,
60 –70 ml; concentrated to 25–50 �M) of �T-catenin with
�E-catenin monomer and homodimer by analytical SEC. At all
concentrations tested (25–50 �M), �T-catenin eluted in a single
peak after both �E-catenin homodimer and monomer, suggest-
ing that �T-catenin is a monomer (Fig. 2C). We then used SEC
and sucrose density gradient centrifugation to determine the
molecular mass of �T-catenin, �E-catenin monomer, and
�E-catenin homodimer (34). The SEC elution profiles (Fig. 2C)
were compared with known standard proteins to calculate the
Stokes radius (Fig. 2D). The calculated Stokes radius of
�E-catenin homodimer was similar to past observations (6.5
versus 7.4 nm; Ref. 35), and the Stokes radii of both �E-catenin
monomer and homodimer species were comparable with our
previously measured radii of gyration from small angle x-ray
scattering (4.5 and 6.0 nm, respectively; Ref. 32). The Stokes
radius of �T-catenin was calculated to be 4.7 nm, slightly
smaller than that of �E-catenin monomer (Fig. 2D).

We then used sucrose density gradient centrifugation to
determine the sedimentation coefficients of �T-catenin,
�E-catenin monomer, and �E-catenin homodimer. Proteins
were separated on 5–20% sucrose gradients, and the fraction
peak was determined and compared with a standard curve to
calculate the sedimentation coefficient (Fig. 2, E and F). The
Svedberg coefficients were determined to be 7.0S for
�E-catenin homodimer (identical to past calculation (35)), 5.2S
for �E-catenin monomer, and 5.7S for �T-catenin. Molecular
masses were then estimated based on the measured Stokes radii
and sedimentation coefficients (Fig. 2G). The molecular mass
of �T-catenin was calculated to be 109 kDa, similar to that of
�E-catenin monomer (106 kDa). Finally, �T-catenin migrated
as a single band by native PAGE, faster than either �E-catenin
monomer or dimer, consistent with the SEC analysis (Fig. 2H).
We conclude that �T-catenin is primarily a monomer in
solution.

Dimerization kinetics differ significantly between mouse
�E-catenin and �N-catenin at physiological temperatures (8).
�E-Catenin homodimerization is significantly weaker than
�N-catenin homodimerization, but a kinetic block limits disas-
sociation once an �E-catenin dimer is formed. The presence of
two peaks in the Mono Q elution profile (Fig. 2A) and the minor
peak in the peak 2 SEC elution (Fig. 2B) suggest that �T-catenin
might exist as a homodimer. However, if the Mono Q peak 2
elution represented a homodimer species of �T-catenin, then
the majority of these dimers dissociated during SEC (Fig. 2B).
We were never able to purify a sufficient quantity of the poten-
tial dimer species for analysis by SEC or native-PAGE. Also,
attempts to promote dimerization by incubation of the mono-
mer at physiological (37 °C) temperatures caused the protein to
aggregate and fall out of solution. Although we were unable
to analyze the dimerization kinetics of wild-type (WT) �T-
catenin, our analysis of the V94D mutant revealed that
�T-catenin, similar to �E-catenin and �N-catenin, has
dimerization potential (described below). Nonetheless, we took
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advantage of the lack of a stable dimer in solution to study the
behavior of �T-catenin monomer binding to F-actin.

�T-Catenin Monomer Binds F-actin—Mammalian �E-
catenin binds and bundles F-actin (9 –12, 36), although in the
absence of force, homodimerization is required to potentiate
F-actin binding. We tested whether �T-catenin monomer
binds F-actin using an F-actin cosedimentation assay. Increas-
ing concentrations of �T-catenin were incubated in the pres-

ence or absence of 2 �M F-actin, the samples were centrifuged,
and the resulting pellets were analyzed. �T-Catenin cosedi-
mented with F-actin above background (Fig. 3A), and the
bound protein was quantified and plotted over free protein to
calculate the affinity of the interaction (Fig. 3B). Bovine serum
albumin (BSA) and �E-catenin were run as negative and posi-
tive controls, respectively (Fig. 3A, right panels). Plotted data
were fit to a hyperbolic function (Fig. 3B). �T-Catenin bound to
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F-actin with a Kd of 0.4 � 0.2 �M, similar to �E-catenin dimer
(1.0 �M; Ref. 36). Thus, �T-catenin monomer is a constitutive
actin-binding protein, and unlike �E-catenin, homodimeriza-
tion is not required for strong F-actin binding in the absence of
force (9, 10, 12).

To investigate whether �T-catenin monomer bundles F-ac-
tin, we used transmission electron microscopy to visualize
�T-catenin incubated with actin filaments. Weak bundling of 2
�M F-actin was observed with 4 �M �T-catenin (Fig. 3C and
quantification in Fig. 5D). In contrast, robust bundling of 2 �M

F-actin was observed with 4 �M �E-catenin homodimer (Figs.
3C and 5D). The weak bundling observed with �T-catenin
could result from either the dimer species being stabilized on
the actin filament or activation of a cryptic dimerization
domain as observed in the vinculin tail (37). We conclude that
�T-catenin is a poor bundler of F-actin.

�T-Catenin Couples �-Catenin to F-actin—Binding to
�-catenin weakens the affinity of �E-catenin for F-actin (9, 10).
To test whether �T-catenin can bind F-actin as part of the
cadherin�catenin complex, we purified mouse �-catenin and
mixed it with �T-catenin. As expected, �T-catenin bound to
�-catenin with a 1:1 stoichiometry (data not shown), and we
isolated the �-catenin��T-catenin complex by SEC. Increasing
concentrations of the �-catenin��T-catenin complex were
incubated in the presence or absence of F-actin and centri-
fuged, and the pelleted material was analyzed as above.
Although the �-catenin��T-catenin complex pelleted in the
absence of F-actin (Fig. 3D, No F-actin panel), we were able to
calculate the affinity of the complex for F-actin. The
�-catenin��T-catenin complex bound to F-actin with a Kd of
1.1 � 0.2 �M (Fig. 3E). Although �-catenin lowers the affinity of
�T-catenin for F-actin slightly, the interaction strength is con-
siderably stronger than that of the Danio rerio �-catenin��E-
catenin complex (�10 �M) and similar to the strength of
�E-catenin homodimer association with F-actin (32, 36). Thus,
�T-catenin can bind both �-catenin and F-actin simultane-
ously to directly link the cadherin�catenin complex to the
actin cytoskeleton. This is distinct from �E-catenin in which
force is needed to strengthen the association between the
cadherin�catenin complex and F-actin (12). Although tension
may strengthen the interaction between �T-catenin and F-ac-
tin, we speculate that basal binding permits coupling between
the cadherin�catenin complex and actin through �T-catenin
over a range of forces.

�T-Catenin V94D Mutation Creates an Obligate Homo-
dimer—Two mutations in �T-catenin have been linked to
ARVC: replacement of a valine for an aspartic acid at aa 94

(V94D) in the N1 domain and deletion of a leucine at aa 765
(L765del) in the ABD (26). Yeast two-hybrid and overexpres-
sion studies suggest that the V94D mutant interferes with
�-catenin binding and that the L765del mutation promotes olig-
omerization (26). However, it is not clear how these mutations
affect the biochemical properties of �T-catenin or impact cel-
lular function in cardiomyocytes. We used site-directed
mutagenesis to make the V94D and L765del mutations in
�T-catenin and attempted to purify the mutant proteins. We
were unable to purify L765del; the mutation rendered the
expressed protein insoluble (data not shown). However, we
were successful in expressing and purifying the V94D mutant.
Surprisingly, V94D eluted as a single peak off the Mono Q col-
umn rather than two as observed with WT �T-catenin (Fig.
4A). We then ran the V94D peak over an S200 SEC column
where it eluted as a single peak before WT �T-catenin and
similar to the possible homodimer peak (Fig. 4B). We then
compared the concentrated V94D protein (25–30 �M; concen-
trations greater than this precipitated out of solution) with WT
�T-catenin by analytical SEC. The V94D mutant eluted as a
single species before WT �T-catenin with a larger Stokes radius
(Fig. 4, C and G; 5.8 versus 4.7 nm). The V94D mutant also
displayed a higher sedimentation coefficient than WT
�T-catenin (Fig. 4, D and G; 7.7S versus 5.7S). The Stokes radius
and sedimentation coefficient produced a molecular mass of
183 kDa (Fig. 4G), roughly double that of WT �T-catenin. We
conclude that the V94D mutation creates a stable �T-catenin
homodimer.

Because full-length �T-catenin V94D is difficult to purify, we
deleted the ABD (aa 660 – 895) in both WT and V94D
�T-catenin to improve protein yield. We analyzed the SEC
and sedimentation properties of the �ABD constructs (Fig.
4, E–G). Similar to the full-length construct, the V94D muta-
tion altered the elution and sedimentation profiles of the
�ABD construct (Fig. 4, E and F). The calculated molecular
mass of �T-catenin V94D �ABD was 146 kDa compared
with 90 kDa for �T-catenin �ABD, consistent with it form-
ing a homodimer.

We analyzed the oligomeric state of the �T-catenin �ABD
proteins by cross-linking. Increasing concentrations of �T-
catenin �ABD and �T-catenin V94D �ABD were incubated
with or without the cross-linker bis(sulfosuccinimidyl)suberate
(BS3), and the resulting products were analyzed by SDS-PAGE.
As expected, �T-catenin �ABD and �T-catenin V94D �ABD
ran as 75-kDa proteins in the absence of cross-linker (Fig. 4H).
In the presence of BS3, however, V94D migrated as a 150-kDa
protein at all concentrations tested, indicating a cross-linked

FIGURE 2. �T-Catenin is a compact monomer. A, Mono Q anion exchange chromatography of recombinant �T-catenin (top) and Coomassie-stained SDS-
PAGE of fractions (bottom). B, S200 SEC of �T-catenin Mono Q peak fractions. C, analytical S200 SEC of recombinant �E-catenin homodimer, �E-catenin
monomer, and �T-catenin. Elution profiles were used to calculate Kav. D, Stokes radii of �E-catenin homodimer, �E-catenin monomer, and �T-catenin. Kav was
calculated for standard proteins carbonic anhydrase (CA; RS � 2.4 nm), BSA (RS � 3.5 nm), alcohol dehydrogenase (AD; RS � 4.6 nm), �-amylase (�A; RS � 5.4 nm),
apoferritin (A; RS � 6.7 nm), and thyroglobulin (T; RS � 8.5 nm). A standard curve was created by plotting (�logKav)1/2 versus RS. �E-Catenin homodimer,
�E-catenin monomer, and �T-catenin RS values were determined from the standard curve. E, sucrose gradient sedimentation of �E-catenin monomer (�E-M),
�E-catenin dimer (�E-D), and �T-catenin (�T). Fractions were collected from 5–20% sucrose gradients and analyzed by Coomassie-stained SDS-PAGE (top). The
percentage of protein in each fraction was measured and plotted, and the data were fit to a Gaussian curve. F, sedimentation coefficient of �E-catenin dimer,
�E-catenin monomer, and �T-catenin. A standard curve was created by plotting the sedimentation coefficient (S) versus the average sucrose gradient fraction
of protein standards (similar standards as D; carbonic anhydrase, 2.8S; BSA, 4.3S; alcohol dehydrogenase, 7.4S; �-amylase, 8.9S; and apoferritin, 16.6S).
�E-Catenin dimer, �E-catenin monomer, and �T-catenin S values were determined from the standard curve. G, calculated molecular masses of �E-catenin
dimer, �E-catenin monomer, and �T-catenin. H, native PAGE analysis of recombinant �E-catenin dimer (�Ecat D), �E-catenin monomer (�Ecat M), and
�T-catenin (�Tcat). IEC, ion exchange chromatography; A.U., arbitrary units.
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dimer. Incubation with BS3 did not affect �T-catenin �ABD
migration at low concentrations, although at higher concentra-
tions (2 and 4 �M), a 150-kDa species was detected. We specu-
late that this could reflect a transient homodimer species. We

conclude that the V94D mutation promotes dimerization of
�T-catenin.

We used limited proteolysis to determine whether the V94D
mutation affected domain organization. Like WT �T-catenin,
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three fragments were resistant to trypsin cleavage in V94D (Fig.
4I). However, the �-catenin/homodimerization domain (aa 108
start; confirmed by Edman degradation sequencing) was pro-
tected relative to WT (Fig. 4I, blue arrowhead, compare with
Fig. 1D, blue arrowhead), consistent with this domain being
stabilized in the homodimer state.

We then questioned whether the V94D homodimer could
interact with �-catenin. We mixed increasing concentrations
of WT or V94D �T-catenin with GST-tagged �-catenin,
pulled down the �-catenin, and assessed binding. Wild-type
�T-catenin bound GST-�-catenin at stoichiometric levels;
however, little to no V94D bound (Fig. 4J). Thus, the V94D
mutation creates an obligate �T-catenin homodimer that can-
not bind �-catenin.

�T-Catenin V94D Binds and Bundles F-actin—Dimerization
promotes �E-catenin binding to F-actin (9, 10). We questioned
whether the V94D mutation potentiates �T-catenin binding to
F-actin. The V94D mutant cosedimented with F-actin (Fig. 5A)
with an affinity similar to that of WT �T-catenin (0.4 � 0.1 �M;
Fig. 4B), suggesting that homodimerization does not increase
the affinity of �T-catenin for F-actin.

We then tested whether the V94D homodimer could bundle
F-actin. We consistently observed increased bundling of 2 �M

F-actin with 4 �M �T-catenin V94D relative to 4 �M WT
�T-catenin (Fig. 5, C and D). Although increased, the level of
bundling was still less than that observed with 4 �M �E-
catenin homodimer (Figs. 3C and 5D). We conclude that
the V94D mutation promotes �T-catenin-mediated F-actin
bundling.

�T-Catenin V94D Disrupts Localization in Cardiomyo-
cytes—�T-Catenin localizes to the adherens junction at the
ICD in cardiomyocytes (22). To determine whether the V94D
mutation disrupted �T-catenin cellular localization, we tran-
siently expressed EGFP-tagged WT or V94D �T-catenin in
neonatal mouse cardiomyocytes. EGFP-�T-catenin localized
specifically to cell-cell contacts in cardiomyocytes where it
colocalized with both �E-catenin and N-cadherin (Fig. 6, A, C,
and zoom in E). In contrast, V94D was largely peripheral to
cell-cell contacts (Fig. 6, B, D, and zoom in E) and localized to
actin fibers (Fig. 6, B and D, orange arrowheads). This was con-
firmed by directly measuring colocalization between N-cad-
herin and EGFP-�T-catenin or EGFP-�T-catenin V94D signals
at AJ clusters in transfected cells using Pearson’s r (Fig. 6F). This
analysis revealed a significant reduction in colocalization
between N-cadherin and EGFP-�T-catenin V94D at AJs (Fig.
6F). Thus, the V94D mutation disrupts �T-catenin subcellular
localization in cardiomyocytes.

Discussion

�T-Catenin Binds F-actin Strongly as a Monomer—Our in
vitro results show that, in solution, �T-catenin binds F-actin as
a monomer and in complex with �-catenin, properties that sep-
arate it from mammalian �E-catenin. �T-Catenin monomer
binds F-actin with a slightly higher affinity than �E-catenin
homodimer (0.4 versus 1.0 �M) (36). Although �-catenin bind-
ing reduces the affinity of �T-catenin for F-actin, the reduction
is relatively small (from 0.4 to 1.1 �M). We conclude that
�T-catenin binding to F-actin, unlike mammalian �E-catenin,
is not allosterically regulated. This would permit �T-catenin to
directly couple the cadherin�catenin complex to the actin cyto-
skeleton in the absence of tension, although mechanical force
could strengthen the �T-catenin-actin interface.

�T-Catenin Has Dimerization Potential—Both M. musculus
�E-catenin and �N-catenin homodimerize in solution,
although the kinetics of dimerization differ significantly
between the two mammalian �-catenins (8). At physiological
temperature, the homodimerization affinity of �N-catenin is
more than 10� greater than the homodimerization affinity of
�E-catenin (2 versus 25 �M). However, the kinetics of dissocia-
tion differ markedly: �N-catenin equilibrates quickly, whereas
a kinetic block limits �E-catenin dissociation (8). The
�E-catenin dimer is thus stabilized and can persist at concen-
trations well below the Kd of association. Our in vitro results
suggest that �T-catenin has the ability to homodimerize. We
observed a monomer and putative dimer species by ion
exchange chromatography, although the dimer quickly dissoci-
ated upon dilution during SEC. Stronger evidence comes from
our analysis of the V94D mutation where a single amino acid
change shifted the protein to the homodimer state. Cross-link-
ing studies with the �T-catenin �ABD constructs also provide
evidence for dimerization potential in the WT protein. Unfor-
tunately, our inability to maintain soluble �T-catenin at or near
physiological temperature (37 °C) precluded a detailed analysis
of dimerization kinetics. Nonetheless, our results lead us to
postulate that �T-catenin has dimerization potential and that
the homodimer species, similar to �N-catenin, dissociates
quickly (i.e. no kinetic block).

Evidence suggests a potential role for the �-catenin
homodimer in migration and cell-cell adhesion (36, 38, 39).
However, a physiological role for the �-catenin homodimer in
cardiomyocytes and whether putative �E-catenin and �T-
catenin homodimers function similarly in vivo are unclear. The
V94D mutation, which drives �T-catenin into the dimer state
in vitro, shifted localization from cell-cell contacts and pro-

FIGURE 3. �T-Catenin binds F-actin. A, high speed cosedimentation assay of �T-catenin with F-actin. Left panels, increasing concentrations (0.1–3.0 �M) of
�T-catenin with or without 2 �M F-actin were incubated for 30 min at room temperature and then centrifuged. Starting (6.25% of total) and pelleted materials
(25% of total) were separated by SDS-PAGE and stained with Coomassie dye. Right panels, 4 �M �E-catenin dimer (�E-D) and 4 �M BSA were routinely run as
positive and negative controls, respectively. B, bound �T-catenin (�M/�M actin) from A was plotted against free �T-catenin (�M), and data were fit to a
hyperbolic function (black line). The average Kd and Bmax �S.D. from four independent experiments are shown. Results from these experiments were: exper-
iment 1, Kd � 0.3 �M, Bmax � 0.6; experiment 2, Kd � 0.8 �M, Bmax � 0.7; experiment 3, Kd � 0.3 �M, Bmax � 0.5; experiment 4 (binding results shown in A and
plotted in B), Kd � 0.3 �M, Bmax � 0.3. C, negative stain transmission electron micrographs of 2 �M F-actin in the absence or presence of 4 �M �T-catenin or 4 �M

�E-catenin homodimer. Scale bars, 2 �m. D, increasing concentrations (0.25– 8.0 �M) of �T-catenin (�T-cat)��-catenin (�-cat) complex with or without 2 �M

F-actin were incubated for 30 min at room temperature and then centrifuged. Starting (6.25% of total) and pelleted materials (25% of total) were separated by
SDS-PAGE and stained with Coomassie dye. E, bound �T-catenin��-catenin (�M/�M actin) from D was plotted against free �T-catenin��-catenin (�M), and data
were fit to a hyperbolic function (black line). The average Kd and Bmax �S.D. from three independent experiments are shown. Results from these experiments
were: experiment 1 (binding results shown in D and plotted in E), Kd � 1.0 �M, Bmax � 0.2; experiment 2, Kd � 1.4 �M, Bmax � 0.2; experiment 3, Kd � 1.1 �M,
Bmax � 0.2.
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moted recruitment to F-actin bundles when expressed in car-
diomyocytes. Actin filament cross-linking is essential for car-
diomyocyte cytoskeletal organization and function. The barbed
ends of actin filaments from adjoining sarcomeres interdigitate
at the Z-disc where they are cross-linked primarily by �-actinin
to form a structural lattice (40). �-Actinin is an established
�-catenin ligand (41, 42), and we have detected �T-catenin in
complex with �-actinin in cardiomyocyte lysates.3 Thus, the
�T-catenin homodimer could have a role in cytoskeleton orga-
nization in cardiomyocytes. Alternatively, homodimerization
may serve to regulate interactions with �-catenin and/or plako-
globin along the ICD. Additional work is needed to elucidate
the putative role of the �T-catenin homodimer in cardiomyo-
cyte biology.

V94D Mutation Linked to ARVC Promotes Homo-
dimerization—The V94D mutation in �T-catenin is linked
to ARVC, although the heterozygous mutation has only been
documented in one individual (26). It was shown previously
that the mutation reduced both �-catenin binding and
homodimerization potential in a yeast two-hybrid assay (26).
In contrast, we found that V94D promotes �T-catenin
homodimerization, in effect creating an obligate homodimer
species that cannot bind �-catenin. Not surprisingly, the V94D
mutant disrupted cell-cell contact localization when expressed
in cardiomyocytes. In the heterozygous state, it is unclear
whether 1) V94D interacts with WT �T-catenin to disrupt
localization to cell junctions and �T-catenin-mediated adhe-
sion and/or 2) the mislocalized mutant protein disrupts
cytoskeletal organization. Nonetheless, to the best of our
knowledge, this is one of the first demonstrations of how a
disease-linked mutation in �-catenin disrupts a fundamental
molecular property.

�T-Catenin Domain Stability—Our limited proteolysis
experiments revealed that both the �-catenin/homodimeriza-
tion domain and middle domain were more protease-sensitive
in �T-catenin than in �E-catenin. Notably, the N2 bundle
within the �-catenin/homodimerization domain of �T-catenin
is the region with the least conservation compared with
�E-catenin. �T-Catenin binds �-catenin (Fig. 4D) and plako-
globin,4 although the strengths of these interactions are
untested. Differences in N2 could impact �T-catenin ligand
binding, including self-association, to regulate molecular com-
plex formation at cell-cell contacts.

The core M region (M1–M3) of �E-catenin is required for its
function as a mechanosensor in which tension alters �-catenin
conformation to promote ligand binding (14, 16, 29, 43). Recent
structural and single molecule studies coupled with molecular
dynamics simulations support a model in which mechanical
force reorients M2 and M3 to release M1, which contains the

3 E. D. Wickline and A. V. Kwiatkowski, unpublished observation.
4 A. V. Kwiatkowski, unpublished observation.
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FIGURE 4. �T-Catenin V94D mutation promotes homodimerization. A,
Mono Q anion exchange chromatography of �T-catenin V94D mutant (solid
red line) and WT �T-catenin (dashed orange line; shown as reference; chromat-
ogram is the same as in Fig. 2A). B, S200 SEC of �T-catenin V94D Mono Q peak
fraction and �T-catenin WT peak 2 fraction. C, analytical S200 SEC of
�T-catenin V94D and �T-catenin WT. The elution profile was used to calculate
RS in G. D, sucrose gradient sedimentation of �T-catenin V94D. Fractions were
collected from 5–20% sucrose gradients and analyzed by Coomassie-stained
SDS-PAGE. The percentage of V94D in each fraction was measured and plot-
ted, and the data were fit to a Gaussian curve (red line). The �T-catenin sedi-
mentation profile from Fig. 2E (dashed orange line) is shown for comparison.
The fraction peak was used to calculate the sedimentation coefficient in G. E,
analytical S200 SEC of �T-catenin (�T-cat) �ABD and �T-catenin V94D �ABD.
Elution profiles were used to calculate RS in G. F, sucrose gradient sedimenta-
tion of �T-catenin (�T) �ABD and �T-catenin V94D �ABD. The fraction peaks
were used to calculate sedimentation coefficients in G. G, calculated molecu-
lar masses of �T-catenin V94D, �T-catenin �ABD, and �T-catenin V94D
�ABD. H, cross-linking experiments with �T-catenin �ABD and �T-catenin
V94D �ABD. Decreasing concentrations of protein (4-0.5 �M) were incubated
with or without 1 mM BS3 for 30 min at room temperature, separated by

SDS-PAGE, and stained with Coomassie dye. I, limited proteolysis of
�T-catenin V94D. Color-coded arrows mark stable fragments mapped in Fig.
1A. J, increasing concentrations of purified �T-catenin WT or �T-catenin V94D
protein were incubated with GST-tagged full-length �-catenin (�-cat) for 1 h
at room temperature, washed, and then analyzed by SDS-PAGE. IEC, ion
exchange chromatography; A.U., arbitrary units.
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vinculin-binding domain (16, 17, 29). A salt bridge network
between M domains is postulated to maintain �E-catenin in the
autoinhibited conformation in the absence of tension (17).
Based on sequence homology, a similar salt bridge network
could exist in �T-catenin, although our limited proteolysis
results showed that the �T-catenin M fragment (M2-M3) was

less stable than in �E-catenin. We speculate that increased flex-
ibility within the �T-catenin M2 and M3 domains could reduce
the force required for activation, permitting M1 release and
ligand recruitment at lower tension states.

Increased flexibility between the M2 and M3 domains could
also promote ligand binding within this region. Notably,
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concentrations (0.125– 6.0 �M) of �T-catenin V94D with or without 2 �M F-actin were incubated for 30 min at room temperature and then centrifuged. Starting
(6.25% of total) and pelleted materials (25% of total) were separated by SDS-PAGE and stained with Coomassie dye. B, bound �T-catenin V94D (�M/�M actin)
from A was plotted against free �T-catenin V94D (�M), and data were fit to a hyperbolic function (black line). The average Kd and Bmax �S.D. from three
independent experiments are shown. Results from these experiments were: experiment 1, Kd � 0.4 �M, Bmax � 0.4; experiment 2 (binding results shown in A
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presence of 4 �M �T-catenin or 4 �M �T-catenin V94D. Scale bars, 2 �m. D, F-actin bundle width was measured in �E-catenin homodimer (�Ecat-D; Fig. 3C), WT
�T-catenin (�Tcat), and V94D �T-catenin (V94D) samples. A scatter plot of all measurements (�E-catenin homodimer, n � 291; WT �T-catenin, n � 337; V94D
�T-catenin, n � 449) from at least three images is shown. The orange vertical line marks the median, and the bars define the interquartile range. Mean and S.D.
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�T-catenin, but not �E-catenin, was shown to bind plakophi-
lin-2, a desmosomal protein that links to intermediate fila-
ments, and the binding interface was mapped to M3 (23).
�T-Catenin, through association with plakophilin-2, may func-
tion as a molecular link to integrate the actin and intermediate
filament cytoskeletons at the ICD. It is possible that structural
differences within the core M region between �-catenins could
regulate both mechanosensing and ligand binding properties.

�T-Catenin Function in Cardiomyocytes—�-Catenin func-
tions in adhesion and mechanical signaling must be integrated
in all tissues. Contractile forces place physical demands on
heart junctional complexes: not only must they withstand
repeated cycles of force but tension-sensing proteins within
these complexes must be tuned to regulate signaling and main-
tain homeostasis. Our in vitro studies showed that �T-catenin
could directly couple the actin cytoskeleton to cadherin�catenin
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FIGURE 6. �T-Catenin V94D mutation disrupts localization in cardiomyocytes. A–E, mouse neonatal cardiomyocytes transfected with EGFP-tagged
�T-catenin or �T-catenin V94D. Cells were fixed 48 h post-transfection and stained with Alexa Fluor-labeled phalloidin and antibodies against �E-catenin (A
and B) or N-cadherin (C–E). EGFP-�T-catenin colocalized with N-cadherin at cell-cell contacts (C; magnification of boxed contacts in E, left panels), whereas
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in the absence of tension. We speculate that this property of
�T-catenin might permit the cadherin�catenin complex to
maintain a static linkage to the actomyosin network over a
range of forces such as those produced by repeated cycles of
contraction and relaxation in cardiomyocytes. Our biochemical
analyses also suggest that �T-catenin dimerization properties
and M region stability differ from those in �E-catenin. How
these differences impact in vivo function is unclear, but we
speculate that they could impact molecular interactions and
tension sensing. In the mammalian heart, �T-catenin may have
evolved to complement �E-catenin functions in adhesion and
signaling.

Experimental Procedures

Plasmids—DNA encoding full-length M. musculus �T-
catenin was cloned into pGEX-TEV (36) to create a fusion
between GST and �T-catenin. Site-directed mutagenesis was
used to create the valine to aspartic acid mutation at amino acid
94 (V94D) in �T-catenin. The N-terminal head region (aa
1– 659) of �T-catenin or �T-catenin V94D was cloned into
pGEX-TEV to create the �ABD constructs. WT and V94D
�T-catenin were cloned into pEGFP-C1 for expression in
mammalian cells.

Recombinant Protein Expression and Purification—GST-
tagged �T-catenin, �E-catenin, and �-catenin were expressed
in BL21(DE3) E. coli cells and purified as described (31, 36).
GST-tagged proteins bound to glutathione-agarose were equil-
ibrated in cleavage/elution buffer (20 mM Tris, pH 8.0, 150 mM

NaCl, 2 mM EDTA, 1 mM DTT, and 10% glycerol) and then
incubated with tobacco etch virus protease overnight at 4 °C to
cleave protein from the GST tag. All proteins were purified by
Mono Q anion exchange chromatography followed by S200 gel
filtration chromatography in 20 mM Tris, pH 8.0, 150 mM NaCl,
10% glycerol, and 1 mM DTT. Eluted protein was concentrated
to 20 –50 �M working concentrations using a Millipore column
concentrator, flash frozen in liquid nitrogen, and stored at
�80 °C.

Size Exclusion Chromatography—Analytical SEC was per-
formed at 4 °C on a Superdex 200 column in 20 mM Tris, pH 8.0,
150 mM NaCl ,and 1 mM DTT. Protein was injected at 25–30
�M.

Native PAGE—FPLC-purified �E-catenin and �T-catenin
were diluted in cold native gel sample buffer (20 mM Tris, pH
6.8, 150 mM NaCl, 300 mM sucrose, 100 mM DTT, and 0.02%
bromphenol blue) and loaded onto a 5% native gel (running gel,
0.4 M Tris, pH 8.8, and 5% acrylamide; stacking gel, 0.1 M Tris,
pH 6.8, and 5% acrylamide). Gels were run at 80 V for 5 h at 4 °C,
stained with Coomassie Blue, and imaged on a LI-COR Biosci-
ences scanner.

Limited Proteolysis and Edman Degradation Sequencing—12
�M �T-catenin was incubated at room temperature in 0.05
mg/ml sequencing grade trypsin (Roche Applied Science) in 20
mM Tris, pH 8.0, 150 mM NaCl, and 1 mM DTT. Reactions were
stopped with 2� Laemmli buffer at the indicated times, and
samples were analyzed by SDS-PAGE. For N-terminal sequenc-
ing, digested peptides were blotted onto PVDF membrane;
stained with 0.1% Coomassie Blue R-250, 40% methanol, and
1% acetic acid; destained; and dried. Individual bands were

excised and sequenced by Edman degradation (Iowa State Uni-
versity Protein Facility).

Stokes Radius Measurements—The Stokes radius (RS) was
determined by analytical size exclusion chromatography
using a Superdex 200 column equilibrated with 20 mM Tris,
pH 8.0, 150 mM NaCl, and 1 mM DTT. Standard proteins
were bovine carbonic anhydrase (RS � 2.4 nm), bovine
serum albumin (RS � 3.5 nm), yeast alcohol dehydrogenase
(RS � 4.6 nm), sweet potato �-amylase (RS � 5.4 nm), horse
spleen apoferritin (RS � 6.7 nm), and bovine thyroglobulin
(RS � 8.5 nm). The partition coefficient, Kav, was calculated
for all standards and �-catenin proteins used in this study.
The Stokes radius was calculated from a standard curve of
(�logKav)1/2 versus RS.

Sucrose Density Gradient Centrifugation—Gradients of
sucrose were made by layering sucrose dissolved in 20 mM Tris,
pH 8.0, and 150 mM NaCl from 20 to 5% in 2.5% increments in
13 � 63-mm ultracentrifuge tubes as described (44). Each layer
was frozen in a dry ice/ethanol bath before the addition of the
next layer. Tubes were stored at �80 °C until use. Tubes were
thawed overnight at 4 °C to establish a gradient. 100 �l of sam-
ple was layered on top and centrifuged in a Thermo Scientific
Sorvall S100-AT rotor at 70,000 rpm (200,000 � g) for 4 h at
4 °C. All �-catenin proteins were loaded at concentrations �20
�M. After centrifugation, 200-�l fractions were collected and
analyzed by SDS-PAGE. Gels were imaged on a LI-COR Biosci-
ences scanner, and the percentage of protein in each fraction
was measured in ImageJ. Plotted data were fit to a Gaussian
curve to determine the peak fraction in Prism software. Stand-
ard proteins were bovine carbonic anhydrase (2.8S), bovine
serum albumin (4.3S), yeast alcohol dehydrogenase (7.4S),
sweet potato �-amylase (8.9S), and horse spleen apoferritin
(16.6S). The sedimentation coefficient of �-catenin proteins
was determined from a standard curve of sedimentation coef-
ficient (S) versus fraction.

Molecular Mass Calculations—The molecular mass of �-
catenin proteins used in this study was calculated from the mea-
sured Stokes radius and sedimentation coefficient as described
(34, 45).

Actin Cosedimentation Assays—Chicken muscle G-actin
(Cytoskeleton, Inc.) was incubated in 1� actin polymerization
buffer (20 mM HEPES, pH 7.5, 100 mM KCl, 2 mM MgCl2, 0.5
mM ATP, and 1 mM EGTA) for 1 h at room temperature to
polymerize filaments. Gel-filtered �T-catenin or �T-catenin�
�-catenin heterocomplex was diluted to the indicated concen-
trations in 1� reaction buffer (20 mM HEPES, pH 7.5, 150 mM

NaCl, 2 mM MgCl2, 0.5 mM ATP, 1 mM EGTA, 1 mM DTT, and
0.02% Thesit) with and without 2 �M F-actin and incubated for
30 min at room temperature. Samples were centrifuged at
50,000 rpm (�100,000 � g) for 20 min at 4 °C in an S100-AT3
rotor. Pellets were resuspended in Laemmli sample buffer, sep-
arated by SDS-PAGE, and stained with Coomassie Blue. Gels
were imaged on a LI-COR Biosciences scanner and measured
and quantified in ImageJ. To determine the amount of bound
protein, background sedimentation (no F-actin pellet) was first
subtracted from cosedimentation (F-actin pellet). Bound pro-
tein across samples was then normalized to the F-actin pellet.
The amount of bound protein was calculated from a standard
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curve created from the starting material. All binding data were
processed with Prism software.

F-actin Bundling—Protein samples were prepared as for the
actin cosedimentation assays and deposited on carbon grids.
Samples were fixed in 2.5% glutaraldehyde, stained with 1%
uranyl acetate for 1–3 min, and examined in a JEOL JEM-1011
transmission electron microscope. To quantify bundling, a
20 � 20-�m grid was overlaid on images, and the width of all
bundles in four random squares on the grid was measured using
ImageJ. The data were plotted and analyzed with Prism
software.

Cross-linking Experiments—Purified �T-catenin �ABD and
�T-catenin V94D �ABD were incubated with or without 1 mM

BS3 (Thermo Scientific) in 20 mM HEPES, pH 7.4, 150 mM

NaCl, and 1 mM DTT for 30 min at room temperature, sepa-
rated by SDS-PAGE, stained with Coomassie dye, and imaged
on a LI-COR Biosciences scanner.

GST Pulldown Experiments—Increasing amounts of �T-
catenin or �T-catenin V94D (1–15 �g) were added to 15 �g of
GST-�-catenin bound to glutathione-agarose in 20 mM Tris,
pH 8, 150 mM NaCl, and 5 mM DTT. Samples were incubated
with gentle mixing for �2 h at 4 °C and then washed five times
in PBS 	 0.05% Tween 20 and 5 mM DTT before elution in
Laemmli sample buffer. Samples were separated by SDS-PAGE,
stained with Coomassie dye, and imaged on a LI-COR Biosci-
ences scanner.

Cardiomyocyte Isolation and Culture—All animal work was
approved by the University of Pittsburgh Division of Labora-
tory Animal Resources. Cardiomyocytes were isolated from
mouse neonates (P1–P3) as described (46). Cardiomyocytes
were plated onto collagen-coated coverslips and maintained in
78% DMEM, 17% M-199, 4% horse serum, 1% penicillin/strep-
tomycin, 1 �M Ara-C, and 1 �M isoproterenol. Transfections
were performed 24 h postplating using Lipofectamine 2000
(Life Technologies).

Immunostaining and Confocal Microscopy—Cells were fixed
in 4% paraformaldehyde in PHEM buffer (60 mM 1,4-piperazin-
ediethanesulfonic acid, pH 7.0, 25 mM HEPES, pH 7.0, 10 mM

EGTA, pH 8.0, 2 mM MgCl2, and 0.12 M sucrose), washed with
PBS, blocked for 1 h at room temperature in PBS 	 10% BSA,
washed three times in PBS, incubated with primary in PBS 	 1%
BSA for 1 h at room temperature, washed three times in PBS,
incubated with secondary in PBS 	 1% BSA for 1 h at room
temperature, washed three times in PBS, and mounted in
Fluoromount G (Electron Microscopy Sciences). F-actin was
stained using Alexa Fluor-phalloidin (Invitrogen) and anti-
bodies against �E-catenin (Enzo Life Sciences) or N-cad-
herin (Invitrogen). Cells were imaged on a Nikon Eclipse Ti
inverted microscope outfitted with a Prairie swept field con-
focal scanner, Agilent monolithic laser launch, and Andor
iXon3 camera using NIS-Elements imaging software. Maxi-
mum projections of 4-�m image stacks were created for
image analysis and presentation. For Pearson’s r calcula-
tions, signal colocalization was measured between user-de-
fined N-cadherin-positive AJ clusters and EGFP signals
using ImageJ. Colocalization data were plotted and analyzed
with Prism software.
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